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Abstract Prediction of Indian summer monsoon uses a

number of climatic variables that are historically known to

provide a high skill. However, relationships between pre-

dictors and predictand could be complex and also change

with time. The present work attempts to use a machine

learning technique to identify new predictors for forecast-

ing the Indian monsoon. A neural network-based non-lin-

ear dimensionality reduction technique, namely, the sparse

autoencoder is used for this purpose. It extracts a number of

new predictors that have prediction skills higher than the

existing ones. Two non-linear ensemble prediction models

of regression tree and bagged decision tree are designed

with identified monsoon predictors and are shown to be

superior in terms of prediction accuracy. Proposed model

shows mean absolute error of 4.5 % in predicting the

Indian summer monsoon rainfall. Lastly, geographical

distribution of the new monsoon predictors and their

characteristics are discussed.

1 Introduction

Predicting complex climatic phenomena such as the Indian

summer monsoon is a challenging task. Geographical

features, wind flow directions, and multiple sea-atmo-

spheric interactions influence the strength of the monsoon.

Knowing the variability of monsoons is important (even

though for the entire region as a whole the standard devi-

ation is just 10 % of mean) and the relationship with pre-

dictors changes with time, it is vital to revise existing

predictors and introduce new predictors affecting the

monsoon. We focus on automated identification of pre-

dictors important for the Indian summer monsoon rainfall

(ISMR).

India Meteorological Department (IMD) had been

forecasting Indian summer monsoon rainfall since 1886.

Forecast of Indian monsoon was initiated by Blanford

(1884) as early as in 1882. The success of forecasts in span

of 1882–1885 encouraged Blanford to design an opera-

tional long-range forecast model for monsoon in 1886.

Subsequently, Walker (1924) developed models based on

the statistical correlations between rainfall and different

global climate variables. Thapliyal and Kulshrestha (1992)

introduced regression model in predicting south-west

Indian monsoon rainfall. Gowariker et al. (1991) proposed

power regression model for long-term forecast of monsoon,

which provided accurate forecast for a long period, but

failed to predict the extreme condition of 2002. In 2004,

Rajeevan et al. (2004) reassessed different climatic vari-

ables and introduce four new variables to design a statis-

tical model for issuing long-range forecast of Indian

monsoon. Rajeevan et al. (2007) built models using

ensemble multiple regression and pursuit projection

regression to forecast Indian rainfall which proved to be

superior to past IMD models. Gadgil et al. (2005) analyzed
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the forecasts issued by IMD using statistical models and

found that a drought had never been predicted in IMD’s

forecasts.

Identification of new predictors influencing climatic

phenomena has been a prime focus in climate field. In

practice, predictors influencing an phenomenon are selec-

ted by studying the physical processes and utilizing mete-

orological experiences. We have used sparse autoencoder,

a neural network-based dimensionality reduction technique

for identification of monsoon predictors. Autoencoder is

widely used in feature reduction and discovery (Hinton and

Salakhutdinov 2006). The ability of autoencoder tech-

niques to efficiently handle large amount of data makes

them attractive tools for use in climate studies. Salient

features of our proposed approach to identification of

monsoon predictors are as follows—(i) sparse autoencoder

is used for reducing the dimensionality of the features

considered from all grids of the world to important grids’

feature influencing monsoon, (ii) autoencoder can combine

the climatic variables in linear and non-linear fashion from

geographically distant regions to built new monsoon pre-

dictors, (iii) advanced machine learning prediction models

are used to predict monsoon using identified predictors, and

(iv) combination of predictors from two or more distinct

variables is considered and such predictor sets show better

skill than predictors from individual variable.

Many studies have been conducted to determine

potential predictors for the Indian Summer Monsoon.

Kumar et al. (2011) used singular value decomposition-

based graphical technique to analyze patterns of ten cli-

matic variables. Boriah et al. (2004) utilized clustering of

climatic variables viz. sea surface temperature and sea

level pressure to identify predictors for land temperature.

Sap and Awan (2005) used kernel k-means algorithm with

spatial constraint to identify the spatio-temporal patterns in

the climate system. Similar nearest neighbors-based clus-

tering approach had been used for detection of new pre-

dictors, which were validated against known predictors and

shown to overcome limitations of PCA and SVD approa-

ches (Steinbach et al. 2003).

Selection of monsoon predictors played a significant

role in forecasting Indian summer monsoon rainfall. Del-

Sole and Shukla (2002) selected number of predictors

comparing the error variances of models with different

predictor sets after initial screening out of models provid-

ing poor forecast accuracy. It produced better forecasts of

Indian monsoon, than model with all predictors or model

with the most favorable statistics. DelSole and Shukla

(2012) also showed that skill of predicting ISMR from sea

surface temperature obtained from coupled atmosphere-

ocean models was statistically significant, attributed to the

fact that slowly evolving sea surface temperatures were

primary source of predictability. Wang et al. (2015)

specified that the failure of prediction models for fore-

casting Indian monsoon was mainly due to their inability to

capture new predictability sources like central-Pacific El

Nino-Southern Oscillation, deepening of the Asian Low

and strengthening of North and South Pacific Highs during

boreal spring. Hence with changing environment, new

predictors and influencing phenomena should be ascer-

tained to update the prediction models for better

performance.

Liu et al. (2015) utilized autoencoder architecture for

weather forecasting. Their study determined key features

from a large dataset of hourly temperature and wind

velocity data by layer-wise feature granulation and used

them for predicting temperature. Song et al. (2013) have

shown that autoencoder techniques determine highly non-

linear functions from complex data and these functions are

effective and stable. Li and Yang (2013) proposed a hybrid

strategy for non-linear feature reduction using autoencoder

and forecasted wind power utilizing sparse Bayesian

regression model. In our approach, autoencoder assists in

performing non-linear combination of climatic variables of

different geographical locations to identify new monsoon

predictors.

The purpose of our work is twofold—(i) identification of

new monsoon predictors using autoencoder from climatic

variables, namely, air temperature, sea surface temperature,

and sea level pressure, (ii) utilization of identified monsoon

predictors for forecasting Indian summer monsoon rainfall

(ISMR), which acts as validation of our proposed predictor

identification approach.

The approach initiates with considering grids of 20�

longitude �10� latitude encompassing the globe. All the

time series of climatic variables, namely, air temperature,

sea surface temperature, and sea level pressure within the

specified grids are averaged to obtain a single time series,

which represents the particular grid’s variable. Time series

corresponding to grid points act as inputs to autoencoder.

