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a b s t r a c t 

Meteorological time series prediction plays a significant role in short-term and long-term decision mak- 

ing in various disciplines. However, it is a challenging task involving several issues. Sometimes, the avail- 

able domain knowledge may help in dealing with certain issues in this regard. This work proposes a 

multivariate prediction approach based on a variant of semantic Bayesian network , termed as semBnet . 

The key objective of semBnet is to incorporate the spatial semantics as a form of domain knowledge, in 

standard/classical Bayesian network (SBN), and thereby improving the accuracy of meteorological predic- 

tion. It has been shown that compared to SBN, the proposed semBnet is less prone to parameter value 

uncertainty. Empirical studies on multivariate prediction of Temperature, Humidity, Rainfall and Soil mois- 

ture demonstrate the superiority of proposed approach over linear statistical models (e.g. ARIMA, spatio- 

temporal ordinary kriging (ST-OK)), and non-linear prediction techniques based on ANN, SBN, hierarchical 

Bayesian autoregressive model (HBAR) etc. Most significantly, compared to SBN, the proposed semBnet 

shows average 24% improvement in mean absolute percentage error of prediction. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The prediction of meteorological time series such as temper-

ature, rainfall, soil moisture, wind speed, relative humidity, atmo-

spheric pressure etc. plays significant role in various disciplines, in-

cluding weather control, climate impact assessments, agriculture,

water system management, and so on. However, the two major

challenges in this regard are: 1) complex spatio-temporal inter-

relationships among the meteorological variables; and 2) influence

of various spatial attributes, like latitude, land cover category, land

elevation etc. For example, as investigated by Ding et al. [15] and

Bagley et al. [2] , precipitation is highly influenced by the surface

elevation and land-use land-cover (LULC) type of a region. In this

situation, the spatial semantics of the influencing factors can aid

in prediction process by providing some added insights. For in-

stance, the land surface temperature (LST) of any two places, one

belonging to an urban area and the other belonging to a mining re-

gion are influenced more or less in a similar fashion (assuming all

other factors to be constant) as both the locations fall under same

LULC category which is ‘built-up’ . On the contrary, the LST of two

other locations, one at an urban area and the other inside an ever-

green forest are influenced in a considerably different manner [37] ,
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ince in this case the two locations belong to two different LULC

ategories, namely: ‘built-up’ and ‘forest’ respectively. Therefore, the

omain knowledge on spatial semantics can play an important role

n determining meteorological conditions of any location. 

Down through the years, numerous models have been pro-

osed for predicting meteorological time series. Most of these are

ased on various linear statistical processes such as auto-regressive

oving-average (ARMA), AR integrated moving-average (ARIMA)

9,18] , spatio-temporal kriging [17] etc., or based on computa-

ional intelligence (CI) techniques, like artificial neural network

ANN) [32,36] , Bayesian network (BN) [1,12] , support vector ma-

hine (SVM) [7] , chaos theory [13] and so on. 

Among these CI techniques, the Bayesian network (BN), that

an intuitively represent the relevant dependencies among numer-

us variables, is very much suitable for multivariate prediction in

eteorology [6] . With its directed acyclic graph, BN can automat-

cally capture probabilistic information from data and can reason

ith uncertain knowledge [14,35] . However, one of the major prob-

ems with BN is that a proper learning of the network needs large

mount of observed data be available during training. Otherwise,

t may lead to strongly biased inference results with full of uncer-

ainty [8] . It has been observed by Luo et al. [24] and Chang et al.

8] that in such case, a prior knowledge, more specifically a prior

ualitative semantic knowledge, about the respective domain, may

elp in many ways to adjust the uncertainty. In this regard, two

ey objectives in our work are: 

http://dx.doi.org/10.1016/j.patrec.2017.01.002
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1. Incorporation of spatial semantics in the Bayesian network

model for improving the Bayesian analyses; 

2. Employing this semantically enhanced Bayesian network for

better modeling of spatio-temporal inter relationships among

meteorological parameters and spatial attributes. 

.1. Existing works on semantically enhanced Bayesian network 

Although the Bayesian networks with incorporated semantics

ave proved their usefulness in a number of applications, it is

till not a much explored area. A few notable variants of seman-

ic Bayesian network can be found in the works by Kim et al. [19] ,

utz et al. [5] , Zhou et al. [38] , and Madsen and Butz [25] respec-

ively. 

Kim et al. [19] have used their proposed semantic Bayesian net-

ork (SeBN) in a conversational agent to infer the detailed in-

entions of the user. In SeBN, the network itself contains both

robabilistic and semantic relationships. The inference generation

s followed by thresholding process to select the appropriate tar-

et value corresponding to the user query. Zhou et al. [38] have

sed semantic Bayesian network (sBN) for web mashup network

onstruction, where sBN has been used to process all information

ources on the semantic web. In order to process a semantic graph

tructure-based attribute, the authors have defined semantic sub-

raph template using a SPARQL query. The works by Butz et al. [5] ,

nd Madsen and Butz [25] , are mainly on exploiting semantics in

ayesian network inference. For that purpose, Butz et al. [5] have

roposed a join tree propagation architecture in which inference

s conducted in a join tree (JT). Each node in JT posses a local BN

hat preserves all conditional independencies of the original BN.

n order to use semantics in Bayesian network inference, Madsen

nd Butz [25] have used Lazy Propagation. It basically combines a

henoy–Shafer propagation [26] and variable elimination scheme

or computation of messages and marginals. 

