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Indian monsoon is an important climatic phenomenon and a global climatic marker. Both statistical and numerical prediction
schemes for Indian monsoon have been widely studied in literature. Statistical schemes are mainly based on regression or neural
networks. However, the variability of monsoon is significant over the years and a single model is often inadequate. Meteorologists
revise their models on different years based on prevailing global climatic incidents like El-Niño. These indices often have degree
of severity associated with them. In this paper, we cluster the monsoon years based on their fuzzy degree of associativity to these
climatic event patterns. Next, we develop individual predictionmodels for the year clusters. Aweighted ensemble of these individual
models is used to obtain the final forecast. The proposed method performs competitively with existing forecast models.

1. Introduction

Monsoon is a complex phenomenon of a climatic system.
It is influenced by multiple climatic parameters and sea-
atmosphere interactions. Prediction of monsoon is chal-
lenging due to large variability present in its patterns.
Indian Meteorological Department (IMD) performs forecast
of Indian summer monsoon rainfall (ISMR) since 1886.
Indian monsoon forecast was initiated by Blanford [1] as
early as 1882. The success of forecasts in span of 1882–
1885 encouraged Blanford to design operational long range
forecast model for monsoon in 1886. Subsequently, Walker
[2] developed models studying the statistical correlations
between rainfall and different global climate parameters.
Thapliyal and Kulshrestha [3] introduce regression model in
predicting south-west Indian monsoon rainfall. Gowariker
et al. [4] propose power regression model for long-term
forecast of monsoon, which provided accurate forecast for a
long period, but failed to predict the extreme condition of

2002. In 2004, Rajeevan et al. [5] reassess different climatic
parameters and introduce four new parameters to design
statistical model for issuing long-range forecast of Indian
monsoon. Succeeding in 2007, Rajeevan et al. [6] builtmodels
using ensemble multiple regression and pursuit projection
regression to forecast Indian rainfall and proved to be
superior to past IMD models. Schewe and Levermann [7]
explain the change in distribution of Indian rainfall and also
explain the reasons behind failure of monsoon in certain
years. Wu et al. [8] propose a linear Markov model to predict
short-term climate variability of East Asian monsoon. Fan et
al. [9] develop two statistical prediction schemes for seasonal
forecast of East Asian summer monsoon. The schemes take
the direct outputs of the existing models and give better
prediction of the summer monsoon.

Artificial neural networks (ANN) [10] are widely used
in modelling the nonlinearity present in monsoon process.
Sahai et al. [11] use ANN techniques with error backpropaga-
tion to forecast Indian summer monsoon rainfall. Hong [12]
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predicts Indian summer monsoon utilizing recurrent neural
network and also demonstrates successful employment of
support vector machine in solving nonlinear regression and
time series problems.Three different backpropagation neural
learning rules, namely, momentum learning, conjugate gra-
dient descent learning, and Levenberg-Marquardt learning,
are used by S. Chattopadhyay and G. Chattopadhyay [13]
to perform a comparative study of different neural network
method to predict rainfall time series.

Presence of large variability in monsoon patterns makes
it difficult for a single model to predict its distribution.
A number of uncertainties including boundary condition,
parameter, and structural uncertainties are involved in con-
struction of these models. Thus, it remains fundamentally
challenging to have a singlemodel for prediction.Multimodel
ensembles are proposed to overcome the weakness of single
model, which combine the outcome of different models to
produce efficient results [14, 15]. In addition, monsoon shows
different characteristics over years.There exist groups of years
where variation of climatic parameters and pattern of rainfall
are similar. We use fuzzy clustering to cluster the similar
years together and model them separately. The motivation
behind using fuzzy clustering is that each year manifests a
mixture of physical climatic events. We cannot hard cluster
a year into a specific group; years have their membership of
belongingness to every cluster. Fuzzy clustering is used to
enclose the characteristics of different events being related to
a year of study. We use the same set of climatic parameters as
predictor set for every cluster but frame different models for
each cluster.

A number of prediction models, namely, multiple regres-
sion (MR), multilayer perceptron (MLP), recurrent neural
network (RNN), and generalized regression neural network
(GRNN) models, are used for prediction of Indian monsoon
for the year clusters. There exists viable reasons for using
neural networks like MLP, RNN, and GRNN for modelling:
(i) Indian monsoon is a complex process, which cannot be
adequately modelled by linearmodels, (ii) nonlinearity in the
time-series pattern can be well captured by neural network
learning, (iii) climatic events are much closely related to near
years parameters disturbance as compared to distant years,
and neural network enables attaching weight to the year
parameter in appropriate manner.

In this work, climatic parameters that are strongly corre-
lated with Indian monsoon are identified at the onset, which
is followed by fuzzy clustering of years into groups with
degree of belongingness of each year to the clusters. Then
we model each cluster with four types of models, namely,
MR, MLP, RNN, and GRNN, to forecast rainfall. Weighted
ensemble of forecasts given by respective models for each
cluster is considered as final predicted rainfall. Analysis
and comparisons are performed on aggregate Indian rainfall
and finally, a meteorological interpretation of the obtained
clusters is presented.

