CS60073: Advanced Machine Learning

End-semester Examination Spring 2019

Answer all FOUR questions. Answer all parts of a question together.
Time: 3 hrs. Total marks: 100.

1.(a) Write the steps of a generic Structural Risk Minimization algorithm. [5]

(b). Consider the input space to be the unit interval on the real line, X = [0,1] C R. A
binning is a partition of the unit interval into m non-overlapping equi-sized sub-intervals
(bins) Q;,j € {1,2,...,m}. Now, consider the class of classification rules that take either
the value 0 or 1 in each of the sub-intervals @);, i.e.,

Hy = {h X — {0,1} : h(x) = Zm:cjl(x €Qj),c; = {0,1}},

J=1

where, 1() is the indicator function. Note that this class has 2" elements. The histogram
classifier is the element of this class obtained by doing a majority vote inside each sub-

interval. Namely,
Zi z;eQ; Yi
sLq J

1 if =R > 1/9
éj e 1 EZ,CEZGle - / ’
0 otherwise.

Show that the histogram classifier is the Empirical Risk Minimizer for H,,.  [10]

(c). A band classifier in 2-dimension uses two “parallel” hyperplanes in 2-dimension, and
labels the region between the hyperplanes as y = 1 and the remaining region as y = 0.
Derive the VC dimension of the class of all possible band classifiers in 2-dimension.  [10]

2. Consider the input space X,, = {0, 1}" of n-bit vectors. Consider the following hypothesis
class Hoiono = {0, 1,21, 71, 2, Ta, . . . T, T, }. The hypothesis class contains 2n + 2 functions.
The functions “0” and “1” are constant and predict 0 and 1 on all instances in X,,. The
function “z;” evaluates to 1 on any a € {0, 1}" satisfying a; = 1, and evaluate to 0 otherwise.
Likewise the function “z;” evaluates to 1 on any a € {0, 1}" satisfying a; = 0, and evaluates
to 0 otherwise. Also, consider another function class Hconjunction Of all possible conjunctions
that can be defined over X,,. A function in Hconjunction 1S @ conjunction of a set of literals,
where each literal corresponds to either a variable x; or its negation &;. Note that the number
of literals in a conjunction function may vary.

(a). Show that the class Heonjunction 18 ﬁ—weak learnable using H,,ono- [15]

0
(b). Let the function class Heonjunction, denote the class of conjunctions on at most £ literals.

Show that the class Hconjunction,, 1S ﬁ—weak learnable using H,,on0- [10]



3.(a). State the Halving algorithm for online learning. Let H be a finite hypothesis class.
Show that the Halving algorithm enjoys a mistake bound My uing < logy(|H|). [10]

(b). Let d > 2, X = {1,2,...,d} and let H = {h; : j € [d]}, hj(x) = 1jp—;. Here 1, is an
indicator function. Calculate the mistake My qpving(H).  [10]

(c). Let Ldim(H) denote the Littlestone dimension and VCdim(H) denote the VC dimen-
sion of any function class H. Show that VCdim(H) < Ldim(H). [5]

4.(a). Consider a set of non-negative weights w; > 0 and a set of convex functions f;, for
i=1,...,r. Show that g(z) = Y |_, w; fi(x) is also a convex function. ~ [10]

(b). Consider the problem of learning halfspaces with hinge loss. We limit our domain to
the Euclidean ball with radius R. The label set is ) = {—1, +1}, and the hinge loss function
[ is defined by I(w, (x,y)) = max[0,1 — y(w - x)]. Show that the loss function is convex.
Show that it is also R-Lipschitz. [15]
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