On the other hand, our proposed one is a new variant of

emantic Bayesian network ( semBnet ) which is novel from both

earning and inference generation perspectives. In order to incor-

orate semantics in the Bayesian analysis, the proposed semBnet

ses a semantic hierarchy representation of the domain knowl-

dge and some appropriate semantic similarity measures between

he various concepts (refer Section 2.2 ). In our work, the pro-

osed semBnet has been applied for better modeling of spatio-

emporal inter-relationships among meteorological parameters. To 

he best of our knowledge this is the first attempt of using se-

antic Bayesian network for multivariate prediction in meteorol-

gy. However, the proposed semBnet is a generic model which can

e applied to diverse set of applications. 

.2. Problem statement and motivations 

The overall problem of meteorological time series prediction,

ddressed in the present work, can be stated as follows: 

• Given, the historical daily time series data set over n meteoro-

logical parameters in M = { m 1 , m 2 , . . . , m n } , corresponding to a

set of l locations L = { l 1 , l 2 , . . . , l l } for previous t years: { y 1 , y 2 ,

���, y t }. Also given, the spatial attributes SA = 

{
sa l 

1 
, sa l 

2 
, . . . , sa l p 

}
for each location l ∈ L . The problem is to determine the daily

times series of the variables in M for any location x ∈ ( L ∪ Z )

for future q years 
{

y (t+1) , y (t+2) , . . . , y (t+ q ) 
}
, when the spatial

attributes of x is observed as 
{

sa x 
1 
, sa x 

2 
, . . . , sa x p 

}
. Here, Z is a set

of k new locations { z 1 , z 2 , . . . , z k } , such that z i �∈ L , for i = 1 to k ,

and q is a positive integer, i.e. q ∈ {1, 2, 3, ���}. 

As per the definition stated above, this problem is a kind of

patio-temporal prediction that needs to consider spatial as well
s temporal aspects of change in inter-relationships among the

eteorological variables. Therefore, a Bayesian modeling of the

roblem may appear as an appropriate solution. However, chal-

enge arises when a spatial attribute sa ∈ SA has qualitative values

ith different semantic interpretations. In that case, treating such

ariable in a conventional manner, without utilizing the available

patial semantics, may results in improper Bayesian learning and

nference. For example, consider the example scenario illustrated

n Fig. 1 . 

Fig. 1 (a) shows a causal dependency graph among three me-

eorological variables ( Temperature (T), Relative Humidity (H), Rain-

all (R) ) and three spatial attributes ( Latitude (Lat), Elevation (Elev),

ULC ), which significantly influence these meteorological variables.

his graph is basically the directed acyclic graph (DAG) that forms

he structure of the Bayesian network. Possible values for each of

he quantitative variables (i.e. T, H, R, Lat, and Elev ) are provided in

erms of some discrete ranges (refer Fig. 1 (b)). On the other side,

ULC (land-use land-cover) is qualitative variable, which may take

he values from its domain: {.‘Urban’, ‘Mining’, ‘Forest’, ‘Wetland’.}.

ow, suppose, for the variable LULC, some domain knowledge is

lso available that basically provides insights on the semantic re-

ationships (in this case inheritance) among these domain values

f LULC. This knowledge has been represented in terms of a se-

antic hierarchy [30] in the Fig. 2 . Here, it must be made clear

hat this hierarchy is only the representation of the knowledge; it

s not a part of the network/ causal dependency graph in Fig. 1 (a).

 toy data set over eight separate locations are also provided (refer

ig. 1 (c)) for the variable Temperature (T). 

In this scenario, the standard Bayesian network analyses are

erformed without using the domain knowledge i.e. without us-

ng the semantic relationships expressed through the hierarchy

refer Fig. 2 ). Therefore, as per the principles of standard/ clas-

ical BN, the probability of T = T 3 , given Lat = Y 1 , Ele v = E 1 , and

ULC = ‘ Urban ′ becomes P (T 3 | Y 1 , E 1 , ‘ Urban ′ ) = 

1 
2 = 0 . 5 , which con-

iders the record < Y 1 , E 1 , ‘ Urban ’, T 3 > out of { < Y 1 , E 1 , ‘ Urban ’,

 2 > , < Y 1 , E 1 , ‘ Urban ’, T 3 > }. Thus, the standard Bayesian network

reats all the domain values of LULC, like ‘Urban’, ‘Mining’ etc. as

eparate categorical values. However, as per the hierarchy, ‘Urban’

s a sub-category of LULC type ‘Builtup’. Therefore, ‘Urban’ is some-

ow semantically related to ‘Mining’ as well. (Since the toy data

et does not contain any entry on LULC type ‘Rural’, we have not

onsidered it.) That means, the temperature of ‘Urban’ and ‘Min-

ng’ area are influenced more or less in similar manner than the

emperature of ‘Wetland’, ‘Forest’ etc. So, while measuring P ( T 3 | Y 1 ,

 1 , ‘ Urban ’), the effect of two more records: < Y 1 , E 1 , ‘ Mining ’, T 3 
 (corresponding to location 1 ), and < Y 1 , E 1 , ‘ Mining ’, T 3 > (cor-

esponding to location 5 ) in the data set should also be consid-

red. In order to overcome such limitation in a standard/ classical

ayesian network, we’ve proposed a variation of semantic Bayesian

etwork, termed as semBnet . The semBnet provides a mechanism to

tilize the domain knowledge, expressed in terms of semantic hi-

rarchical relationships, and incorporate such semantics in a stan-

ard Bayesian Analysis. 