The paper is organised in the following manner. We
discussed the details of data and predictor climatic param-
eters in Sections 2 and 3. Proposed clustering based
approach, prediction model, and ensemble technique are
presented in Section 4 with experimental results in Section 5.

Meteorological significance is discussed in Section 6 and
finally, conclusions are provided in Section 7.

2. Data Sets Used

We consider the annual Indian summer monsoon rain-
fall (ISMR), occurring in four months of June, July,
August, and September. Annual ISMR is considered during
period 1948–2013 for our study. The long period aver-
age (LPA) (1948–2013) of ISMR is 891.8mm. ISMR is
expressed as percentage of the LPA value. The data is
obtained from Indian Institute of Tropical Meteorology,
Pune (http://www.imdpune.gov.in/research/ncc/longrange/
data/data.html) [16].

Predictor parameters sea level pressure (SLP) (http://
www.esrl.noaa.gov/psd/gcos wgsp/Gridded/data.noaa.erslp
.html) and sea surface temperature (SST) (http://www.esrl
.noaa.gov/psd/data/gridded/data.noaa.ersst.html) data are
provided by theNOAA/OAR/ESRL/PSD, at spatial resolution
of 2
∘

× 2
∘ [17]. Surface pressure (SP) and zonal wind

velocity (WV) data are collected from NCEP Reanalysis
Derived data provided by the NOAA/OAR/ESRL PSD
(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.rea-
nalysis.derived.surface.html) [18], available at resolution
of 2.5

∘

× 2.5
∘. Finally, Niño 3.4 data, which is the sea

surface temperature anomaly for the spatial coverage
of 5
∘S to 5

∘N and 170
∘W to 120

∘W in Pacific Ocean
region is acquired from National Center for Atmospheric
Research (http://www.cpc.ncep.noaa.gov/products/analysis
monitoring/ensostuff/ensoyears.shtml) [19]. All the above
monthly data are considered for the period 1948–2013 in our
study and analysis.

3. Global Climatic Parameters
Influencing Indian Monsoon

Indian monsoon is strongly influenced by several global
climatic parameters, occurring at places distant from Indian
subcontinent. Identification of predictor parameters relies on
physical understanding of monsoon event and wind pattern
flow. We have selected the climatic parameters based on
the parameters used by Indian meteorological department’s
models [5, 6], studying their correlation with Indian summer
monsoon rainfall (ISMR) during our period of study (1948–
2013). In the data preprocessing phase, climatic anomaly data
are evaluated by calculating the deviation of parameter value
from long-term average value of the parameter exclusively for
eachmonth, followed by correlation study between ISMR and
the climatic parameters for a lag of zero to twelve months.
We consider the best lagged predictor month having high
correlationwith ISMR.The predictor climatic parameters and
their correlation values with Indian monsoon are shown in
Table 1. Figure 1 shows the geographic location of climatic
parameters influencing Indian monsoon.
Predictor Sets of Climatic Parameters. Based on the correlation
with Indian monsoon, we have built five predictor sets for
forecasting. Different combinations of the identified climatic
parameters (Table 1) form the predictor sets. The predictor
sets are shown in Table 2.
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Table 1: Climatic parameters (CP) influencing Indian monsoon with geographical location, correlation values, and correlated month (0
signifies same years and −1 signifies previous year).

CP CP name Location Correlation values Correlated months
CP1 North Atlantic Ocean SST anomaly 20∘N–30∘N, 100∘W–80∘W 0.242 Jan (0)
CP2 North Atlantic Ocean surface pressure anomaly 20∘N–30∘N, 100∘W–80∘W 0.256 April (0)
CP3 East Asia SLP anomaly 35∘N–45∘N, 120∘E–130∘E 0.337 May (0)
CP4 East Asia surface pressure anomaly 35∘N–45∘N, 120∘E–130∘E 0.341 Mar (0)
CP5 Equatorial South Eastern Indian ocean SST anomaly 20∘S–10∘S, 100∘E–120∘E 0.200 Sept (−1)
CP6 Pressure gradient between Madagascar and Tibet — 0.253 May (0)
CP7 Niño 3.4 SST anomaly 5∘S–5∘N, 170∘W–120∘W 0.311 Sept (−1)
CP8 Equatorial Pacific Ocean SLP anomaly 5∘S–5∘N, 120∘E–80∘W 0.272 Aug (−1)
CP9 North West Europe surface pressure anomaly 55∘N–65∘N, 20∘E–40∘E 0.183 Jan (0)
CP10 North Central Pacific zonal wind anomaly 5∘N–15∘N, 180∘E–150∘W 0.457 May (0)

70
∘

70
∘

60
∘

6
0
∘

6
0
∘

60
∘

40
∘

4
0
∘

40
∘

4
0
∘

20
∘

2
0
∘

20
∘

2
0
∘

0
∘

70
∘

70
∘

60
∘

60
∘

40
∘

40
∘

20
∘

20
∘

0
∘

0
∘

1
0
0
∘

1
0
0
∘

1
0
0
∘

1
2
0
∘

1
2
0
∘

1
6
0
∘

1
6
0
∘

1
8
0
∘

8
0
∘

8
0
∘

1
4
0
∘

1
4
0
∘

6
0
∘

6
0
∘

4
0
∘

4
0
∘

2
0
∘

2
0
∘

0
∘

1
0
0
∘

1
0
0
∘

1
0
0
∘

1
2
0
∘

1
2
0
∘

1
6
0
∘

1
6
0
∘

1
8
0
∘

8
0
∘

8
0
∘

1
4
0
∘

1
4
0
∘

Figure 1: Climatic parameters over the globe governing Indian
monsoon (purple patches signify the location of climatic parameters
taken, and blue patch represents the Indian region); CP

𝑖

represents
parameter 𝑖 in Table 1.

