
Optimizing IR models

Srinivas Reddy M
IIT Kharagpur

Abhishek Kalyan A
IIT Kharagpur

Implementing machine local search engine to search 1.3 millionTREC (Text Retrieval Confer-
ence) documents using Apache Lucene.

Indexing

org.apache.lucene.search/index/queryparser.classic
Analyse each document and make content index and store

it in easily retrievable format.
If document is readable and exists then create and append

it to the IndexWriterConfig. Use iwc.setRAMBufferSizeMB
for extra ram or distributed indexing so that computation
doesn’t fall short of RAM. For directory get all component
files, recursively call TrecDocIterator and iterate with it’s
next method.

Using the following lucene defined entities:
IndexReader IndexSearcher Analyzer QueryParser

TrecDocIterator

Compile a pattern with tags needed, consider various parts
of the document and give them various weightages if needed.

If Matcher matches the line to the compiled pattern store
stringfield "docno" with document number and store text
field "contents" with contents.

Search engine

org.apache.lucene.search/index/queryparser.classic
Initialise 50 Stop words taken from Google. Use nar-

ratormap to map QUERY to integer index, searchindex for
word to it’s equivalents. Tokenise them into words or strings
into stringbuilder and get string from stringBuilder and add
it to narratormap followed by cleaning it.

For each query parse to QUERY and search through in-
dexed files to find potential matches into TopDocs. Save each
query’s matches retrieved, correspoding overlap extent into a
arraylist of tuples.

rankedRetrival

org.apache.lucene.search/index/queryparser.classic
Uses a Hashmap and a NarrMap. Read from query file

from betwee <top> and </top> and tokenise it into string
builder, put it in hashmap followed by cleaning the string-
builder. For each query get hash map and parse it to query
and search IndexSearcher for query, get Topdocs from there
for all manipulation. From searchengine get list of more sim-
ilar matches ,get matches hits from searcher.doc and match
with most relevant answers for queries from searchIndex of

search engine. if searchIndex contains the document give 1
else give 0.

Use PrecisionCalc class.for statistics like

P5, P10, P20, P100, P500, P1000..

Just count number of ones in retrieved document’s scores
ranked 0 to ’k’ and normalise it. for map repeat it for each
’k’ within our interest.

IR Models

Models Used are :
1.Vector Space model
2.Language Model
3.Okapi BM 25

Models can beselected by using IndexSearcher.setSimilarity
method.

Vector Space model. Each string is split into a vector
with words or tokens as base vectors. Similarity between ant
two strings is the cosine of angle between them.

This is used to rank and compare performance of various
methods.

Language Model. A document is a good match to a
query if the document model is likely to generate the query,
which will in turn happen if the document contains the query
words often.

The original and basic method for using language models
in IR is the query likelihood model . In it, we construct from
each document d in the collection a language model Md. Our
goal is to rank documents by P(d|q), where the probability of
a document is interpreted as the Bayesian likelihood that it is
relevant to the query.

OKapi BM25. The simplest score for document d is just
idf weighting of the query terms present, as in Equation :

RS Vd =
∑
t∈q

log
N

doc ft
(or) RS Vd =

∑
t∈q

log
N − doc ft + 1

2

doc ft + 1
2

If we start with the absence of relevance feedback infor-
mation we estimate that S = s = 0, then we get the alterna-
tive idf formulation.