.3. Contributions 

The key contributions in the present paper can be summarized

s follows: 

• Defining a new variant of semantically influenced Bayesian net-

work, termed as semBnet , that incorporates semantic informa-

tion during probabilistic learning and inference generation 

• Theoretical performance analyses of semBnet in comparison

with the standard/ classical Bayesian network (SBN) 
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Fig. 1. An example scenario for illustrating the need of semantic knowledge in meteorological prediction: (a) directed acyclic graph (DAG) for Bayesian and semantic Bayesian 

analysis, (b) values for quantitative and qualitative variables in the graph, (c) a toy data set on the variable Temperature (T). 

Fig. 2. Hierarchical representation of the domain knowledge on land-use land-cover (LULC). 
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• Proposing a general purpose forecasting approach based on

semBnet for multivariate prediction of meteorological time se-

ries data 
• Validating the proposed approach through case studies on pre-

diction of meteorological variables in two separate spatial re-

gions ( Jharkhand and West Bengal ) in India 
• Evaluating the semantic Bayesian network ( semBnet )-based pro-

posed prediction approach in comparison with the traditional

statistical model (ARIMA), spatio-temporal ordinary kriging (ST-

OK), standard BN (SBN), ANN, and hierarchical Bayesian autore-

gressive model (HBAR). 

The rest of the paper is organized in the following manner.

Section 2 illustrates the proposed prediction approach along with

the details of proposed semantic Bayesian network ( semBnet ). The

theoretical performance analyses for semBnet has been presented

in Section 3 . Section 4 reports our experimentation on multivari-

ate prediction of meteorological variables using semBnet -based pre-

diction framework. A brief description of the study area and used

data sets have been provided in Section 4.1 . The experimental set

up along with the performance evaluation criteria have been de-

scribed in Section 4.2 . The comparative study of the prediction

results has been discussed in Section 4.3 . Finally, we conclude in

Section 5 . 

2. Proposed semantic Bayesian network ( semBnet ) based 

multivariate prediction approach 

This section provides a detailed description of the proposed

prediction approach that utilizes our newly defined semantic

Bayesian network ( semBnet ) for modeling the spatio-temporal

inter-relationships among different meteorological parameters. 
The overall flow of the proposed prediction approach has been

epicted in Fig. 3 . The approach consists of two major steps, corre-

ponding to: 1) Data Preprocessing , and 2) Semantic Bayesian Anal-

sis . 

.1. Data preprocessing 

The proposed prediction method starts with the pre-processing

f historical data set, so as to make it suitable for semantic

ayesian analyses in the following steps. Two main objectives in

he data pre-processing step are: 1) Data Discretization , and 2) Cap-

uring short-term variation . During data discretization, the whole

ange of values of a quantitative variable is divided into a num-

er of sub-ranges or intervals. According to Uusitalo [34] more de-

endencies can be achieved even with fewer data by discretizing

he data into fewer intervals. On the other side, while capturing

he short-term variation of the considered meteorological parame-

ers, the entire historical data is analyzed to find out whether the

hange is over year, or month, or week, or on daily basis. For ex-

mple, land surface temperature typically shows a daily variation,

owever, the precipitation mostly shows a monthly variation. 

.2. Semantic Bayesian analysis 

After preprocessing, the proposed prediction system starts an-

lyzing the data using the proposed semantic Bayesian network or

emBnet . The semBnet extends standard/ classical Bayesian network

o incorporate domain knowledge in terms of some semantic hi-

rarchy representation [27] . Marszalek and Schmid have used se-

antic hierarchy of discriminative classifiers to perform object de-

ection, whereas in our work, we have used semantic hierarchy of
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Fig. 3. Proposed prediction system using semantic Bayesian network ( semBnet ). 
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patial features as a knowledge base to incorporate semantics (do-

ain knowledge) in standard Bayesian network analysis. 

The semBnet consists of a qualitative and a quantitative compo-

ent. The qualitative component is composed of a causal depen-

ency graph (CDG), containing a set of nodes and edges among

hemselves. Following is a formal definition for the qualitative

omponent in semBnet. 

efinition 2.1. The qualitative component of semBnet consists of

 directed acyclic graph G ( V N , V S , E ), where V N is the set of nodes

epresenting random variables with no semantic information avail-

ble for themselves, V S is the set of nodes representing random

ariables having semantic information available for themselves,

nd E is the set of edges between a pair of nodes in ( V N ∪ V S ). An

dge e ∈ E from v i ∈ ( V N ∪ V S ) to v j ∈ ( V N ∪ V S ) indicates that variable

 i influences variable v j . 

The quantitative component in semBnet is composed of condi-

ional probability distributions (CPDs) associated with the nodes in

he causal dependency graph. It can be formally defined as follows:

efinition 2.2. Let G ( V N , V S , E ) be the causal dependency graph in

emBnet, where V N is the set of nodes representing random vari-

bles having no semantic information available, V S is the set of

odes representing random variables having semantic information

vailable for themselves, and E is the set of edges between a pair

f nodes in ( V N ∪ V S ). Then the conditional probability of a node V x 

s denoted as P † ( V x | Parent ( V x )) if either V x ∈ V S , or ( Parent ( V x ) ∩ V S )

 ∅ , or both are true. Otherwise, the conditional probability is de-

oted as P ( V x | Parent ( V x )) 

Here, Parent ( X ) denotes the set of all the influencing nodes or

arents of a node X . 