Table 2: Predictor sets with climatic parameters.

Predictor sets Climatic parameters
PredSet1 CP1, CP4, CP5, CP6
PredSet2 CP4, CP5, CP6, CP7
PredSet3 CP2, CP4, CP10
PredSet4 CP2, CP4, CP7, CP10
PredSet5 CP3, CP7, CP8, CP9

4. Methodology

We propose fuzzy clustering of monsoon years into groups
followed by building models for each group separately and
finally predicting Indian summer monsoon rainfall (ISMR)
as weighted ensemble of forecasts provided by clustermodels.
The block diagram of the proposed fuzzy clustering-based
approach to prediction of ISMR is shown in Figure 2.Detailed
steps are described in the following subsections.

4.1. Motivation: Variability of Monsoon Patterns. Trends and
distributions of monsoon vary to a large extent over years. It

is thus necessary to group the years into clusters which have
similar patterns of predictor climatic parameters affecting
monsoon. The approach of clustering the years is effective as
we can build separate models for each cluster. These cluster
models will be more accurate as variation within cluster is
less. Finally, ensemble of forecasts of these cluster models
results in better prediction of Indianmonsoon.As an example
consider two clusters of years corresponding to strong El-
Niño and North Atlantic Oscillation, respectively. A drought
year has correlation with both events and hence might have
significant degree of belongingness to both clusters.

4.2. Fuzzy Clustering of Monsoon Years. Fuzzy 𝑐-means
clustering is used for grouping the similar years together.
Fuzzy 𝑐-means (FCM) is a method of clustering which allows
one instance of input to belong to more than one cluster
with some membership of belongingness. FCM attempts to
partition a set of𝑁 elements𝑌 = {𝑦

1
, . . . , 𝑦

𝑛
} into a collection

of 𝑐 fuzzy clusters 𝐶 = {cen
1
, . . . , cen

𝑐
} and a partition matrix

𝑊 = 𝑤
𝑖𝑗
∈ [0, 1], 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑐, where 𝑤

𝑖𝑗
gives the

degree of belongingness of element 𝑦
𝑖
to cluster with center

cen
𝑗
.
FCM aims to minimize an objective function of (1). The

update of partition matrix and centers occur in accordance
with (2) and (3), respectively:

𝐽
𝑚

=

𝑁

∑

𝑖=1

𝑐

∑

𝑗=1

𝑤
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𝑦
𝑖
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𝑗

󵄩󵄩󵄩󵄩󵄩

2

, 1 ≤ 𝑚 ≤ ∞ (1)

𝑤
𝑖𝑗
=

1

∑
𝑐

𝑘=1

(
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑖
− cen
𝑗

󵄩󵄩󵄩󵄩󵄩
/
󵄩󵄩󵄩󵄩𝑦𝑖 − cen

𝑘

󵄩󵄩󵄩󵄩)
2/(𝑚−1) (2)

cen
𝑗
=

∑
𝑁

𝑖=1

𝑤
𝑚

𝑖𝑗

⋅ 𝑥
𝑖

∑
𝑁

𝑖=1

𝑤
𝑚

𝑖𝑗

, (3)

where𝑚 denotes the level of cluster fuzziness.
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Figure 2: Proposed fuzzy clustering-based ensemble approach for prediction of Indian summer monsoon rainfall.

4.3. Prediction Models. Multiple regression and three models
of artificial neural networks (ANN), namely, multilayer per-
ceptron, recurrent neural network, and generalized regres-
sion neural network, are used to design predictionmodels for
each cluster exclusively. Forecast of annual ISMR is provided
by each cluster model separately and also by ensemble of all

the clusters’ model forecast. We describe below the models
used.

4.3.1. Multiple Regression (MR). Multiple regression model is
used to learn the relationship between several independent
predictor variables (𝑋

𝑖
s) and a dependent variable (𝑌).
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Table 3: Model parameter setting for MLP models.

Parameter set Hidden layers Training years Training method
ParSet1 [3 5] 20 BFGS quasi-Newton backpropagation
ParSet2 [3 5 10] 15 Conjugate gradient backpropagation with Powell-Beale restarts
ParSet3 [5 10] 10 Scaled conjugate gradient backpropagation
ParSet4 [3 5] 15 Resilient backpropagation

Multiple regression model having 𝑝 independent variables is
shown in

𝑦
𝑖
= 𝛽
1
𝑥
𝑖1
+ 𝛽
2
𝑥
𝑖2
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝑥
𝑖𝑝

+ 𝜀
𝑖
, (4)

where 𝑥
𝑖𝑗
is the 𝑖th observation of 𝑗th independent variable,

where the first independent variable takes the value 1 for all 𝑖
and 𝜀 represents the residual.

