CS60073: Advanced Machine Learning

End-semester Examination Spring 2018

Answer all THREE questions. Clearly write your steps of derivations. Answer all parts of a question together. Make suitable assumptions if necessary.

Time: 3 hrs. Total marks: 60.

1(a). State Sauer Lemma. [5]
(b). Let \mathcal{H}_{1} and \mathcal{H}_{2} be two hypothesis classes with $d_{1}=\operatorname{VC}-\operatorname{dim}\left(\mathcal{H}_{1}\right)$, and $d_{2}=\operatorname{VC}-\operatorname{dim}\left(\mathcal{H}_{2}\right)$. Using Sauer Lemma prove that VC- $\operatorname{dim}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right) \leq 2 \max \left(d_{1}, d_{2}\right)+1$.
(c). For every $n \in \mathbb{N}$, let \mathcal{H}_{n} be the class of polynomial classifiers of degree n; namely, \mathcal{H}_{n} is the set of all classifiers of the form $h(x)=\operatorname{sign}(p(x))$, where $p: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of degree n. Define $\mathcal{H}=\bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}$. Is \mathcal{H} PAC Learnable? Explain. Is \mathcal{H} non-uniformly learnable? Explain. [5]

2(a). Define γ-weak learnability. [5]
(b). Consider a hypothesis class, $\mathcal{H}=\left\{h_{\theta_{1}, \theta_{2}, b}: \theta_{1}, \theta_{2} \in \mathbb{R}, \theta_{1}<\theta_{2}, b \in\{ \pm 1\}\right\}$ be defined for every $x \in \mathbb{R}$ as follows:

$$
h_{\theta_{1}, \theta_{2}, b}(x)= \begin{cases}+b, & \text { if } x<\theta_{1}, \quad \text { or } x>\theta_{2} . \\ -b, & \text { if } \theta_{1} \leq x \leq \theta_{2} .\end{cases}
$$

Let B be the class of all (left or right) threshold functions over domain \mathbb{R}, i.e.,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b ; \theta \in \mathbb{R}, b \in\{ \pm 1\}\} .
$$

Show that ERM_{B} is a γ-weak learner for \mathcal{H}.
(c). Consider a base hypothesis class B over domain \mathbb{R} as follows:

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) . b ; \theta \in \mathbb{R}, b \in\{ \pm 1\}\} .
$$

Now, consider a more complex hypothesis class $L(B, T)$ consisting of linear compositions of this base class.

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(x)\right): w_{t} \in \mathbb{R}, \forall t, h_{t} \in B\right\}
$$

Each $h \in L(B, T)$ is parameterized by T base hypothesis from B and by a set of weights $w_{t} \in \mathbb{R}$. Show that VC-dimension of $L(B, T)$ is at least $T+1$.
3.(a). Let \mathcal{H} be a finite hypothesis class. Assume that there is a hypothesis in $h^{c} \in \mathcal{H}$ that makes no mistakes, i.e., is consistent with the training sequence (realizability assumption). In this scenario, describe an online learning algorithm which enjoys a mistake bound $M(\mathcal{H}) \leq \log _{2}(|\mathcal{H}|)$. Explain your answer.
(b). We now remove the realizability assumption and instead assume that there is a hypothesis $h^{m} \in \mathcal{H}$ which makes at most $m \geq 0$ mistakes on the training sequence. Propose a modification of the above online learning algorithm such that the modified algorithm has a mistake bound $M(\mathcal{H}) \leq O\left((m+1) \log _{2}(|\mathcal{H}|)\right)$. [10]
(c). Define Littlestone dimension $\mathrm{L}-\operatorname{dim}(\mathcal{H})$ of a hypothesis class \mathcal{H}.