New monsoon predictors are obtained from autoencoder as

non-linear combination of input variables. The suitability

of the predictor so obtained is determined by thresholding

and correlation analysis. Identified monsoon predictors are

compared with existing predictors of Indian monsoon for

validation and are evaluated in terms of their forecasting

skills for Indian monsoon. Prediction models with newly

identified monsoon predictors show superiority in monsoon

prediction over existing prediction models.

The article is organized as follows. Section 2 describes

the basic architecture of autoencoder. Section 3 explains

broadly the proposed approach of monsoon predictor

identification using autoencoder. Models used for predict-

ing monsoon rainfall are described in Sect. 4. Section 5

elaborates the experimental results and analysis of identi-

fied predictors on the ground of their forecasting skills for
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Indian monsoon. Meteorological characteristics of identi-

fied monsoon predictors are explained in Sect. 6 and

finally, the article concludes in Sect. 7.

2 Single-layer autoencoder architecture

An autoencoder is an artificial neural network used to

learn compressed, complex characteristics of data and are

used for the purpose of dimensionality reduction (Baldi

2012). Single-layer autoencoder has only one hidden

layer. Autoencoder sets its target values equal to the

input values. It consists of two components—(i) encoder

(works in input-to-hidden layer), (ii) decoder (works in

hidden to output layer). It provides a non-linear mapping

function by iteratively training the encoder and the

decoder. The encoder adopts the non-linear mapping

function, and the decoder performs data reconstruction

from the representation generated by the encoder. The

process continues iteratively and guarantees that the

mapping function is stable and effective to represent the

original data.

Formally, say x 2 Rn represents an input, the activation

of each neuron in the hidden layer, hi, for i = 1; . . .;m is

shown in Eq. 1.

h xð Þ ¼ f Winpxþ binp
� �

; ð1Þ

where f zð Þ ¼ e2z�1
e2zþ1

is the non-linear hyperbolic tangent

activation function applied component-wise, h xð Þ 2 Rm is

the vector of neuron activation, Winp is the (m� n) weight

matrix from input-to-hidden layer, and binp 2 Rm is bias

vector. The network output is shown in Eq. 2.

bx ¼ g Whidh xð Þ þ bhidð Þ; ð2Þ

where gðÞ denotes a linear function and bx 2 Rn is a vector

of output values, Whid is the (n� m) weight matrix from

hidden to output layer, and bhid 2 Rn is bias vector. For our

problem, the input comprises the climatic variables like air

temperature, sea surface temperature or sea level pressure

over the world grids and potential predictors are obtained

as output from hidden layer as non-linear combination of

input climatic variable at different geographical regions.

Thus, input and output to autoencoder are climatic vari-

ables and their combination, respectively, where autoen-

coder is assisting in dimensional reduction or complex

feature building.

Given a set of q input instances xi, i ¼ 1; . . .; q, the

weight matrices Winp and Whid and the bias vector binp and

bhid are updated using gradient back-propagation algorithm

to minimize the reconstruction error
Pq

i¼1 k xi � bx k2. The
architecture of the autoencoder is shown in Fig. 1.

3 Identification of monsoon predictor using
autoencoder

Autoencoder is used for identification of new monsoon

predictors significant for Indian monsoon and these

potential monsoon predictors are utilized for forecasting

the monsoon. The block diagram of our proposed approach

is shown in Fig. 2.

3.1 Preprocessing: initialization of climatic

variables

The proposed approach of predictor identification initiates

with preprocessing of input climatic variables. We consider

three climatic variables, namely, air temperature (AT), sea

surface temperature (SST), and sea level pressure (SLP) for

our task. Initially, the world is divided into spatial rectan-

gular grids of dimension 20� longitude �10� latitude,

which sum up to 324 grids [(360/20) � (180/10)]. As a

preprocessing step, the grids having less than 20 % values

as Null (eg. some grids near the poles have most of their

values as Null) are considered for further analysis. All the

time-series values of climatic variable within the spatial

cover of grid are averaged to obtain a single time series of

climatic variable representing that particular grid. Each

such averaged time series of the selected grids are con-

sidered as input nodes of the autoencoder. After prepro-

cessing, the number of input nodes in autoencoder designed

for climatic variable air temperature (Aut_AT) is 136, that

Fig. 1 Architecture of autoencoder
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for sea surface temperature (Aut_SST) is 137, and 102 for

sea level pressure (Aut_SLP).

3.2 Monsoon predictor identification: new monsoon

predictor identification using autoencoder

Identification of predictors is performed in three major

steps—(i) firstly, non-linear mapping of input variables to

reduced composite features, which will act as representa-

tive for new monsoon predictors, (ii) predictor selection

based on threshold of weight matrix, and (iii) filtering by

correlation study of predictors with Indian monsoon.

3.2.1 Non-linear predictor mapping

Separate autoencoders are designed for all three climatic

variables. We used single-layer autoencoder for our

approach. Input layer consists of nodes corresponding to

climatic variables of selected grid points. Input-to-hidden

layer ratio is ascertained as 15 %. The nodes in the hidden

layer represent the composite features which are represen-

tative of potential monsoon predictors. The autoencoders,

Aut_AT and AUT_SST, have 20 nodes in the hidden layer,

and the autoencoder Aut_SLP has 15 nodes in the hidden

layer. Input data are considered for time period 1901–1993

for training the autoencoder. All the data are at monthly

scale, thus they sum up to 1116 (93 years � 12 months)

training instances. Autoencoder is trained iteratively using

gradient descent back-propagation algorithm to reduce the

reconstruction error of the output nodes from the input

nodes. The process is continued until the reconstruction

error does not reduce further or it gets saturated. The opti-

mized weight and bias matrices are obtained at the end of

training the autoencoder.

3.2.2 Post-training thresholding of weights

After the autoencoder being trained using the training

instances, post-processing is performed to obtain the new

monsoon predictors. We examine the weight matrix cor-

responding to input-to-hidden layer. For each hidden node

that represents potential predictor, we divide the range of

weight into ten equal intervals and plot the frequency of

occurrence of weight in each interval. The knee of the plot

Fig. 2 Block diagram of

proposed approach to

identification of monsoon

predictor using autoencoder and

prediction of Indian monsoon
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(i.e the sharp fall of the curve) is considered as the

threshold weight and we further consider only the input

nodes whose weights attain the threshold for evaluating the

potential predictors. Threshold is chosen as the knee point

of the curve in the notion that the input nodes having

weighted edge greater than this threshold have greater

contribution in the value of hidden nodes and nodes having

less weight values than the threshold are neglected as their

contributions are less. Following this approach, it leads to

incorporation of only highly influencing input nodes in

identification of new monsoon predictors (from hidden

nodes), while ignoring the rest. Figure 3 shows the

threshold for an monsoon predictor for climatic variable air

temperature. Threshold value of 0.11 is ascertained for this

monsoon predictor from the knee of the threshold curve.