.2.1. Semantic Bayesian learning 

As per the principle of proposed semBnet , the marginal proba-

ility P ( v x ) of a node V x ∈ V is calculated in a same fashion as that
N 
f a classical Bayesian network. However, that for a node V y ∈ V S is

stimated with consideration to the available semantic information

refer Eq. (1) ). 

 

† (v y ) = γ ·
[ 

P (v y ) + 

∑ 

v yc 

SS(v y , v yc ) .P (v yc ) 

] 

, (1) 

here, v y and v yc are any two values in the domain of variable V y 

 V S , such that v y � = v yc ; P ( v y ) is the classical probability of v y ; γ
s the normalization constant; SS ( v y , v yc ) is the semantic similarity

etween v y and v yc . 

Assuming a hierarchical representation of the semantic knowl-

dge base corresponding to a variable V , the semantic similarity can

e defined as per Li et al. [22] in the following manner. 

efinition 2.3. [Semantic Similarity]. Let H be the hierarchi-

al representation corresponding to the semantic knowledge base

f a variable V ∈ V S in semBnet. Then the semantic similarity

S(v c 1 , v c 2 ) between any two domain values (or concepts) v c 1 and

 c 2 of V in H , can be defined as follows: 

S(v c 1 , v c 2 ) = e −δl · e λd − e −λd 

e λd + e −λd 
(2)

here, l is the length of shortest path between v c 1 and v c 2 ; d is

he depth of subsumer in the hierarchy H; δ ≥ 0 and λ > 0 are

arameters, scaling the contribution of l and d , respectively. 

According to Li et al. [22] , the optimal value for δ and λ are 0.2

nd 0.6 respectively. 

Similarly, as per the principle of semBnet , the conditional prob-

bilities P ( V x | Parent ( V x )) of the a node V x ∈ V N is calculated in

 same fashion as that of a classical Bayesian network, when

(Parent(V x ) ∩ V S ) = ∅ . Otherwise, the conditional probabilities are

stimated with consideration to the available semantic informa-

ion. There can be three such cases: 

(i) V x ∈ V S and (Parent(V x ) ∩ V S ) = ∅ : 
In this case, the conditional probability of V x becomes: 

P † (v x | parent(V x )) = γ · [ P (v x | parent(V x )) 

+ 

∑ 

v xc , v x � = v xc 

SS(v x , v xc ) .P (v xc | parent(V x )) 

] 

(3) 

where, γ is a normalization constant, parent ( V x ) is a partic-

ular combination of values for Parent ( V x ); v x and v xc are any

two particular values for variable V x ; and SS ( v x , v xc ) is the

semantic similarity between v x and v xc 

(ii) V x ∈ V N and ( Parent ( V x ) ∩ V S ) � = ∅ : 
In this case, let Parent(V x ) = Parent N (V x ) ∪ Parent S (V x ) ,

where Parent N ( V x ) ⊆V N , and Parent S ( V x ) ⊆V S . Also let

parent S (V x ) = a particular combination of values for

Parent S ( V x ) = { v 1 , v 2 , . . . , v p x } , where p x = | Parent S (V x ) |
is the total number of parents of V x that belong to V S . 

Then the conditional probability of V x becomes: 

P † (v x | parent(V x )) = γ · [ P (v x | (parent N (V x ) ∪ parent S (V x ))) 

+ 

p x ∑ 

k =1 

∑ 

v kc , v k � = v kc 

SS(v k , v kc ) · P (v x | (parent N (V x ) ∪ (parent S (V x )

−{ v k } ) ∪ { v kc } )) ] (4) 

where, v x is a particular value of variable V x ; γ is a normal-

ization constant, parent N ( V x ) is a particular combination of

values for Parent N ( V x ); v k and v kc are any two particular val-

ues for variable V k ; and SS ( v k , v kc ) is the semantic similarity

between v and v 
k kc 
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(iii) V x ∈ V S and ( Parent ( V x ) ∩ V S ) � = ∅ : 
In this case, let Parent(V x ) = Parent N (V x ) ∪ Parent S (V x ) ,

where Parent N ( V x ) ⊆V N , and Parent S ( V x ) ⊆V S . Also let

parent S (V x ) = a particular combination of values for

Parent S ( V x ) = { v 1 , v 2 , . . . , v p x } , where p x = | Parent S (V x ) |
is the total number of parents of V x that belong to V S . 

Then the conditional probability of V x becomes: 

P † (v x | parent(V x )) = γ · [ P (v x | (parent N (V x ) ∪ parent S (V x )))+ 

p x ∑ 

k =1 

∑ 

v kc , v k � = v kc 

∑ 

v xc 

[ SS(v k , v kc ) + SS(v x , v xc )] · P (v xc | (parent N (V x ) ∪ 

( parent S (V x ) − { v k } ) ∪ { v kc } )) ] (5)

where, v x is a particular value of variable V x ; γ is a nor-

malization constant, parent N ( V x ) is a particular combination

of values for Parent N ( V x ); v k and v kc are any two particular

values for variable V k ; SS ( v k , v kc ) is the semantic similarity

between v k and v kc ; v xc is a particular value for variable V x 

such that v x � = v xc ; and SS ( v x , v xc ) is the semantic similarity

between v x and v xc 

Example 1. In order to explain the learning principle of semB-

net , let’s consider a similar causal dependency graph G ( V N , V S , E )

as shown in Fig. 1 (a). In this case, V N = { Ele v , Lat, T , H, R } , V S =
{ LULC } , and E = { Ele v → T , Ele v → H, Ele v → R, LULC → T, LULC →
H, LULC → R, Lat → T, Lat → H, Lat → R, T → H, T → R, H → R } 