4.3.2. Multilayer Perceptron Neural Network (MLP). Mul-
tilayer perceptron neural network is a class of ANN where
connections between the neurons do not form a directed
cycle. In this network, the information propagates in only
one direction, from input nodes, through hidden nodes,
and to the output nodes. The independent and dependent
variables constitute the input and output layers, respectively.
Number of hidden layers with corresponding nodes must
be determined empirically for each prediction task. Four
different parameter sets are considered empirically for model
designed to forecast ISMR, shown in Table 3.

4.3.3. Recurrent Neural Network (RNN). Recurrent neural
network is a class of ANN which creates an internal state
of the network to exhibit dynamic temporal behaviour.
Climatic changes or events occurring in near or same time
period are highly correlated. Similarly, rainfall patterns are
more correlated to influencing factors in the near years as
compared to the distant years. This phenomenon is well
captured by RNN which gives weights in decreasing order to
the values in near to distant years during training of network.
Thus, it assists in modelling the system dynamics in much
natural manner. Same set of climatic parameters as MLP
network (Table 3) is considered with delay span of 2 units.

4.3.4. Generalized Regression Neural Network (GRNN). Gen-
eralized regression neural network is a variant of radial
basis function network. GRNN has three layers of artificial
neurons: input, hidden, and output. The hidden layer has
radial basis neurons, while neurons in the output layer have
linear transfer function. Output of radial basis neurons is the
input scaled by the spread factor. Given 𝑝 input-output pairs
𝑥
𝑖
,𝑦
𝑗
∈ R𝑛×R1, with 𝑛 input variables and 𝑖 = 1, 2, . . . , 𝑝, 𝑦

𝑗

represents the output from each hidden unit. The GRNN
output for a test point, 𝑥 ∈ R𝑛, is described by

𝑦(𝑥) =

𝑝

∑

𝑖=1

𝑊
𝑖
𝑦
𝑖
, (5)

where

𝑊
𝑖
=

exp (−
󵄩󵄩󵄩󵄩𝑥 − 𝑥

𝑖

󵄩󵄩󵄩󵄩

2

/2𝜎
2

)

∑
𝑝

𝑘=1

exp (−
󵄩󵄩󵄩󵄩𝑥 − 𝑥

𝑘

󵄩󵄩󵄩󵄩

2

/2𝜎
2

)

. (6)

The reasons behind modelling using GRNN are (i) only one
tunable design parameter (spread factor), (ii) one-pass algo-
rithm (less time consuming), and (iii) accurately approximate
functions from sparse data.

Optimal training year is ascertained for MR and GRNN
models by varying training years from 5 to 30 and validating
against least absolute error in prediction during validation
period (1984–1993). A training of 𝑚 years specifies that, for
predicting 𝑟th year rainfall, available preceding𝑚 number of
years 𝑟 − 1, 𝑟 − 2, . . . , 𝑟 − 𝑚 present in a particular cluster are
considered for training.

4.4. Ensemble of Predictors. Complexity in monsoon process
makes it difficult for a single model to predict rainfall
accurately.Wedesign separatemodels for each cluster of years
obtained by fuzzy clustering using four predictors described
in Section 4.3. Finally, annual ISMR is presented as weighted
ensemble of forecasts of model designed for each cluster.
Weight is taken as the fuzzy membership of belongingness
of the test year in different clusters:

Ensemble prediction𝑡 =
𝑐

∑

𝑖=1

𝑊
𝑡

𝑖

⋅ 𝑃
𝑖
, (7)

where𝑃
𝑖
represents the prediction given by amodel for cluster

𝑖,𝑊𝑡
𝑖

is the fuzzy membership of 𝑡th test year to cluster 𝑖, and
𝑐 is the total number of clusters.

4.5. Validation of Proposed Approach. The study is performed
on data for the period 1948–2013. Fuzzy clustering is per-
formed over the period to cluster it into three groups. The
number of clusters is decided based on cluster quality. Sepa-
rate prediction models are designed for all three clusters and
ensemble of forecasts of thesemodels is provided as predicted
Indian summer monsoon rainfall. Test period 2001–2013 is
considered to evaluate the forecasting skills of our proposed
approach.

The forecastmodels for annual ISMR are chiefly evaluated
in terms ofmean absolute error.Other error statistics, namely,
root mean square error, prediction yields, Pearson correla-
tion, and Willmott index of agreement, are also evaluated to
judge the efficacy of our proposed approach for prediction.
They are described below.
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(i) Mean Absolute Error (MAE). Mean absolute error
for prediction of annual ISMR is calculated in the
following way:

MAE =
∑
𝑁

𝑖=1

|𝑌 − 𝑋|

𝑁
, (8)

where 𝑋 and 𝑌 are the actual and predicted ISMR
series for test period and𝑁 denotes the total number
of test years.