Finally, new monsoon predictors are evaluated as

weighted sum of input nodes having weights greater than

the ascertained threshold.

Formally, say xi represents input node, i ¼ 1; . . .; n, and
hj represents hidden node, j ¼ 1; . . .;m, and Wij represents

the weight of input node xi for corresponding hidden node

hj. A particular monsoon predictor corresponding to hidden

node hj is evaluated as:

hj ¼
Xn

i¼1

Wijxi; for all i; such that Wij [ thresholdj

where thresholdj represents the threshold value chosen for

hidden node hj.

3.3 Postprocessing: monsoon predictor selection

Hidden node values as weighted sum of thresholded input

nodes represent the newly identified monsoon predictors. A

correlation study of the identified predictors and Indian

summer monsoon rainfall is performed to determine pre-

dictors important for Indian monsoon according to top

correlation values. High correlation values are observed for

identified predictors. Detailed correlation results and spa-

tial location of identified predictors are presented in Sect. 5.

4 Forecasting models with identified monsoon
predictors for Indian summer monsoon rainfall

Identified monsoon predictors are used to forecast Indian

summer monsoon rainfall (ISMR). We built different pre-

dictor sets taking identified monsoon predictors for vari-

ables AT, SST, and SLP, exclusively. We concentrate on

prediction of cumulative ISMR occurring during months of

June, July, August, and September. Test period from 1994

to 2014 is considered for evaluating the forecasting effi-

ciency of newly identified monsoon predictors. Two

models (described in following sections) with identified

monsoon predictors as input variables are built to forecast

rainfall. The reasons for selecting the models are as fol-

lows—(i) model uses bagging technique which is a boot-

strap aggregating technique for improving estimation

(Breiman 1996), (ii) bagging aids in improving the

Fig. 3 Frequency of occurrence

of weight values at different

weight interval to ascertain the

threshold from knee of the plot

for climatic variable air

temperature
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predictive performance of underlying regression tree, (iii)

tree ensembles can deal with non-linear features, and (iv)

they can handle high-dimensional data spaces as well as

large number of training instances.

4.1 Fitted ensemble of regression tree with Bagging

algorithm (RegTreeB)

– The main principle of this model is melding results

from many weak learners into one high-quality

ensemble prediction.

– It combines a set of trained weak regression tree learner

models and data on which these learners are trained

(Loh 2008).

– Predicts ensemble response for new data by aggregat-

ing predictions from the weak learners.

– Bagging algorithm is used for training the regression

tree learners. Bagging is a type of ensemble learning

and it generally constructs deep trees to estimate the

generalization error. To bag a weak learner such as a

regression tree on a dataset, many bootstrap replicas of

this dataset are generated and regression trees are

grown on these replicas. Each bootstrap replica is

obtained by randomly selecting n observations out of

n with replacement, where n is the size of dataset. An

average over predictions from individual trees are

performed to present the final predicted response of

trained ensemble.

– The size of ensemble is chosen empirically in a way

that it keeps balance between speed and accuracy. To

set an appropriate size, it is started with few members

to several in an ensemble, training the ensemble, and

then checking the ensemble quality until adding more

members does not improve ensemble quality.

– Model is expressed in functional form as following

(MATLAB 2012).

model ¼ RegTreeB Pred;Out;Algo; numbð Þ;

where, Pred represents data matrix with each row rep-

resenting one instance and each column contains one

predictor value (new identified monsoon predictor),

Out is a numeric column vector with the same number

of rows as Pred, with corresponding rainfall values,

Algo represents the bagging technique in our case,

numb is the number of weak learners for ensemble

process.

4.2 Ensemble of bagged decision tree (DecTreeB)

– The model bags an ensemble of decision trees for

regression modeling (Liaw and Wiener 2002).

– Bagging stands for bootstrap aggregation. Every tree in

the ensemble is grown on an independently drawn

bootstrap replica of input data. Observations not

included in this replica are ‘‘out of bag’’ for the

specific tree. Re-sampling is usually done by boot-

strapping observations. In addition, every tree in the

ensemble randomly selects predictors for decision

splits, which improve the accuracy of bagged trees.

– It relies on the regression tree functionality for growing

individual trees. Regression tree accepts the number of

features selected at random for each decision split.

– Another important parameter is the number of predic-

tors selected at random for every decision split. This

random selection is made for every split, and every

deep tree involves many splits. It is generally consid-

ered as one-third of predictors used for regression.

– To compute prediction of an ensemble of trees for new

data instant, it takes an weighted average of predictions

from individual trees (MATLAB 2012).

bybag ¼
1

PT
t¼1 atIðt 2 SÞ

X

t

TatbytIðt 2 SÞ;

where byt is the prediction from tree t in the ensemble, S

is the set of predictors of selected trees that comprise

the prediction, Iðt 2 SÞ is 1 if t is in the set S, and 0

otherwise, at is the weight of tree t.

For both the prediction models, number of training years is

varied from ten to sixty years and optimal training period is

evaluated in terms of least error in forecasting for valida-

tion period 1984–1993. Figure 4 shows the mean absolute

errors with varying training years. Optimal training year is

obtained as 25 years. It is the number of training years

considered for predicting the rainfall of subsequent year

(eg. training of 25 years from 1969 to 1993 is performed

for forecasting 1994 rainfall, and other test year are pre-

dicted in same manner).

5 Experimental results and discussions

Proposed approach to identification of monsoon predictor

using autoencoder is evaluated in terms of their efficiency

in predicting annual Indian summer monsoon rainfall and

their characteristics in climate domain.

5.1 Data sets used for the work

Sea level pressure (SLP) and air temperature (AT) are

collected from PSD gridded datasets provided by NOAA/

OAR/ESRL/PSD (www.esrl.noaa.gov/ psd/) (Compo et al.