Then, considering Fig. 2 as the hierarchical representation of the

knowledge base corresponding to the variable LULC ∈ V S , and using

the data set as provided in Fig. 1 (c), the marginal probability for

LULC = ‘ Urban ′ , as per Eq. (1) , becomes: 

P † (‘ Urban 

′ ) = γ · [ P (‘ Urban 

′ ) 
+ SS(‘ Urban 

′ , ‘ Mining ′ ) · P (‘ Mining ′ ) 
+ SS(‘ Urban 

′ , ‘ F orest ′ ) · P (‘ F orest ′ ) 
+ SS(‘ Urban 

′ , ‘ W etland ′ ) · P (‘ W etland ′ )] (6)

Since the toy data set in Fig. 1 (c) does not contain any entry on

LULC type ‘Rural’ etc., we have not considered these. Thus, from

Eq. (6) , we get: 

P † (‘ Urban 

′ ) = γ · [(2 / 8) 

+ e −0 . 2 ×2 ·
(

e 0 . 6 ×1 − e −0 . 6 ×1 

e 0 . 6 ×1 + e −0 . 6 ×1 

)
· (2 / 8) 

+ 0 · (2 / 8) + 0 · (2 / 8)] = 0 . 34 γ

Here, γ , the normalization constant, is such that the sum of

marginal probabilities corresponding to all possible domain values

of LULC becomes 1. In a similar fashion, it can be determined that

P † (‘ Mining ′ ) = 0 . 34 γ , P † (‘ F orest ′ ) = 0 . 25 γ , and P † (‘ W etland ′ ) =
0 . 25 γ . Therefore, in the present scenario, the value of γ is 0.8474;

and thus, P † (‘ Urban ’) becomes ≈ 0.29 

On the other hand, considering the same example scenario,

the classical marginal probability (using standard BN or SBN) for

LULC = ‘ Urban ′ becomes P (‘ Urban ′ ) = (2 / 8) = 0 . 25 

Now, in order to explain conditional probability estimation, let’s

consider the calculation for probability of T = T 3 , given Lat = Y 1 ,

Ele v = E 1 , and LULC = ‘ Urban ′ . Since, T ∈ V N , and { Lat, Ele v , LULC } ∩
 S = { LULC } � = ∅ , therefore, using the given data set, as per Eq.

(4) we get: 

P † (T 3 | Y 1 , E 1 , ‘ Urban 

′ ) 

= γ ·
[
P (T 3 | Y 1 , E 1 , ‘ Urban 

′ ) 
+ SS(‘ Urban 

′ , ‘ Mining ′ ) · P (T 3 | Y 1 , E 1 , ‘ Mining ′ ) 

+ SS(‘ Urban 

′ , ‘ F orest ′ ) · P (T 3 | Y 1 , E 1 , ‘ F orest ′ ) 

+ SS(‘ Urban 

′ , ‘ W etland ′ ) · P (T 3 | Y 1 , E 1 , ‘ W etland ′ ) 
]

 γ ·
[

0 . 5 + e −0 . 2 ×2 ·
(

e 0 . 6 ×1 − e −0 . 6 ×1 

e 0 . 6 ×1 + e −0 . 6 ×1 

)
. 1 + 0 . 0 + 0 . 0 

]

 0 . 86 γ

n this case, γ is such that the sum of same conditional prob-

bilities corresponding to all possible available values of T be-

omes 1. Now, in the similar fashion, it can be determined

hat P † (T 1 | Y 1 , E 1 , ‘ Urban ′ ) = 0 . 0 γ , and P † (T 2 | Y 1 , E 1 , ‘ Urban ′ ) = 0 . 5 γ .

herefore, in the present calculation, the value of γ is 0.7353; and

ence P † ( T 3 | Y 1 , E 1 , ‘ Urban ’) becomes ≈ 0.6324 

On the other side, considering the same example scenario, the

lassical conditional probability for T = T 3 , given Lat = Y 1 , Ele v =
 1 , and LULC = ‘ Urban ′ , would become P (T 3 | Y 1 , E 1 , ‘ Urban ′ ) =

(1 / 2) = 0 . 5 

In order to capture the large scale temporal change in variable

haracteristics, the learning is performed for each year y i , and the

nal probability (whether marginal or conditional) is generated by

onoring the temporal auto-correlation property [12] , so that the

nal probability P 
† 

f 
becomes: 

 

† 

f 
= 

t ∑ 

i =1 

(
P † y i 

× 1 /d i ∑ t 
j=1 1 /d j 

)
(7)

here, d i is the temporal distance of the time instant y i from the

rediction time y p ; t is the total number of time instant considered

or training; and P 
† 
y i 

is the estimated marginal/ conditional proba-

ility of any variable, for the year y i . 

.2.2. Semantic Bayesian inference and prediction 

In this step, the value for any variable, given the evidence re-

arding some other variables, can be determined by consulting the

onditional and marginal probabilities as estimated during the se-

antic Bayesian learning. The inferred value becomes the one, as-

ociated with the highest probability. 

Now, since in data pre-processing step the values for each of

he quantitative variables are discretized into certain number of

anges, the inferred value of a quantitative prediction variable is

lso obtained in the form of a range. In order to obtain a sin-

le continuous value, the mean of the range can be assigned to

he predicted variable. Following is an example with respect to the

cenario depicted in Fig. 1 . 

xample 2. To demonstrate the inference generation and predic-

ion processes in the proposed semBnet based approach, let’s con-

ider a case, where the observed/ evidence variables are: LULC,

lev , and Lat , from which the value of Rainfall ( R ) is to be inferred.