(ii) Root Mean Square Error (RMSE). Root mean square
error calculates the differences between model pre-
dicted output and actual values. They are a good
measure to compare forecasting errors of various
models:

RMSE = √
(𝑌 − 𝑋)

2

𝑁
. (9)

(iii) Prediction Yield (PY). Prediction yields are evaluated
at three different error categories (5%, 10%, and
15% errors) to assess the overall prediction results
by judging percent of predicted years within each
allowed range of errors.

(iv) Pearson Correlation Coefficient (PC). Pearson corre-
lation coefficientmeasures the strength of linear asso-
ciation between actual and predicted values, where
the value of 1 means a perfect positive correlation and
the value of −1 means a perfect negative correlation:

PC =

∑
𝑁

𝑖=1

(𝑋
𝑖
− 𝑋) (𝑌

𝑖
− 𝑌)

√∑
𝑁

𝑖=1

(𝑋
𝑖
− 𝑋)
2

√∑
𝑁

𝑖=1

(𝑌
𝑖
− 𝑌)
2

, (10)

where 𝑋 and 𝑌 are the actual and predicted ISMR
series for test period and 𝑋 and 𝑌 are their corre-
sponding mean.

(v) Willmott Index of Agreement (WI).Willmott index of
agreement is a standardized measure of the degree of
model prediction error. It varies between 0 and 1 with
higher values indicating a better fit of the model for
prediction:

Index of agreement = 1 −
∑
𝑁

𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖 − 𝑌
𝑖

󵄨󵄨󵄨󵄨

2

∑
𝑁

𝑖=1

(
󵄨󵄨󵄨󵄨󵄨
𝑌
𝑖
− 𝑋

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑖
− 𝑋

󵄨󵄨󵄨󵄨󵄨
)
2

.

(11)

5. Experimental Results and Analysis

In this section we present the evaluation of our proposed
fuzzy clustering-based approach. We first present the results
of fuzzy clustering of the monsoon years for different pre-
dictor sets. Forecasting skills are evaluated for all cluster and
the ensemble model in terms of mean absolute errors for test
period 2001–2013. In addition, other measures like root mean
square errors in prediction, correlation between predicted

Table 4: Cluster size (number of years) by fuzzy 𝑐-means clustering
with 𝛼-cut of 0.3 over the period 1948–2013.

Predictor set Cluster1 Cluster2 Cluster3
PredSet1 16 38 30
PredSet2 30 17 40
PredSet3 32 14 38
PredSet4 42 31 21
PredSet5 15 37 26

and actual rainfall, prediction yields, and agreement index
between actual and predicted rainfall are also estimated
to establish the efficiency of our proposed approach to
prediction of Indian summer monsoon rainfall.

5.1. Clustering of Monsoon Years. Fuzzy clustering is per-
formed over period 1948–2013 to cluster the data into three
clusters. We have performed an 𝛼-cut, with value 𝛼 = 0.3
to assign the data instances to the clusters. The value is
ascertained empirically such that the distribution of elements
within clusters is regular. A data instance can be assigned to
more than one cluster simultaneously. The cluster sizes are
shown in Table 4 while considering various predictor sets.

5.2. Prediction Accuracy. We predict annual rainfall consid-
ering for all five predictor sets (Table 2) separately using four
models, namely, MR, MLP, RNN, and GRNN. Test period is
considered from 2001 to 2013.

5.2.1. Multiple Regression Model (MR). Multiple regression
models are built for every cluster by ascertaining optimal
training period for each predictor set. Optimal training
period is evaluated by varying training years and validating
them for least absolute error in prediction during valida-
tion period (1984–1993). Individual cluster based as well as
weighted ensemble models are considered for prediction.
Table 5 gives the mean absolute error for individual cluster
based and ensemble models for test period 2001–2013. The
model provides mean absolute error of 6.2% for PredSet4
(Table 2). It is observed that the ensemblemodel outperforms
all the single cluster models for every predictor set. Figure 3
shows the interannual variability of actual and ensemble
predicted rainfall as percent of long period average (LPA).

5.2.2. Multilayer Perceptron Neural Network Model (MLP).
Multilayer perceptron neural networkmodel is designedwith
four different sets of parameters described in Table 2. Mean
absolute errors of all cluster and ensemble models are shown
in Table 6.MLP model reports an error of 4.0% for PredSet4
(Table 2) with MLP parameters ParSet1 (Table 3). The actual
and predicted rainfall by models built for clusters and
ensemble model is shown in Figure 4. Ensemble predicted
rainfall closely follows actual rainfall.

5.2.3. Recurrent Neural Network Model (RNN). Mean abso-
lute errors for prediction of annual rainfall by recurrent
neural network model for the test period 2001–2013 are
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Table 5: Mean absolute errors (%) for annual Indian summer monsoon rainfall prediction by individual MR cluster models and ensemble
model for test period 2001–2013. Reports minimum error of 6.2%.

Predictor set Training years Cluster1 error (%) Cluster2 error (%) Cluster3 error (%) Ensemble error (%)
PredSet1 20 9.4 9.3 10.9 8.6
PredSet2 20 11.0 7.5 9.4 8.3
PredSet3 15 10.9 6.5 9.2 6.7
PredSet4 15 10.4 10.1 6.8 6.2
PredSet5 15 7.6 8.5 8.4 7.9

Table 6: Mean absolute errors (%) for annual Indian summer monsoon rainfall prediction by individual MLP cluster models and ensemble
model for test period 2001–2013. Reports minimum error of 4.0%.

