
Advanced Machine Learning: Problem Set I Solutions

Problem 1: Prove that under realizability assumption the class of all axis parallel rectangles
in two dimension is PAC learnable. An axis parallel rectangle labels all points lying on or
inside it as positive class and all other points as negative class. Derive an expression for
sample complexity for learning this class.

Proof:

Some notations and points:

• Let X is the set of all possible examples or instances.

• A concept c : X =⇒ Y is a mapping from X to Y .

• A concept class is a set of concepts we may wish to learn and is denoted by C.

• We assume that examples are independently and identically distributed (i.i.d.) accord-
ing to some fixed but unknown distribution D.

• Learner receives a sample S = (x1, ..., xm) drawn i.i.d. according to D as well as the
label (c(x1), ..., c(xm)),which are based on a specific target concept c ∈ C to learn.

• Our task is to use the labeled sample S to select a hypothesis hS ∈ H that has a
small generalization error with respect to the concept c. The generalization error of
a hypothesis h ∈ H, also referred to as the true error or just error of h is denoted by
R(h).

A concept class C is said to be PAC-learnable if there exists an algorithm A and a poly-
nomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0, for all distributions D
on X and for any target concept c ∈ C, the following holds for any sample size m ≥
poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[R(hS) > ε] ≤ 1− δ

As can be seen from the figure 1, R represents a target axis-aligned rectangle and R′ a
hypothesis. The error regions of R′ are formed by the area within the rectangle R but
outside the rectangle R′ and the area within R′ but outside the rectangle R. The first area
corresponds to false negatives, that is, points that are labeled as 0 or negatively by R′, which
are in fact positive or labeled with 1. The second area corresponds to false positives, that
is, points labeled positively by R′ which are in fact negatively labeled.
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Figure 1: Target concept R and possible hypothesis R′. Circles represent training instances.
A blue circle is a point labeled wit 1, since it falls within the rectangle R. Others are red
and labeled with 0.

To show that the concept class is PAC-learnable, we describe a simple PAC-learning al-
gorithm A. Given a labeled sample S, the algorithm consists of returning the tightest
axis-aligned rectangle R′ = RS containing the points labeled with 1. Figure 2 illustrates the
hypothesis returned by the algorithm. By definition, RS does not produce any false positive,
since its points must be included in the target concept R. Thus, the error region of RS is
included in R.

Figure 2: Illustration of the hypothesis R′ = RS returned by the algorithm.

Let R ∈ C be a target concept. Fix ε > 0. Let Pr[RS] denote the probability mass of the
region defined by RS, that is the probability that a point randomly drawn according to D
falls with in RS. Since errors made by our algorithm can be due only to points falling inside
RS, we can assume that Pr[RS] > ε; otherwise, the error of RS is less than or equal to ε
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regardless of the training sample S received.

Now, since Pr[RS] > ε, we can define four rectangular regions r1, r2, r3, and r4 along the
sides of RS, each with probability at least ε/4. These regions can be constructed by starting
with the empty rectangle along a side and increasing its size until its distribution mass is at
least ε/4. Figure 3 illustrates the definition of these regions.

Figure 3: Illustration of the regions r1, ..., r4.

Observe that if RS meets all of these four regions, then, because it is a rectangle,it will have
one side in each of these four regions (geometric argument). Its error area, which is the part
of R that it does not cover, is thus included in these regions and cannot have probability
mass more than ε. By contraposition, if R(RS) > ε,then RS must miss at least one of the
regions ri, i ∈ [1, 4]. As a result, we can write

Pr
S∼Dm

[R(RS) > ε] ≤ Pr
S∼Dm

[∪4i=1{Rs ∩ ri = φ}]

≤
4∑
i=1

Pr
S∼Dm

[{Rs ∩ ri = φ}]

≤ 4(1− ε

4
)m (since Pr[ri] >

ε

4
)

≤ 4exp(−mε/4) (since 1− x ≤ e−x )

For any δ > 0, to ensure that Pr
S∼Dm

[R(RS) > ε] ≤ δ,we can impose

4exp(−mε/4) ≤ δ ⇐⇒ m ≥ 4
ε

log 4
δ

3



Thus, for any ε > 0 and δ > 0, if the sample size m is greater than 4
ε

log 4
δ
, then

Pr
S∼Dm

[R(RS) > ε] ≤ 1 − δ. Furthermore, the computational cost of the representation of

points in R2 and axis-aligned rectangles, which can be defined by their four corners, is con-
stant. This proves that the concept class of axis-aligned rectangles is PAC-learnable and
that the sample complexity of PAC-learning axis-aligned rectangles is in O(1

ε
log 1

δ
).

Problem 2: Prove that the class of conjunctions of Boolean literals of at most n vari-
ables is PAC learnable. A literal is either a Boolean variable xi or its negation ¬xi. For
example, x1 ∧ ¬x2 ∧ x3 is a conjunction of literals. All Boolean vectors which evaluates to
TRUE by the conjunction belong to positive class and the rest belong to negative class.

Proof: Consider the class C of target concepts described by conjunctions of boolean lit-
erals. We need to show that any consistent learner will require only a polynomial number
of training examples (say m) to learn any c ∈ C. For that, we will use theorem which states :

Let H be a finite set of functions mapping from X =⇒ Y . Let A be an algorithm that for
any target concept c ∈ H and i.i.d. sample S returns a consistent hypothesis hS : R̂(hS) = 0.
Then, for any ε, δ > 0, the inequality Pr

S∼Dm
[R(hS) > ε] ≤ 1− δ holds if

m ≥ 1
ε
(log |H|+ log 1

δ
)

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n
boolean literals). Then |H| = 3n, and

m ≥ 1

ε
(log 3n + log

1

δ
)

m ≥ 1

ε
(n log 3 + log

1

δ
)

So, m grows linearly or below (i.e., polynomially). So it is PAC-learnable.
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