2011). Sea surface temperature (SST) is acquired from

NOAA Extended Reconstructed V3 Data provided by the

M. Saha et al.
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NOAA/OAR/ESRL/ PSD (www.esrl.noaa.gov/psd/) (Xue

et al. 2003; Smith et al. 2008). All the above monthly data

are available at spatial resolution of 2� � 2� and considered
for period 1901–2015. Annual Indian summer monsoon

rainfall quantity (ISMR) (i.e. collective rainfall occurring

in months of June, July, August, and September) is col-

lected from India Meteorological Department (http://www.

imdpune.gov.in/research/ncc/longrange/data/data.html) for

time period 1901–2014. The long period average (LPA)

(1901–2014) of rainfall is 898.3 mm with standard devia-

tion of 92.7 mm. Rainfall is expressed as percentage of the

LPA value.

As a preprocessing step, SLP, SST, and AT data are

converted to monthly anomaly data by subtracting the

monthly mean from the corresponding data values.

Climatic anomalym ¼ Xm � meanðXmÞ;

Here, Xm denotes the climatic variable value for month m

and mean (Xm) is the average of the variable values over all

the years under study for month m.

5.2 Autoencoder-based identified monsoon

predictors

The autoencoders for air temperature (Aut_AT), sea sur-

face temperature (Aut_SST), and sea level pressure

(Aut_SLP) have number of input nodes as 136, 137, and

102, respectively. Architecture of autoencoder is designed

considering input-to-hidden layer ratio as 15 %. All the

autoencoders are trained with respective climatic data (air

temperature, sea surface temperature or sea level pressure)

for training period of ninety-three years from 1901 to 1993.

New monsoon predictors are identified from hidden nodes

of respective autoencoders, denoted by CI_AT, CI_SST,

and CI_SLP. A number of potential predictors for variables

air temperature, sea surface temperature, and sea level

pressure are 20, 20, and 15, respectively. Identified mon-

soon predictors are ranked considering their correlation

with ISMR and finally they are utilized for forecasting

Indian monsoon.

5.3 Geographical locations of identified monsoon

predictors

Identified monsoon predictors using the proposed method

for climatic variables air temperature, sea surface temper-

ature, and sea level pressure are shown in Figs. 5, 6, and 7,

respectively. For every variables, top six highly correlated

monsoon predictors with ISMR are presented.

It is observed that the obtained monsoon predictors are

not geographically localized but they are combination of

climatic variables situated at different spatial locations.

The combination of distinct geographical regions having

different time leads forms the new potential predictors.

Each color represents the geographical location of climatic

variable which is combined to form a monsoon predictor.

Monsoon predictors are ranked according to their correla-

tion with Indian monsoon and presented in the same order

Fig. 4 Scatter plot of mean

absolute errors of forecasts by

two prediction models with

identified monsoon predictors of

air temperature for training

period of different lengths

(10–60 years). Mean absolute

error is computed for validation

period 1984–1993. Optimal

training period is obtained as

twenty-five

Autoencoder-based identification...
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(eg. CI_AT1 has the highest and CI_AT6 has the lowest

correlation with monsoon).

Correlation of top six predictors along with the corre-

lated month (as shown in Figs. 5, 6, and 7) with Indian

summer monsoon rainfall is shown in Table 1. Some

identified monsoon predictors are mapped to location of

known established monsoon predictors, which act as vali-

dation of our proposed approach of predictor identification.

It is noted that the earliest signal comes from SST (the

slowly varying component of climate) while signal from

Fig. 5 Geographical locations of identified monsoon predictors for

climatic variable air temperature. Climatic variable corresponding to

same colored geographical regions combined to represent an monsoon

predictor (CI_AT1-CI_AT6 represent six identified air temperature-

based monsoon predictors). Different colors in the same region

represent participation of that region in all those monsoon predictors

Fig. 6 Geographical locations of identified monsoon predictors for

climatic variable sea surface temperature. Climatic variable corre-

sponding to same colored geographical regions combined to

represent an monsoon predictor (CI_SST1-CI_SST6 represent six

identified sea surface temperature-based monsoon predictors)

M. Saha et al.
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SLP (an atmospheric signal, the faster varying component)

gives signal about Indian summer monsoon rainfall later.

5.4 Prediction skills of identified monsoon

predictors

Different predictor sets are built from the identified

potential predictors for forecasting annual Indian summer

monsoon rainfall. Monsoon quantity is expressed as per-

centage of long period average (LPA) value of rainfall.

Forecasting skill of the identified predictors is provided in

terms of mean absolute error in prediction of monsoon

during test period (1994–2014).

Four predictor sets are built using identified monsoon

predictors for all climatic variables (AT, SST, SLP).

Identified monsoon predictors are ranked according to their

correlation with Indian monsoon exclusively for three

variables. Predictor sets P1_X, P2_X, P3_X, and P4_X are

built with top 3, 4, 5, and 6 identified monsoon predictors

from the ranked list, respectively (X in nomenclature

denotes either of AT, SST, or SLP). Predictor set built for

individual climatic variables is used as input to the

prediction models (described in Sect. 4) to forecast annual

Indian summer monsoon. Mean absolute errors for pre-

dictor sets are shown in Table 2. The bold values in

table show the least mean absolute errors provided by

identified predictors of different climatic variables in pre-

diction of Indian summer monsoon.

Identified monsoon predictors of air temperature show

mean absolute error of 4.5 % by P4_AT, which is built

with top six identified monsoon predictors of air tempera-

ture, by RegTreeB model. P3_SST predictor set based on

sea surface temperature gives mean absolute error of 5.3 %

by RegTreeB model. Predictor set with identified sea level

pressure monsoon predictors (P1_SLP) gives mean abso-

lute error of 5.4 %.

Figure 8 shows predicted rainfall by identified monsoon

predictors of air temperature against actual rainfall for test

period 1994–2014. It is observed that magnitude of pre-

dicted forecasts is close to actual rainfall values in most of

the test years. Pearson correlation of 0.72, 0.44, and 0.50 is

observed between actual and predicted rainfall by identi-

fied monsoon predictors of AT, SST, and SLP,

respectively.