Predictor set Parameter set Cluster1 error (%) Cluster2 error (%) Cluster3 error (%) Ensemble error (%)
PredSet1 ParSet4 13.8 18.1 16.9 8.2
PredSet2 ParSet3 16.0 7.9 11.0 5.2
PredSet3 ParSet1 8.0 7.8 6.5 6.5
PredSet4 ParSet1 9.3 10.7 4.5 4.0
PredSet5 ParSet1 8.5 15.3 13.7 11.0
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Figure 3: Performance of forecasts by proposed fuzzy clustering-
based ensemble model and its respective three clusters models
by MR for PredSet4. The deep and light purple bars represent the
actual and predicted ISMR in terms of percent of LPA. The symbols
represent forecasts given by individual cluster models. The results
are shown for test period 2001–2013.

presented inTable 7.PredSet3 (Table 2)withRNN parameters
ParSet1 (Table 3) gives error of 5.1%. RNN gives weights
in decreasing order of their distance from test year to the
training years. The pattern of actual and ensemble predicted
rainfall in terms of percentage of LPA is shown in Figure 5.

5.2.4. Generalized Regression Neural Network Model (GRNN).
Generalized regression neural network ensemble and
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Figure 4: Performance of forecasts by proposed fuzzy clustering-
based ensemble model and its respective three clusters models by
MLP for PredSet4. The deep and light purple bars represent the
actual and predicted ISMR in terms of percent of LPA. The symbols
represent forecasts given by individual cluster models. The results
are shown for test period 2001–2013.

individual cluster models’ errors in terms of mean absolute
errors are presented in Table 8. The model reports an
error of 6.1% for PredSet3 (Table 2). Figure 6 shows the
interannual variations of ensemble forecast of rainfall by
GRNN ensemble model along with actual rainfall pattern
in terms of percentage of LPA for period 2001–2013. It is
observed that the predicted values are close to actual rainfall
patterns. Prediction by models designed for clusters is shown
by different symbols.
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Table 7: Mean absolute errors (%) for annual Indian summer monsoon rainfall prediction by individual RNN cluster models and ensemble
model for test period 2001–2013. Reports minimum error of 5.1%.

Predictor set Parameter set Cluster1 error (%) Cluster2 error (%) Cluster3 error (%) Ensemble error (%)
PredSet1 ParSet1 11.3 7.1 16.8 7.0
PredSet2 ParSet1 13.2 13.5 12.6 8.5
PredSet3 ParSet1 12.9 5.4 6.0 5.1
PredSet4 ParSet1 12.3 6.4 4.7 5.9
PredSet5 ParSet2 15.1 16.1 13.4 8.8

Table 8: Mean absolute errors (%) for annual Indian summermonsoon rainfall prediction by individual GRNN cluster models and ensemble
model for test period 2001–2013. Reports minimum error of 6.1%.

Predictor set Training years Cluster1 error (%) Cluster2 error (%) Cluster3 error (%) Ensemble error (%)
PredSet1 20 10.0 7.6 7.6 6.4
PredSet2 30 7.1 8.9 7.6 6.4
PredSet3 20 5.8 9.2 6.0 6.1
PredSet4 20 6.3 6.6 7.2 6.3
PredSet5 25 7.1 9.4 11.9 6.6
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Figure 5: Performance of forecasts by proposed fuzzy clustering-
based ensemble model and its respective three clusters models by
RNN for PredSet3. The deep and light purple bars represent the
actual and predicted ISMR in terms of percent of LPA. The symbols
represent forecasts given by individual cluster models. The results
are shown for test period 2001–2013.

5.3. Statistical Measures for Validation of Proposed Approach.
Next, we validate the models in terms of other accuracy
measures besidesmean absolute error. Table 9 shows different
forecast verification statistics for ensemblemodels during test
period 2001–2013. We summarize the observations below.

(i) Root Mean Square Error (RMSE). MLP ensemble
model gives RMSE of 5.3%, followed by RNN ensem-
ble model with 6.4%. GRNN and MR models give
RMSE of 7.4% and 8.4%, respectively.
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Figure 6: Performance of forecasts by proposed fuzzy clustering-
based ensemble model and its respective three clusters models by
GRNN for PredSet3. The deep and light purple bars represent the
actual and predicted ISMR in terms of percent of LPA. The symbols
represent forecasts given by individual cluster models. The results
are shown for test period 2001–2013.

(ii) Prediction Yield (PY). PY for 5% error category of
MR,MLP, RNN, andGRNN ensemblemodels is 46%,
69%, 53%, and 46%, respectively.They give prediction
yield of 76%, 92%, 92%, and 84% for allowed error
of 10% category. Finally at error category of 15%,MR,
MLP, RNN, andGRNN ensemblemodels give yield of
92%, 100%, 92%, and 100%, respectively. Thus, none
of the predicted years show abrupt deviation from
corresponding actual rainfall pattern.
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Table 9: Prediction evaluation statistics for ensemble models during test period 2001–2013 (Section 4.5).