In the given scenario, i th range value of the variable R is R i ,

here i = 1 , 2 , 3 . Now if IR semBnet ∈ { R 1 , R 2 , R 3 } be the inferred

ange of R as obtained using semBnet , then 

 (IR 

semBnet ) = max ︸︷︷︸ 
∀ i 

{
P † (R i | LULC, Ele v , Lat) 

}
here, P † (R i | LULC, Ele v , Lat) = γ . 

∑ 

T 

∑ 

H { P † (LULC) .P (Ele v ) .P (Lat) .

 

† (T | Lat, Ele v , LULC) . P † ( H | T, Lat, Elev, LULC ). P † ( R i | T, H, Lat, Elev,

ULC )} , which can be determined by the estimated probabilities

rom semBnet learning phase. 
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Similarly, if IR standardBN ∈ { R 1 , R 2 , R 3 } be the inferred range of R

s obtained using standard Bayesian network, then 

 (IR 

stand ard BN ) = ma x ︸︷︷︸ 
∀ i 

{ P ( R i | LULC, Ele v , Lat) } 

Therefore, the predicted value of Rainfall ( R ) becomes: 

 predict = 

[
cv al(IR 

semBnet ) + cv al(IR 

stand ard BN ) 

2 

]
here, cval ( x ) is the central or mean value of a range x . 

. Theoretical analysis of semBnet 

In this section, we analyze the time and space complexities of

earning the proposed semBnet . We also show that the semBnet is

ess susceptible to parameter value uncertainty than the standard/

lassical Bayesian network. 

Let G ( V N , V S , E ) be a causal dependency graph of semBnet con-

aining n number of nodes , where V N is the set of nodes without

emantic information and V s is the set of nodes with semantic in-

ormation. Moreover, let the maximum number of parents of any

ode in G is C and the maximum domain size of any variable ∈
 V N ∪ V S ) is D . 

emma 3.1. The proposed semantic Bayesian network (semBnet) has

 complexity of O (n.n s .D 

C+3 ) in terms of computational time require-

ent, where n s is the maximum number of parents (for any variable)

aving semantic knowledge base. 

roof. As per the network learning for a standard Bayesian net-

ork, the total number of iterations required for learning/updating

 node, having i number of parents, is at most (D − 1) .D 

i . Now, if

e consider that the number of nodes having i (0 ≤ i ≤ C ) number

f parents is n i such that 
∑ C 

i =0 n i = n, then classical computational

ost for learning parameters of all the n nodes is: 

 C stand ard BN (G ) ≤
C ∑ 

i =0 

(D − 1) .n i .D 

i 

= O (n.D 

C+1 ) (8) 

ow, once the classical probabilities (marginal and conditional) are

vailable, the computation of conditional probabilities involving se-

antic information needs maximum n s i .D 

2 time (refer Eq. (5) ),

here n s i is the maximum number of parents from within the i

arents of a variable, such that these parents have semantic infor-

ation available with them. Therefore, the computational cost for

earning parameters of all the nodes in semBnet is: 

 C semBnet (G ) ≤
C ∑ 

i =0 

[(
(D − 1) .n i .D 

i 
)

×
(
n s i .D 

2 
)]

= D 

2 . (D − 1) 
C ∑ 

i =0 

n i .D 

i .n s i 

= O (n.n s .D 

C+3 ) (9) 

n worst case, n s = (n − 1) . Therefore, the worst case time com-

lexity of semBnet becomes O (n 2 .D 

C+3 ) . On the other side, the best

ase occurs when the semantic information is available for nei-

her of the variables, i.e. n s becomes 0, which suppresses the term

n s i .D 

2 
)

to 0. Therefore, the best case time complexity of semB-

et becomes O (n.D 

C+1 ) , which is similar to that of the standard

ayesian network (standard BN or SBN). �

emma 3.2. The proposed semantic Bayesian network is not more

omplex than standard/ classical Bayesian network in terms of com-

utational space requirement. 
roof. For any Bayesian network, the minimum amount of space

equirement for any node x = (| D (x ) | − 1) . 
∏ 

i | D (Parent i ) | , where

 D ( Parent i )| denotes the domain size of the i th parent Parent i of x ,

nd | D ( x )| is the domain size for the variable x . Therefore, space re-

uirement for classical learning/updating a of node, having i num-

er of parents, is ≤ (D − 1) .D 

i . 

Now, if we consider that the number of nodes having i (0 ≤ i

C ) number of parents is n i such that 
∑ C 

i =0 n i = n, then the space

equirement for classically learning parameters of all the nodes be-

omes: 

C stand ard BN (G ) ≤
C ∑ 

i =0 

(D − 1) .n i .D 

i = O (n.D 

C+1 ) (10) 

Now, once the classical probabilities (marginal and conditional)

re available, the computation of conditional probabilities involving

emantic information needs constant space to determine seman-

ic similarity (refer Eqs. (3) –(5) ) between any two pair of domain

alue/ concept of a variable V ∈ V S . Therefore, the computational

pace requirement for learning all parameters in semBnet is: 

C semBnet (G ) ≤ 2 ·
C ∑ 

i =0 

(D − 1) .n i .D 

i + c 0 = O (n.D 

C+1 ) (11) 

here, c 0 is a constant. 