Fig. 7 Geographical locations of identified monsoon predictors for

climatic variable sea level pressure. Climatic variable corresponding

to same colored geographical regions combined to represent an

monsoon predictor (CI_SLP1-CI_SLP6 represent six identified sea

level pressure-based monsoon predictors)

Table 1 Correlation of top six new monsoon predictors with ISMR along with correlated month for climatic variables AT, SST, and SLP

Autoencoder for climatic variable Correlation values Corresponding correlated month

Aut_AT ?0.36, -0.32, ?0.29, ?0.28, ?0.26, ?0.26 Apr, May, Apr, May, May, May

Aut_SST -0.35, ?0.28, ?0.23, ?0.22, ?0.21, -0.20 May, Jan, Jan, Mar, Apr, Apr

Aut_SLP ?0.34, ?0.30, ?0.30, ?0.24, -0.22, ?0.20 May, May, May, May, Mar, May
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Figure 9 shows actual and predicted rainfall as departure

from LPA value of rainfall. It shows that predicted rainfall

follows the same trend as the actual rainfall, even predicted

rainfall follows the same sign (positive or negative from

departure from LPA value) as the actual rainfall in most of

the test years. In terms of positive or negative anomaly

from the LPA rainfall, it is observed that among twenty test

years, fourteen years show same sign of anomaly as actual

rainfall and two forecasts are on border line for prediction

performed with identified monsoon predictors of air

temperature. The count of correct direction of anomaly of

rainfall prediction is fifteen for forecast by monsoon pre-

dictors of sea level pressure, and it is little low with value

twelve by monsoon predictors of sea surface temperature,

but five of rest test years are predicted as near to zero

departure from LPA rainfall (in border line).

Extreme years during the test period are also predicted

with same anomaly sign. All the drought years (2002,

2004, 2009, 2014) are predicted correctly with same sign

(negative anomaly from mean) by the identified monsoon

predictors of AT, SST, and SLP (except year 2002 by

monsoon predictor of SLP). It is noted that the magnitude

of deficit is very well captured during 2009 by monsoon

predictors of sea level pressure. For numerical models, it is

observed that even the sign of the anomaly is incorrect in

many test years (Nanjundiah et al. 2013), thus compara-

tively the identified monsoon predictors improve the pre-

diction accuracy of Indian monsoon. It can be concluded

that identified monsoon predictors are effective in fore-

casting Indian monsoon, which signify the success of our

proposed autoencoder-based approach to identification of

potential monsoon predictor.

We also framed four predictor sets with combination of

identified predictors of different variables to forecast

Indian monsoon. Combined predictor sets are (i) comb1—

comprises top three highly correlated identified monsoon

predictors of each AT and SLP, (ii) comb2—comprises top

three predictors of each AT and SST, (iii) comb3—com-

prises top three predictors of each SST and SLP, and (iv)

Table 2 Mean absolute errors (%) for annual Indian summer mon-

soon rainfall prediction for dataset built with individual identified

monsoon predictors for variables AT, SST, and SLP during test period

1994–2014

Predictor sets RegTreeB model DecTreeB model

P1_AT 5.5 4.8

P2_AT 4.5 4.6

P3_AT 4.8 4.7

P4_AT 4.5 4.6

P1_SST 5.6 5.7

P2_SST 5.6 5.9

P3_SST 5.3 5.6

P4_SST 6.2 6.2

P1_SLP 5.4 5.8

P2_SLP 5.9 5.9

P3_SLP 6.6 5.9

P4_SLP 6.1 6.4

Fig. 8 Performance of forecasts

by identified monsoon

predictors of air temperature

(AT) for test period 1994–2014.

Dark and light bars represent

the actual and predicted ISMR
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comb4—comprises top two predictors of each AT, SST

and SLP. Predictor set with with air temperature and sea

level pressure-based monsoon predictors (comb2) shows

best performance in forecasting with mean absolute error

of 4.8 %. Table 3 shows the forecasting skills by the

combined predictor sets. They show superior performance

than the predictor sets of individual SST and SLP, but they

show less accuracy than individual set of AT. Figure 10

shows the prediction by the considered combined predic-

tors sets during the test period 1994–2014.

Identified monsoon predictors are compared with exist-

ing India meteorological department’s (IMD) models

(Gowariker et al. 1991; Rajeevan et al. 2004). It is com-

pared with existing 16-parameter power regression model

(Gowariker et al. 1991), 8 and 10-parameter IMD models

(Rajeevan et al. 2004). We have compared prediction

given by the identified monsoon predictors in time period

1996–2002 with IMD model’s prediction specified in

article by Rajeevan et al. (2004). IMD models give root

mean square errors of 10.8, 7.6, and 6.4 %, respectively.

Predictor sets with proposed new monsoon predictors of

AT, SST, and SLP give root mean square errors of 4.7, 6.0,

and 6.2 %, respectively. Results are shown in Fig. 12.

Prediction by our proposed models with identified

monsoon predictors is also compared with recent three

predictions given by different India meteorological

department’s (IMD) models—(i) one prediction from IMD

operational power regression model (Rajeevan et al. 2004),

(ii) two predictions from IMD current pursuit projection

regression (PPR) model (Rajeevan et al. 2007) in two

different lag. We have compared prediction given by the

identified monsoon predictors in time period 2003–2014

with available IMD model’s prediction. IMD operational

model gives mean absolute error of 7.5 %. Current running

PPR model of IMD gives prediction in two phases—first in

April (LRF1) and next in June (LRF2). LRF1 and LRF2

predict Indian monsoon with mean absolute errors of 7.1

and 6.5 %, respectively.

Predictor sets with identified new monsoon predictors of

AT, SST, and SLP give mean absolute errors of 4.4, 5.6,

and 4.4 %, in the month of May, respectively. Thus, it can

be concluded that prediction models with our identified

monsoon predictors outperform all IMD models (Gowar-

iker et al. 1991; Rajeevan et al. 2004, 2007) to a great

extent. Results are shown in Fig. 12.

An elaborate comparison of the predictions by IMD

models and prediction by identified monsoon predictors of

Fig. 9 Performance of forecasts

by identified monsoon

predictors of AT, SST, and SLP

for test period 1994–2014. Bar

represents the actual ISMR, and

the symbols represent forecasts

given by models with identified

monsoon predictors

Table 3 Mean absolute errors

(%) for annual Indian summer

monsoon rainfall prediction for

dataset built with combined

identified monsoon predictors

for variables AT, SST, and SLP

during test period 1994–2014

Combined predictor sets Predictors RegTreeB model DecTreeB model

comb1 AT?SLP 5.1 5.3

comb2 AT?SST 4.8 5.2

comb3 SST?SLP 5.0 5.0

comb4 AT?SST?SLP 5.2 5.2
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air temperature for all test years against actual rainfall is

shown in Fig. 13. It is noted that prediction by identified

monsoon predictors is nearer to the actual rainfall as

compared to the prediction made by the IMD models.

