
CS60073: Advanced Machine Learning

End-semester Examination Spring 2019

Answer all FOUR questions. Answer all parts of a question together.
Time: 3 hrs. Total marks: 100.

1.(a) Write the steps of a generic Structural Risk Minimization algorithm. [5]

(b). Consider the input space to be the unit interval on the real line, X = [0, 1] ⊂ R. A
binning is a partition of the unit interval into m non-overlapping equi-sized sub-intervals
(bins) Qj, j ∈ {1, 2, . . . ,m}. Now, consider the class of classification rules that take either
the value 0 or 1 in each of the sub-intervals Qj, i.e.,

Hm =

{
h : X → {0, 1} : h(x) =

m∑
j=1

cj1(x ∈ Qj), cj = {0, 1}

}
,

where, 1() is the indicator function. Note that this class has 2m elements. The histogram
classifier is the element of this class obtained by doing a majority vote inside each sub-
interval. Namely,

ĉj =

{
1 if

∑
i,xi∈Qj

yi∑
i,xi∈Qj

1
≥ 1/2,

0 otherwise.

Show that the histogram classifier is the Empirical Risk Minimizer for Hm. [10]

(c). A band classifier in 2-dimension uses two “parallel” hyperplanes in 2-dimension, and
labels the region between the hyperplanes as y = 1 and the remaining region as y = 0.
Derive the VC dimension of the class of all possible band classifiers in 2-dimension. [10]

2. Consider the input space Xn = {0, 1}n of n-bit vectors. Consider the following hypothesis
class Hmono = {0, 1, x1, x̄1, x2, x̄2, . . . xn, x̄n}. The hypothesis class contains 2n+ 2 functions.
The functions “0” and “1” are constant and predict 0 and 1 on all instances in Xn. The
function “xi” evaluates to 1 on any a ∈ {0, 1}n satisfying ai = 1, and evaluate to 0 otherwise.
Likewise the function “x̄i” evaluates to 1 on any a ∈ {0, 1}n satisfying ai = 0, and evaluates
to 0 otherwise. Also, consider another function class Hconjunction of all possible conjunctions
that can be defined over Xn. A function in Hconjunction is a conjunction of a set of literals,
where each literal corresponds to either a variable xi or its negation x̄i. Note that the number
of literals in a conjunction function may vary.

(a). Show that the class Hconjunction is 1
10n

-weak learnable using Hmono. [15]

(b). Let the function class Hconjunctionk
denote the class of conjunctions on at most k literals.

Show that the class Hconjunctionk
is 1

10k
-weak learnable using Hmono. [10]



3.(a). State the Halving algorithm for online learning. Let H be a finite hypothesis class.
Show that the Halving algorithm enjoys a mistake bound MHalving ≤ log2(|H|). [10]

(b). Let d ≥ 2, X = {1, 2, . . . , d} and let H = {hj : j ∈ [d]}, hj(x) = 1[x=j]. Here 1[x=j] is an
indicator function. Calculate the mistake MHalving(H). [10]

(c). Let Ldim(H) denote the Littlestone dimension and V Cdim(H) denote the VC dimen-
sion of any function class H. Show that V Cdim(H) ≤ Ldim(H). [5]

4.(a). Consider a set of non-negative weights wi ≥ 0 and a set of convex functions fi, for
i = 1, . . . , r. Show that g(x) =

∑r
i=1wifi(x) is also a convex function. [10]

(b). Consider the problem of learning halfspaces with hinge loss. We limit our domain to
the Euclidean ball with radius R. The label set is Y = {−1,+1}, and the hinge loss function
l is defined by l(w, (x, y)) = max[0, 1 − y(w · x)]. Show that the loss function is convex.
Show that it is also R-Lipschitz. [15]
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