Therefore, the space complexity of semBnet becomes

C semBnet (G ) = O (n.D 

C+1 ) , which is similar to that of stan-

ard/classical Bayesian network learning involving no semantic

nformation. This proves the lemma. �

It is evident from Lemma 3.1 and Lemma 3.2 that even with the

mbedded process of knowledge incorporation, the overall com-

lexity of semBnet analysis remains equivalent to that of the clas-

ical/standard Bayesian network (SBN) analysis. Further, it can also

e noted that due to the knowledge incorporation capability, the

arameter value uncertainty in semBnet analysis is more likely to

e lesser than that in SBN analysis. 

The Parameter value uncertainty , which is observed during the

rocess of learning/developing specific value(s) or parameter(s),

ppears due to lack of knowledge [23] . One of the major sources

f parameter uncertainty is the linguistic imprecision and vague

oncepts [16] . In general, the fuzzy set theoretic approach is used

o describe such imprecise concepts. However, sometimes it be-

omes difficult to determine the fuzzy membership functions as-

ociated with the vague concepts. For example, though the con-

ept like ‘mining area’, ‘urban area’, ‘rural area’ etc. are somehow

elevant to the concept of ‘built-up area’, we cannot properly de-

ne a fuzzy membership function in this respect. Therefore, the

ecent research has focused on utilizing semantic similarity rela-

ions among the linguistic labels/ concepts [20,21] . An analogous

dea has been adopted in the present work. However, instead of

sing fuzzy relation, as used by Lawry [20] and Lawry and Tang

21] , in this work we have used semantic hierarchy to measure the

emantic similarity between any pair of concepts. 

As discussed in Example-1 , because of lack of domain knowl-

dge, SBN treats ‘mining’, ‘urban’ etc. as non-related concepts.

herefore, the parameter learning in SBN does not consider a num-

er of training records which could have significant relevance in

he process involved. This also leads to draw inferences based on

imited samples/ records, and thereby further increases the pa-

ameter uncertainty. On the other hand, during parameter learn-

ng, the proposed semBnet considers every relevant record along

ith the associated similarity value, measured based on the sup-

lied domain knowledge (represented in terms of semantic hierar-

hy ). Hence, with the help of available semantic information, the

roposed semBnet is able to tune the parameter values by con-

idering the relevance of each record. This also helps semBnet to
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Fig. 4. Study Area-1 in Jharkhand (India) and Study Area-2 in West Bengal (India). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

LULC details of the prediction locations. 

Location-ID Study area State LULC category 

Location-1 Study Area-1 Jharkhand Agricultural crop-land 

Location-2 Study Area-1 Jharkhand Agricultural fallow-land 

Location-3 Study Area-2 West Bengal Forest plantation 

Location-4 Study Area-2 West Bengal Rural area 
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draw inferences based on comparatively more samples/ records

than SBN. Thus, the parameter value uncertainty due to lack of

knowledge is reduced in our proposed semBnet . 

4. Experimental evaluation 

This section provides the details of the experimental evaluation

for our proposed semBnet scheme, in comparison with existing lin-

ear and non-linear forecasting techniques. As the linear forecasting

approaches, we have selected statistical ARIMA models , and spatio-

temporal ordinary kriging (ST-OK) [10] ; whereas the artificial neu-

ral network (ANN), standard Bayesian network (SBN) and hierarchi-

cal Bayesian autoregressive model (HBAR) [31] have been chosen as

the non-linear prediction models. The overall results of compara-

tive study are found to be encouraging. 

4.1. Data set and study area 

The experimentation has been carried out in two spatial re-

gions, one in the state of Jharkhand (India), comprising of around

3625 km 

2 area, and the other in the state of West Bengal (In-

dia), comprising of 12,390 km 

2 area (refer Fig. 4 ). Both the study

areas are full of diverse categories of land-use land-cover (LULC)

which include: agricultural crop-land, agricultural fallow-land, forest-

scrub, forest plantation, urban area, rural area, mining area, waste-

land, waterbodies and so on. However, the Study Area-2 (in West

Bengal) has more homogeneous distribution of LULC categories

than the Study Area-1 (in Jharkhand). The hierarchical representa-

tion of these LULC categories, as obtained from the Bhuvan por-

tal [4,30] , is depicted in Fig. 2 in terms of a semantic graph. The

raw data on LULC have been collected from the National Bureau

of Soil Survey and Land Use Planning, Govt of India . In this exper-

imentation, four variables, namely Temperature, Humidity, Rainfall ,

and Soil moisture , have been chosen as the meteorological param-

eter of study. The corresponding historical daily time series data

have been collected from the FetchClimate Explorer [29] for a span

of 14 years (2001–2014). The prediction has been made for two lo-

cations (refer Fig. 4 ) in each of the study areas, for the year 2015.

The details of the prediction locations are given in Table 1 . 
.2. Experimental set-up and performance metrics 

The overall experimental study has been carried out using MAT-

AB 7.12.0 (R2011a) and R-tool version 3.2.3 (64 bit) in Windows

 (64-bit Operating System, 3.10 GHz CPU, 4.00GB RAM). MATLAB

as been utilized to implement the proposed semantic Bayesian

etwork ( semBnet ) based prediction approach. The same system

onfiguration and MATLAB version have been used to experiment

ith standard BN and ANN ( feed forward back propagation network ,

NTool). On the other hand, the R-tool has been used to study

ith hierarchical Bayesian autoregressive model (HBAR) [31] , and the

inear statistical models: Holt-Winters Approach /(HW method) [18] ,

utomated ARIMA (A-ARIMA) and spatio-temporal ordinary kriging

ST-OK) [10] . 