Identified monsoon predictors also detect the extremes

during the period.

Prediction of the year 2015: Annual Indian summer

monsoon rainfall for the year 2015 is forecasted using the

identified monsoon predictors. We consider the predictor

sets with identified predictors which have least mean

absolute errors during test period to predict rainfall of

2015. Predictor sets with identified monsoon predictors of

Fig. 10 Performance of

forecasts by combined identified

monsoon predictors of AT, SST,

and SLP for test period

1994–2014. Bar represents the

actual ISMR, and the symbols

represent forecasts given by

models with combined

identified monsoon predictors

Fig. 11 Comparison of

prediction by identified

monsoon predictors of air

temperature CI_AT, sea surface

temperature CI_SST, and sea

level pressure CI_SLP models

with IMD existing 16-parameter

(Gowariker et al. 1991),

8-parameter, and 10-parameter

(Rajeevan et al. 2004) models

for period 1996–2002
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air temperature, sea surface temperature, and sea level

pressure (P4_AT, P3_SST, and P1_SLP) forecast rainfalls

as 788.8, 847.8, and 818.4 mm, respectively. Predicted

rainfalls are 87.9, 94.4, and 91.2 % of long period average

rainfall. All the predictor sets proposed below normal

rainfall for the current year and also specify high chance

of occurrence of drought phenomenon. IMD has down-

graded its forecast of Indian summer monsoon for the

current year 2015 from 93 % of LPA to 88 % of LPA in

second updated forecast in June after the first forecast in

April (www.imd.gov.in). Currently, IMD has reported on

1st October, 2015 the actual Indian summer monsoon

Fig. 13 Prediction by identified

monsoon predictors of air

temperature and IMD existing

models (Rajeevan et al. 2004,

2007) against actual rainfall for

period 2003–2014

Fig. 12 Comparison of

prediction by identified

individual monsoon predictors

of AT, SST, SLP models with

IMD existing operational

(Rajeevan et al. 2004) and PPR

(LRF1 and LRF2) (Rajeevan

et al. 2007) models for period

2003–2014
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rainfall for 2015 as 14 % deficit from LPA. Prediction by

the identified monsoon predictors of air temperature is

fully aligned to actual Indian summer monsoon rainfall for

the current year which predicts it as 12.1 % deficit from

LPA.

6 Meteorological interpretations of identified
monsoon predictors

Identified monsoon predictors for climatic variable air

temperature, sea surface temperature, and sea level pres-

sure (Figs. 5, 6, and 7 in Sect. 5) are categorized into two

classes—(i) predictors coinciding with geographical

regions already known important for Indian monsoon

process, and (ii) predictors corresponding to some new

regions whose influence over Indian monsoon is not stud-

ied in the past. Both categories of identified monsoon

predictors are discussed in the following sections.

6.1 Recapture of known monsoon predictors

Recapturing known monsoon predictors corresponding to

geographical regions known to be important for Indian

monsoon validates our proposed autoencoder-based

approach for monsoon predictor identification.

– South Equatorial Pacific Ocean SLP (Fig. 7: CI_SLP1)

[0�S–40�S, 100�W–120�W; May]: The region of south

equatorial Pacific Ocean is found to be an influential

predictor of Indian monsoon (Cherchi and Navarra

2013) correlating Indian monsoon [(correlation (l) of
?0.34].

– South Equatorial Indian Ocean SLP (Fig. 7: CI_SLP3)

[10�N–0�N, 60�E–100�E; May]: High sea level pres-

sure in this region (having l ?0.30) leads to difference

in pressure with Central Asia landmass low, which

could lead to stronger winds and hence higher moisture

advection from ocean to landmass. This region also

encompasses a significant part of the Indian Ocean

dipole region and its atmospheric component the

equatorial Indian Ocean oscillation (EQUINOO).

EQUINOO is known to have a strong association with

Indian Summer Monsoon (Gadgil et al. 2004). Gos-

wami and Ajayamohan (2001) have also shown that

convection over the equatorial Indian Ocean is

inversely related to strength of Indian monsoon on

inter-annual timescales.

– Peru-South Eastern Equatorial Indian Ocean SLP

(Fig. 7: CI_SLP6) [10�S–20�S, 60�W–80�W; 40�S–
50�S, 60�E–80�E; May]: Integration of sea level

pressure of regions of Peru and South Eastern Indian

Ocean (Schott et al. 2009) builds a monsoon predictor,

having l of ?0.20 with monsoon.

– North Pacific Ocean SST (Fig. 6: CI_SST1) [10�N–
20�N, 120�W–180�W; May]: Sea surface temperature

in North Pacific Ocean is correlated (�0.35) to Indian

monsoon (Cherchi and Navarra 2013).

– Madagascar-South Eastern Indian Ocean-New Zeal-

and-North Equatorial Pacific Ocean SST (Fig. 6:

CI_SST2) [20�S–30�S, 40�E–60�E; 40�S–50�S,
160�E–180�E; 0�N–10�N, 80�W–100�W; January]:

Anomaly in sea surface temperature of these regions

(Li et al. 2008) build up a strong monsoon predictor

influencing Indian monsoon with correlation of ?0.28

with the phenomenon. The Madagascar region is in the

vicinity of the Mascrene High which is known to be

associated with the Indian summer monsoon (Krishna-

murti and Bhalme 1976). North Equatorial Pacific

encompasses parts of the Nino 1 and Nino 2 regions.

ENSO is known to be significantly associated with

Indian summer monsoon rainfall.

– North Western Pacific Ocean-South Eastern Indian

Ocean SST (Fig. 6: CI_SST5) [20�N–30�N, 160�W–

180�W; 30�S–40�S, 60�E–80�E; April]: Combination of

sea surface temperature of this two regions is an important

predictor for monsoon rainfall over India (l is ?0.21).

– West Europe-South Eastern Indian Ocean AT (Fig. 5:

CI_AT2) [40�N–50�N, 0�E–20�E; 40�S–50�S, 60�E–
80�E; May]: Landmass of West Europe and South

Eastern Indian Ocean combines to form an air temper-

ature-based monsoon predictor, shows correlation of

�0.32 with Indian monsoon.