Verification measures MR MLP RNN GRNN
RMSE for forecast (%) 8.4 5.3 6.4 7.4
PY (%) at allowed error 5% 46 69 53 46
PY (%) at allowed error 10% 76 92 92 84
PY (%) at allowed error 15% 92 100 92 100
PC between actual and predicted rainfall 0.61 0.81 0.71 0.49
WI between actual and predicted rainfall 0.71 0.89 0.81 0.62

Table 10: Comparison of absolute errors for rainfall prediction by proposed ensemble models (Ensml) with clustering (WC) approach to
standard method with same models without clustering (NC) approach.

Predictor set
MR MLP RNN GRNN

Tot. error
(NC) (%)

Ensml error
(WC) (%)

Tot. error
(NC) (%)

Ensml error
(WC) (%)

Tot. error
(NC) (%)

Ensml error
(WC) (%)

Tot. error
(NC) (%)

Ensml error
(WC) (%)

PredSet1 8.9 8.6 10.0 8.2 11.7 7.0 6.9 6.4
PredSet2 9.2 8.2 12.8 5.2 10.7 8.5 7.2 6.4
PredSet3 7.4 6.7 6.7 6.5 6.2 5.1 6.1 6.1
PredSet4 6.7 6.2 5.8 4.0 6.0 5.5 6.3 6.3
PredSet5 8.2 7.9 9.7 11.0 8.9 8.8 9.0 6.7

(iii) Pearson Correlation (PC). PC of 0.61, 0.81, 0.71,
and 0.49 is observed for prediction by MR, MLP,
RNN, and GRNN ensemble models, respectively. It
is noticed that predicted rainfall by MLP ensemble
model is highly correlated to actual values, while
correlation for GRNN forecast is least.

(iv) Willmott Index of Agreement (WI).WI forMR,MLP,
RNN, and GRNN ensemble models is 0.71, 0.89,
0.81, and 0.62, respectively. The index shows that the
agreement between actual and predicted rainfall is
high forMLP and RNN ensemble models.

All of the mentioned statistical measures (Table 9) as well
as mean absolute error (Table 6) in prediction of monsoon
ascertainMLPmodel to be the best among all four proposed
models.

5.4. Comparison of Results

5.4.1. Comparison with State-of-the-Art Methods. Proposed
fuzzy clustering-based ensemble prediction models are com-
paredwith themodels used by IndianMeteorologicalDepart-
ment (IMD). It is comparedwith existing 16-parameter power
regression model [4] and Rajeevan et al. [5] 8- and 10-
parameter models. Test period of seven years from 1996 to
2002 is considered. IMDmodels give rootmean square errors
of 10.8%, 7.6%, and 6.4%, respectively. The MR, MLP, RNN,
andGRNN ensemblemodels give 6.0%, 3.4%, 4.4%, and 5.5%
rootmean square errors, respectively, outperforming all three
IMDmodels.The results are shown as a bar graph in Figure 7.

5.4.2. Improvement of Cluster-BasedModels over Conventional
Models. Ensemble model error obtained by combining all
clusters’ model output is compared with error obtained by
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Figure 7: Comparison of MR (grey), MLP (purple), RNN (light
purple), and GRNN (deep purple) models with IMD existing 16-
param. (deep blue), 10-param. (blue), and 8-param. (light blue)
models for time period of 1996–2002 [4, 5]. Striped bars represent
errors by our proposed models.

same model (parameter), trained on the whole dataset with-
out clustering. The mean absolute error for various models
and predictor sets combinations are shown in Table 10. The
result clearly depicts the improvement in prediction by clus-
tering and ensemble method over nonclustered conventional
method.
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Table 11: Physical climatic events under study.

Climatic event Number
of years Years associated with the event

Drought 13 1951, 1965, 1966, 1968, 1972, 1974, 1979, 1982, 1986, 1987, 2002, 2004, 2009
Flood 11 1953, 1956, 1958, 1959, 1961, 1964, 1970, 1975, 1983, 1988, 1994

El-Niño 23 1951, 1953, 1957, 1958, 1963, 1965, 1966, 1968, 1969, 1972, 1977, 1982, 1983, 1986, 1987, 1991, 1992, 1994, 1997,
2002, 2004, 2006, 2009

La-Niña 22 1950, 1954, 1955, 1956, 1964, 1970, 1971, 1973, 1974, 1975, 1984, 1985, 1988, 1989, 1995, 1998, 1999, 2000, 2007,
2008, 2010, 2011

Positive IOD 12 1957, 1961, 1963, 1967, 1972, 1977, 1982, 1983, 1994, 1997, 2006, 2007
Negative IOD 10 1958, 1960, 1964, 1971, 1974, 1975, 1989, 1992, 1993, 1996

Table 12: Threshold of support and confidence measures for
associating obtained clusters with physical climatic events.

