
Computer Science & Engineering Department
I. I. T. Kharagpur

Compilers Laboratory: CS39003
3rd Year CSE: 5th Semester

Assignment – 5: Machine Independent Code Generator for tinyC Marks: 100
Assign Date: 7th October, 2014 Submit Date: 23:55, 20th October, 2014

1 Preamble – tinyC

The Lexical Grammar (Assignment 3) and the Phase Structure Grammar (As-

signment 4) for tinyC have already been defined as subsets of the C language
specification from the International Standard ISO/IEC 9899:1999 (E).

In this assignment you will write the semantic actions in yacc to translate a
tinyC program into an array of 3-address quad’s, a supporting symbol table, and
other auxiliary data structures. The translation should be machine-independent,
yet it has to carry enough information so that you can later target it to a specific
architecture (x86 / IA-32).

2 Scope of Machine-Independent Translation

Focus on the following from the different phases to write actions for translation.

2.1 Expression Phase

Support all arithmetic, shift, relational, bit, logical (boolean), and assignment
expressions excluding:

1. sizeof operator

2. Comma (,) operator

3. Compound assignment operators

*= /= %= += -= <<= >>= &= ^= |=

Support only simple assignment operator (=)

4. Structure component expression

2.2 Declarations Phase

Support for declarations should be provided as follows:

1. Simple variable, pointer, array, and function declarations should be sup-
ported. For example, the following would be translated:

double d = 2.3;

int i, w[10];

int a = 4, *p, b;

void func(int i, double d);

char c;

2. Consider only void, char, int, and double type-specifiers. As specified
in C, char and int are to be taken as signed.

For computation of offset and storage mapping of variables, assume the
following sizes1 (in bytes) of types:

1Using hard-coded sizes for types does not keep the code machine-independent. Hence you
may want to use constants like size of char, size of int, size of double, and size of pointer for
sizes that can be defined at the time of machine-dependent targeting.

1



Type Size Remarks

void undefined
char 1
int 4
double 8
void * 4 All pointers have same size

It may also help to support an implicit bool (boolean) type with con-
stants 1 (TRUE) and 0 (FALSE). This type may be inferred for a logical
expression or for an int expression in logical context. Note that the users
cannot define, load, or store variables of bool type explicitly, hence it is
not storable and does not have a size.

3. Initialization of arrays may be skipped.

4. storage-class-specifier, enum-specifier, type-qualifier, and function-specifier
may be skipped.

5. Function declaration with only parameter type list may be skipped. Hence,

void func(int i, double d);

should be supported while

void func(int, double);

may not be.

2.3 Statement Phase

Support all statements excluding:

1. Declarations within compound-statement (block).

2. Declaration within for.

3. All Labelled statements (labeled-statement).

4. switch in selection-statement.

5. All Jump statements (jump-statement) except return.

2.4 External Definitions Phase

Support function definitions and skip external declarations.

3 The 3-Address Code

Use the 3-Address Code specification as discussed in the class. For easy reference
the same is reproduced here. Every 3-Address Code:

� Uses only up to 3 addresses.

� Is represented by a quad comprising – opcode, argument 1, argument 2,
and result; where argument 2 is optional.

3.1 Address Types

� Name: Source program names appear as addresses in 3-Address Codes.

� Constant: Many different types and their (implicit) conversions are al-
lowed as deemed addresses.

� Compiler-Generated Temporary: Create a distinct name each time a tem-
porary is needed – good for optimization.

2



3.2 Instruction Types

For Addresses x, y, z, and Label L

� Binary Assignment Instruction: For a binary op (including arithmetic,
shift, relational, bit, or logical operators):

x = y op z

� Unary Assignment Instruction: For a unary operator op (including unary
minus or plus, logical negation, bit, and conversion operators):

x = op y

� Copy Assignment Instruction:

x = y

� Unconditional Jump:

goto L

� Conditional Jump:

– Value-based:

if x goto L

ifFalse x goto L

– Comparison-based: For a relational operator op (including <, >, ==,
! =, ≤, ≥):

if x relop y goto L

� Procedure Call: A procedure call p(x1, x2, ..., xN) having N ≥ 0 pa-
rameters is coded as (for addresses p, x1, x2, and xN):

param x1

param x2

...

param xN

y = call p, N

Note that N is not redundant as procedure calls can be nested.