– North East Africa-South Eastern Indian Ocean AT

(Fig. 5: CI_AT6) [20�N–30�N, 20�E–40�E; 40�S–50�S,
60�E–80�E; May]: Air temperature in North East

Africa and South Eastern Indian Ocean (Schott et al.

2009) regions represents a predictor important for

Indian monsoon (l is ?0.26).

6.2 Identification of new monsoon predictors

New monsoon predictors are estimated using our proposed

approach, which are associated to new geographical

regions are mentioned in this section.

– Tasman Sea-Southern Australia SLP (Fig. 7: CI_SLP2)

[30�S–40�S, 140�E–160�E; 20�S–30�S, 160�E–180�E;
May]: Amalgamation of sea level pressure of Tasman

Sea with Southern Australia and its coastal region in

non-linear manner is a representative for new monsoon

predictor, having good correlation (?0.30) with Indian

monsoon.
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– South Atlantic Ocean-North Pacific Ocean SLP (Fig. 7:

CI_SLP4) [30�S–40�S, 0�E–20�E; 20�–N50�N, 140�E–
160�E; May]: Pressure gradient between this two

regions is evaluated as an important sea level pres-

sure-based monsoon predictor having l of ?0.24 with

Indian monsoon, which could influence winds into

Indian Landmass.

– North Western Pacific Ocean-Coastal Mexico SLP

(Fig. 7: CI_SLP5) [40�N–50�N, 120�W–140�W; 20�N–
30�N, 100�W–120�W; March]: This region is found to

be tele-connected with Indian region and sea level

pressure anomaly over the region shows a correlation of

�0.22 with ISMR.

– South Eastern Indian Ocean SST (Fig. 6: CI_SST3)

[30�S–40�S, 80�E–100�E; January]: Sea surface tem-

perature of the region is found to be an important

region influencing Indian monsoon (Li et al. 2008)(l of

?0.23).

– Norwegian Sea-Cuba-North West Atlantic Ocean Sea

Surface Temperature (Fig. 6: CI_SST4) [60�N–70�N,
0�W–20�W; 20�N–30�N, 60�W–80�W; March]: Sea

surface temperature over regions of Norwegian Sea and

Cuba with its adjacent North West Atlantic Ocean

(Hong et al. 2003) is non-linearly combined to acquire

a potential predictor by our proposed approach, having

l as ?0.22.

– Caribbean Sea-Coral Sea SST (Fig. 6: CI_SST6)

[10�N–20�N, 60�W–80�W; 10�S–20�S, 140�E–160�E;
April]: These regions jointly evaluated as a predictor

influencing Indian monsoon with correlation of -0.20.

– Argentina-Western North Atlantic Ocean AT (Fig. 5:

CI_AT1) [30�S–40�S, 60�W–80�W; 10�N–20�N,
40�W–60�W; April]: Argentina along with North

Atlantic Ocean (Kucharski et al. , 2008) on the south-

east of Cuba is acquired as a predictor influencing

Indian monsoon (l of ?0.36).

– South Western Pacific Ocean-Argentina AT (Fig. 5:

CI_AT3) [30�S–40�S, 160�W–180�W; 30�S–40�S,
60�W–80�W; April]: Regions of South Western Pacific

Ocean and Argentina combine to form a non-linear

monsoon predictor, highly correlated (?0.29) to Indian

monsoon.

– Spain-Japan AT (Fig. 5: CI_AT4) [40�N–50�N, 0�W–

20�W; 40�N–50�N, 140�E–160�E; May]: Air temper-

ature over Spain with its surrounding North Atlantic

Ocean and Japan with its neighboring North Pacific

Ocean represents a predictor important for Indian

monsoon(l of ?0.28).

– Eastern North Pacific Ocean-South Eastern Indian

Ocean AT (Fig. 5: CI_AT5) [20�N–30�, 120�W–

140�W; 40�S–50�S, 60�E–80�E; May]: Amalgamation

of air temperature in regions of Eastern North Pacific

Ocean and South Eastern Indian Ocean is obtained as a

potential monsoon predictor correlated (?0.23) to

Indian summer monsoon.

7 Conclusions

Identification of new global predictors for Indian monsoon

is attempted using autoencoder, which assists in capturing

complex and non-linear monsoon predictors. Proposed

autoencoder-based approach assists in determining poten-

tial predictors as non-linear combination of climatic vari-

ables of different geographical locations. The approach

helps in exploring climatic variables over the world and

thereby identifying new predictors which forecast Indian

monsoon with high accuracy. Some of the identified

monsoon predictors resemble already existing monsoon

predictors important for Indian summer monsoon rainfall,

which stand as validation of our proposed approach of

monsoon predictor identification. Non-linear models are

designed with identified monsoon predictors, to evaluate

their forecasting skills for Indian monsoon. Mean absolute

errors of 4.5, 5.3, 5.4 % are obtained by predictor sets built

with identified monsoon predictors of air temperature, sea

surface temperature, and sea level pressure, respectively.

Prediction by our identified monsoon predictors also cap-

tures the extremes. Our model with identified monsoon

predictors shows same sign of anomaly for all four drought

years during the test period 1994–2014. Finally, charac-

teristics of newly identified monsoon predictors are also

explored.

The future directions of our work include utilization of

deep neural network like stacked autoencoder for identi-

fication of more composite monsoon predictors and rep-

resent them at different regional level. Other deep neural

architecture like convolutional neural network can also be

used to extract non-linear predictors, from combination of

different climatic variables from multiple layers of small

neural collections of the network. In addition, rectified

linear units can be used, which is an non-saturating acti-

vation function, which increases the non-linear property of

the network and thus assists in extracting more complex

and non-linear predictors. Lastly, dropout method can be

included for training of the network which speed up the

process and prevent over-fitting of network resulting in

generalizing the network and assisting in identification of

more efficient predictors of monsoon. Finally, the signif-

icance of the identified predictors in climate domain from

background of physical climatic process and their influ-

ence in different climatic phenomenon can also be

explored.

Autoencoder-based identification...