Predictor set Support threshold Confidence threshold
PredSet1 0.37 0.30
PredSet2 0.25 0.46
PredSet3 0.21 0.43
PredSet4 0.29 0.61
PredSet5 0.21 0.54

5.5. Prediction of the Year 2014. Annual Indian summer
monsoon rainfall for the year of 2014 is 781.7mm, which is
87.8% of LPA value. Proposed clustering-based ensembleMR,
MLP, RNN, and GRNN models predict rainfall of 2014 as
96.1%, 80.3%, 80.0%, and 95.3% of LPA, respectively. Thus,
proposed models show absolute error of 7.0% for forecasting
rainfall of 2014.

6. Meteorological Analysis

Next, we try to visualize each cluster in terms of physical
climatic events. The clusters obtained by fuzzy clustering
are physically interpreted as being characterized by some
global climatic events. The climatic events considered and
studied during the time period 1948 to 2013 (period con-
sidered for clustering in our work) are El-Niño, La-Niña
(http://ggweather.com/enso/oni.htm), positive and nega-
tive Indian ocean dipole (http://bom.gov.au/climate/IOD),
drought, and flood, shown in Table 11.

Figure 8 shows the El-Niño and La-Niña years associated
with drought, normal, and excess rainfall years during 1948–
2013. The years having rainfall 10% above LPA are excess
rainfall years and years having rainfall 10% below LPA are
drought years. The El-Niño and La-Niña years are shown by
color codes (light green and green) in the figure. The chart
helps to visualize the cooccurrence of El-Niño and La-Niña
events with extremities of ISMR.

6.1.Measuring Association betweenClimatic Events and ISMR.
Support and confidence measures are considered to relate
physical climatic event to the clusters generated by fuzzy
clustering. They are defined below.
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Figure 8: El-Niño (light green) and La-Niña (green) years associa-
tion with drought (years below 10% of LPA rainfall), normal (years
between +10% and −10% of LPA rainfall), and excess (years above
10% of LPA rainfall) years during period 1948–2013.

(i) Support. Support is defined as percentage of total
number of years in the cluster corresponding to the
climatic event:

Support =
𝑥ce
𝑁

, (12)

where𝑥ce denotes the number of years associatedwith
a specific climatic event in the cluster and 𝑁 is the
total count of years in the cluster.

(ii) Confidence. Confidence is defined as percentage of
years associated with the climatic event in the cluster
to the total number of such event years:

Confidence =
𝑥ce
𝑇ce

, (13)

where 𝑇ce is the number of years associated with the
climatic event during the period 1948–2013.
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Figure 9: Histogram of the confidence and support measures as bins of year-count before (a) and after (b) thresholding for PredSet1.

Table 13: Identified physical climatic events being associated with clusters obtained by fuzzy clustering.

Predictor Cluster1 Cluster2 Cluster3
PredSet1 Drought, El-Niño La-Niña La-Niña
PredSet2 Flood, La-Niña Drought Drought, El-Niño, La-Niña
PredSet3 El-Niño, positive IOD Drought Drought, El-Niño
PredSet4 La-Niña Flood, La-Niña Drought
PredSet5 — Drought, El-Niño Flood

We relate a cluster to a physical climatic event described
in Table 11, if both support and confidence measures attain
the corresponding thresholds. The thresholds are chosen in a
way that 50% of years of study are under consideration. A low
threshold compromises the importance of a climatic event
being related to a particular cluster; on the other hand if even
less number of years are taken, then threshold values should
be high, which in turn will leave out most of the clusters.
Therefore, as an optimal between the extremes, 50% of years
are considered. Figure 9 shows histograms with confidence
and support as bins of year-count for cases before and
after threshold process, respectively, for predictors PredSet1
(Table 2). The threshold values obtained for predictor sets
are presented in Table 12. For each predictor set, we associate
the clusters with physical climatic events, if they satisfy both
support and confidence thresholds. The climatic events cor-
responding to cluster are shown in Table 13. Results establish
coexistence of events of La-Niña and flood. It also puts light
on high probability of occurrence of El-Niño, drought, and
positive IOD events simultaneously.

7. Conclusion

Monsoon is an important phenomenon for economic devel-
opment of agricultural-land like India. Large variability of
monsoon over years makes prediction of rainfall a challeng-
ing task. The paper attempts to address this problem by clus-
tering the years into similar groups and finally, multimodel

ensemble forecast is provided for Indian summer monsoon
rainfall.

Different climatic parameters with best correlated month
value are identified and five different predictor sets are built
for prediction of Indian monsoon. Four different models,
namely, MR, MLP, RNN, and GRNN, are designed for
each cluster exclusively. The final forecast is provided by
weighted ensemble of forecasts by each cluster’s model, where
weight is considered as fuzzy membership of belonging-
ness in each cluster. Multilayer perceptron ensemble model
provides mean absolute error of 4.0% for prediction of
annual rainfall, which is appreciable for forecasting complex
monsoon process. Proposed fuzzy clustering-based ensemble
approach surpasses the conventional approach. Performance
of proposed clustering-based ensemble models is superior to
existing IMD’smodels [4, 5].The error statistics also ascertain
the superiority of multilayer perceptron model over other
three proposed models. Lastly, in meteorological context the
clusters are linked with global climatic events.

In the future, large number of climatic parameters
influencing Indian monsoon can be explored and different
predictor set can be used for different clusters of years to
provide even better forecasting accuracy.
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