� Return Value: Returning a return value and / or assigning it is optional.
If there is a return value v it is returned from the procedure p as:

return v

� Indexed Copy Instructions:

x = y[z]

x[z] = y

� Address and Pointer Assignment Instructions:

x = &y

x = *y

*x = y

3



4 Design of the Translator

Lexer & Parser Use the flex and yacc specifications2 you had developed in Assignments 3
and 4 respectively and write semantic actions for translating the subset
of tinyC as specified in Section 2. Note that many grammar rules of your
tinyC parser may not have any action or may just have propagate-only
actions. Also, some of the lexical tokens may not be used.

Augmentation Augment the grammar rules with markers and add new grammar rules
as needed for the intended semantic actions. Justify your augmentation
decisions within comments of the rules.

Attributes Design the attributes for every grammar symbol (terminal as well as non-
terminal). List the attributes against symbols (with brief justification) in
comment on the top of your yacc specification file. Highlight the inherited
attributes, if any.

Symbol Table Use symbol tables for user-defined (including arrays and pointers) vari-
ables, temporary variables and functions.

Name Type Initial Size Offset Nested
Value Table

... ... ... ... ... ...

For example, for

double d = 2.3;

int i, w[10];

int a = 4, *p, b;

void func(int i, double d);

char c;

the Symbol Tables will look like:

ST(global) This is the Symbol Table for global symbols
Name Type Initial Size Offset Nested

Value Table
d double 2.3 8 0 null

i int null 4 8 null

w array(10, int) null 40 12 null

a int 4 4 52 null

p ptr(int) null 4 56 null

b int null 4 60 null

func function null 0 64 ptr-to-ST(func)

c char null 1 64 null

ST(func) This is the Symbol Table for function func

Name Type Initial Size Offset Nested
Value Table

i int null 4 0 null

d double null 8 4 null

retVal void null 0 0 null

The Symbol Tables may support the following methods:

lookup(...) A method to lookup an id (given its name or lexeme)
in the Symbol Table. If the id exists, the entry is
returned, otherwise a new entry is created.

gentemp(...) A static method to generate a new temporary, insert
it to the Symbol Table, and return a pointer to the
entry.

update(...) A method to update different fields of an existing
entry.

print(...) A method to print the Symbol Table in a suitable
format.

2You may correct your specification/s if you need.

4



Note:

� The fields and the methods are indicative. You may change their
name, functionality and also add other fields and / or methods that
you may need.

� It should be easy to extend the Symbol Table as further features are
supported and more functionalities are added.

� The global symbol table is unique.

� Every function will have a symbol table of its parameters and auto-
matic variables.

� Since symbol definitions within blocks are not supported, no other
nesting of symbol tables is needed.

Quad Array The array to store the 3-address quad’s. Index of a quad in the array is
the address of the 3-address code. The quad array will have the following
fields (having usual meanings)

op arg 1 arg 2 result
... ... ... ...

Note:

� arg 1 and / or arg 2 may be a variable (address) or a constant.

� result is variable (address) only.

� arg 2 may be null.

For example, if

int i = 10, a[10], v = 5;

...

do i = i - 1; while (a[i] < v);

translates to

100: t1 = i - 1

101: i = t1

102: t2 = i * 4

103: t3 = a[t2]

104: if t3 < v goto 100

the quad’s are represented as:

Index op arg 1 arg 2 result
... ... ... ... ...
100 – i 1 t1
101 = t1 i
102 * i 4 t2
103 =[] a t2 t3
104 < t3 v 100

The Quad Array may support the following methods:

emit(...) An overloaded static method to add a (newly gen-
erated) quad of the form: result = arg1 op arg2

where op usually is a binary operator. If arg2 is
missing, op is unary. If op also is missing, this is a
copy instruction.

print(...) A method to print the quad array in a suitable for-
mat.