123



References

Baldi P (2012) Autoencoders, unsupervised learning, and deep

architectures. ICML Unsupervised Transf Learn 27:37–50

Blanford HF (1884) On the connexion of the Himalaya snowfall with

dry winds and seasons of drought in India. Proc R Soc Lond

37(232–234):3–22

Boriah S, Simon G, Naorem M, Steinbach M, Kumar V, Klooster S,

Potter C (2004) Predicting land temperature using ocean data. In:

Proceedings of the knowledge discovery in databases KDD,

Citeseer

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian

ocean dipole on the Indian summer monsoon variability. Clim

Dyn 41(1):81–103

Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X,

Gleason B, Vose R, Rutledge G, Bessemoulin P, Bronnimann S,

Brunet M, Crouthamel R, Grant A, Groisman P, Jones P, Kruk

M, Kruger A, Marshall G, Maugeri M, Mok H, Nordli O, Ross T,

Trigo R, Wang X, Woodruff S, Worley S (2011) The twentieth

century reanalysis project. Q J R Meteor Soc 137(654):1–28

DelSole T, Shukla J (2002) Linear prediction of Indian monsoon

rainfall. J Clim 15:3645–3658

DelSole T, Shukla J (2012) Climate models produce skillful

predictions of Indian summer monsoon rainfall. Geophys Res

Lett 39(9):L09–703

Gadgil S, Vinayachandran P, Francis P, Gadgil S (2004) Extremes of

the Indian summer monsoon rainfall, ENSO and equatorial

Indian ocean oscillation. Geophys Res Lett 31(12):L12213

Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction-

Why yet another failure? Curr Sci 88(9):1389–1400

Goswami BN, Ajayamohan R (2001) Intraseasonal oscillations and

interannual variability of the Indian summer monsoon. J Clim

14(6):1180–1198

Gowariker V, Thapliyal V, Kulshrestha SM, Mandal GS, Sen Roy N,

Sikka DR (1991) A power regression model for long range

forecast of southwest monsoon rainfall over India. Mausam

42(2):125–130

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of

data with neural networks. Science 313(5786):504–507

Hong YT, Hong B, Lin QH, Zhu YX, Shibata Y, Hirota M, Uchida M,

Leng XT, Jiang HB, Xu H (2003) Correlation between Indian

ocean summer monsoon and North Atlantic climate during the

Holocene. Earth Planet Sci Lett 211(3):371–380

Krishnamurti TN, Bhalme H (1976) Oscillations of a monsoon

system. Part I. Observational aspects. J Atmos Sci 33(10):

1937–1954

Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced

component of the Indian monsoon interannual variability.

Geophys Res Lett 35(4):L04706

Kumar N, Nasser M, Sarker SC (2011) A new singular value

decomposition based robust graphical clustering technique and

its application in climatic data. J Geogr Geol 3(1):227–238

Li S, Lu J, Huang G, Hu K (2008) Tropical Indian Ocean basin

warming and East Asian summer monsoon: a multiple AGCM

study. J Clim 21(22):6080–6088

Li Y, Yang R (2013) A hybrid algorithm combining auto-encoder

network with sparse Bayesian regression optimized by artificial

bee colony for short-term wind power forecasting. Przeglkad

Elektrotechniczny 89(2a):223–228

Liaw A, Wiener M (2002) Classification and regression by random

forest. R News 2(3):18–22

Liu JNK, Hu Y, He Y, Chan PW, Lai L (2015) Deep neural network

modeling for big data weather forecasting. In: Information

granularity, big data, and computational intelligence, Springer,

pp 389–408

Loh WY (2008) Classification and regression tree methods. Encyclo

of statistics in quality and reliability, pp 315–323

MATLAB (2012) Statistics and machine learning toolbox. MATLAB

version 2012b, The MathWorks Inc., Natick, Massachusetts, US

Nanjundiah RS, Francis P, Ved M, Gadgil S (2013) Predicting the

extremes of Indian summer monsoon rainfall with coupled

ocean-atmosphere models. Curr Sci 104(10):1380–1393

Rajeevan M, Pai DS, Dikshit SK, Kelkar RR (2004) IMD’s new

operational models for long-range forecast of southwest mon-

soon rainfall over India and their verification for 2003. Curr Sci

86(3):422–431

Rajeevan M, Pai DS, Kumar RA, Lal B (2007) New statistical models

for long-range forecasting of southwest monsoon rainfall over

India. Clim Dyn 28(7–8):813–828

Sap MNM, Awan AM (2005) Finding spatio-temporal patterns in

climate data using clustering. In: Proceedings of the 2005

international conference cyberworlds, IEEE, pp 8–15

Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and

climate variability. Rev Geophys 47(1):RG1002

Smith TM, Reynolds R, Peterson T, Lawrimore J (2008) Improve-

ments to NOAA’s historical merged land-ocean surface temper-

ature analysis (1880-2006). J Clim 21(10):2283–2296

Song C, Liu F, Huang Y, Wang L, Tan T (2013) Auto-encoder based

data clustering. In: Progress in pattern recognition, image

analysis, computer vision and applied, Springer, pp 117–124

Steinbach M, Tan PN, Kumar V, Klooster S, Potter C (2003)

Discovery of climate indices using clustering. Proceedings of

ACM, ACM SIGKDD, pp 446–455

Thapliyal V, Kulshrestha S (1992) Recent models for long range

forecasting of south-west monsoon rainfall in India. Mausam

43(3):239–248

Walker G (1924) Correlation in seasonal variations of weather-IV, a

further study of world weather. Mem India Meteorol Dept

24:275–332

Wang B, Xiang B, Li J, Webster PJ, Rajeevan MN, Liu J, Ha KJ

(2015) Rethinking Indian monsoon rainfall prediction in the

context of recent global warming. Nature 6:7154

Xue Y, Smith T, Reynolds R (2003) Interdecadal changes of 30-yr

SST normals during 1871–2000. J Climate 16:1601–1612

M. Saha et al.

123


	Autoencoder-based identification of predictors of Indian monsoon
	Abstract
	Introduction
	Single-layer autoencoder architecture
	Identification of monsoon predictor using autoencoder
	Preprocessing: initialization of climatic variables
	Monsoon predictor identification: new monsoon predictor identification using autoencoder
	Non-linear predictor mapping
	Post-training thresholding of weights

	Postprocessing: monsoon predictor selection

	Forecasting models with identified monsoon predictors for Indian summer monsoon rainfall
	Fitted ensemble of regression tree with Bagging algorithm (RegTreeB)
	Ensemble of bagged decision tree (DecTreeB)

	Experimental results and discussions
	Data sets used for the work
	Autoencoder-based identified monsoon predictors
	Geographical locations of identified monsoon predictors
	Prediction skills of identified monsoon predictors

	Meteorological interpretations of identified monsoon predictors
	Recapture of known monsoon predictors
	Identification of new monsoon predictors

	Conclusions
	References