For example the above state of the array may be printed (with the symbol
information) as:

5



void main()

{

int i = 10;

int a[10];

int v = 5;

int t1;

int t2;

int t3;

L100: t1 = i - 1;

L101: i = t1;

L102: t2 = i * 4;

L103: t3 = a[t2];

L104: if (t3 < v) goto L100;

}

Note:

� The fields and the methods are indicative. You may change their
name, functionality and also add other fields and / or methods that
you may need.

Global Functions Following (or similar) global functions and more may be needed to imple-
ment the semantic actions:

makelist(i)

A global function to create a new list containing only i, an index
into the array of quad’s, and to return a pointer to the newly
created list.

merge(p1, p2)

A global function to concatenate two lists pointed to by p1 and
p2 and to return a pointer to the concatenated list.

backpatch(p, i)

A global function to insert i as the target label for each of the
quad’s on the list pointed to by p.

typecheck(E1, E2)

A global function to check if E1 & E2 have same types
(that is, if <type of E1> = <type of E2>(E)). If not, then
to check if they have compatible types (that is, one
can be converted to the other), to use an appropri-
ate conversion function conv<type of E1>2<type of E2>(E) or
conv<type of E2>2<type of E1>(E) and to make the necessary
changes in the Symbol Table entries. If not, that is, they are of
incompatible types, to throw an exception during translation.

conv<type1>2<type2>(E)

A global function to converta an expression E from its current
type type1 to target type type2, to adjust the attributes of E

accordingly, and finally to generate additional codes, if needed.

aIt is assumed that this function is called from typecheck(E1, E2) and hence the
conversion is a possible.

Naturally, these are indicative and should be adopted as needed. For every
function used clearly explain the input, the output, the algorithm, and the
purpose with possible use at the top of the function.

6



5 The Assignment

1. Write a 3-Address Code translator based on the flex and yacc specifica-
tions of tinyC. Assume that the input tinyC file is lexically, syntactically,
and semantically correct. Hence no error handling and / or recovery is
expected.

2. Prepare a Makefile to compile and test the project.

3. Prepare test input files ass5 roll test<number>.c to test the semantic ac-
tions and generate the translation output in ass5 roll quads<number>.out.

4. Name your files as follows:

File Naming

Flex Specification ass5 roll.l
Yacc Specification ass5 roll.y
Data Structures (Class Definitions) &
Global Function Prototypes

ass5 roll translator.h

Data Structures, Function Implementa-
tions & Translator main()

ass5 roll translator.cxx

Test Inputs ass5 roll test<number>.c
Test Outputs ass5 roll quads<number>.out

5. Prepare a tar-archive with the name ass5 roll.tar containing all the files
and upload to Intinno.

6 Credits

Design of Grammar Augmentations: 5
Explain the augmentations in the production rules in yacc

Design of Attributes: 5
Explain the attributes in the respective %token and %type in yacc

Design and Implementation of Symbol Table &
Supporting Data Structures: 10

Explain with class definition of ST & other Data Structures

Design and Implementation of Quad Array: 5
Explain with class definition of QA

Design and Implementation of Global Functions: 10
Explain i/p, o/p, algorithm & purpose for every function

Design and Implementation of Semantic Actions:
Explain with every action in yacc

Expression Phase: 15
Correct handling of operators, type checking & conversions

Declaration Phase: 10
Handling of variable declarations, function definitions in ST

Statement Phase: 15
Correct handling of statements

External Definition Phase: 5
Correct handling of function definitions

Design of Test files and correctness of outputs: 20
Test at least 5 i/p files covering all rules
Shortcoming and / or bugs, if any, should be highlighted

7