The performance of prediction using proposed semBnet has

een evaluated in terms of four popular statistical measures,

amely root mean square error (RMSE), mean absolute error (MAE),

ean absolute percentage error (MAPE) [28] , and the ratio of the

ariance of estimated values to the variance of the observed val-

es (RVAR) [33] . The formal definition for each of these metrics

re given below: 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

(M o − M p ) 2 (12)

AE = 

1 

n 

n ∑ 

i =1 

| M o − M p | (13)

 AP E = 

| M 

s 
mo − M 

s 
mp | 

| M 

s | × 100 (14)
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Table 2 

Comparative study of proposed semBnet based multivariate prediction approach. 

Prediction variable: Temperature (T) 

Loc. Prediction techniques Prediction year 2015 

RMSE MAE MAPE RVAR 

Location-1 HW 08 .724 07 .900 42 .810 ≈ 0 

A-ARIMA 04 .577 03 .626 09 .845 00 .199 

ST-OK 02 .955 02 .167 02 .027 01 .396 

ANN 01 .599 00 .851 02 .975 00 .587 

HBAR 02 .249 01 .887 02 .875 01 .706 

SBN 01 .343 01 .114 00 .568 01 .094 

Proposed semBnet 01 .289 01 .085 00 .533 01 .081 

Location-2 HW 08 .740 07 .911 42 .873 ≈ 0 

A-ARIMA 04 .584 03 .611 09 .666 00 .203 

ST-OK 02 .979 02 .192 02 .068 01 .372 

ANN 01 .609 00 .757 02 .820 00 .573 

HBAR 02 .247 01 .899 02 .527 01 .693 

SBN 01 .345 01 .114 00 .611 01 .087 

Proposed semBnet 01 .290 01 .086 00 .576 01 .074 

Location-3 HW 08 .151 07 .313 27 .570 ≈ 0 

A-ARIMA 04 .352 03 .219 07 .463 00 .187 

ST-OK 02 .525 02 .175 00 .178 00 .087 

ANN 02 .809 01 .771 03 .698 00 .677 

HBAR 02 .692 02 .245 02 .336 00 .234 

SBN 01 .310 01 .035 00 .035 00 .916 

Proposed semBnet 01 .164 00 .978 00 .034 00 .946 

Location-4 HW 07 .595 06 .830 25 .623 ≈ 0 

A-ARIMA 04 .049 03 .064 07 .278 00 .211 

ST-OK 03 .067 02 .299 02 .002 01 .684 

ANN 01 .550 00 .761 02 .529 00 .568 

HBAR 02 .731 02 .370 03 .899 00 .303 

SBN 01 .279 01 .028 00 .084 00 .949 

Proposed semBnet 01 .155 00 .967 00 .025 00 .979 
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Table 3 

Comparative study of proposed semBnet based multivariate prediction approach. 

Prediction variable: Relative Humidity (H) 

Loc. Prediction techniques Prediction year 2015 

RMSE MAE MAPE RVAR 

Location-1 HW 12 .478 10 .346 05 .257 ≈ 0 

A-ARIMA 11 .643 09 .895 02 .101 00 .004 

ST-OK 07 .630 06 .453 02 .377 00 .980 

ANN 06 .652 04 .584 04 .137 00 .394 

HBAR 04 .902 04 .180 00 .726 01 .072 

SBN 03 .246 02 .711 03 .334 01 .075 

Proposed semBnet 03 .118 02 .638 02 .749 01 .063 

Location-2 HW 12 .522 10 .385 05 .009 ≈ 0 

A-ARIMA 11 .688 09 .939 02 .065 00 .004 

ST-OK 07 .556 06 .412 02 .875 01 .706 

ANN 19 .842 13 .973 18 .467 00 .359 

HBAR 04 .885 04 .195 00 .157 01 .055 

SBN 03 .405 02 .853 03 .743 01 .067 

Proposed semBnet 03 .253 02 .778 03 .119 01 .061 

Location-3 HW 10 .764 08 .612 05 .251 ≈ 0 

A-ARIMA 09 .769 08 .333 02 .187 00 .007 

ST-OK 05 .813 04 .970 00 .788 00 .933 

ANN 04 .792 03 .038 04 .068 00 .567 

HBAR 04 .728 03 .696 02 .781 00 .652 

SBN 02 .325 01 .976 02 .029 01 .199 

Proposed semBnet 02 .196 01 .862 01 .634 01 .103 

Location-4 HW 10 .164 08 .923 00 .601 ≈ 0 

A-ARIMA 09 .825 08 .873 02 .093 00 .005 

ST-OK 07 .589 06 .254 04 .463 01 .272 

ANN 07 .636 06 .076 06 .524 00 .606 

HBAR 03 .956 03 .352 01 .357 00 .989 

SBN 03 .063 02 .374 03 .239 01 .045 

Proposed semBnet 02 .896 02 .245 02 .639 01 .039 

Table 4 

Comparative study of proposed semBnet based multivariate prediction approach. 

Prediction variable: Rainfall (R) 

Loc. Prediction techniques Prediction year 2015 

RMSE MAE MAPE RVAR 

Location-1 HW 156 .78 104 .78 2556 .7 ≈ 0 

A-ARIMA 116 .02 084 .32 058 .21 0 0 0 .05 

ST-OK 079 .13 055 .37 006 .96 001 .12 

ANN 091 .37 058 .72 034 .84 001 .15 

HBAR 038 .92 025 .59 002 .47 001 .30 

SBN 040 .10 025 .27 013 .17 001 .43 

Proposed semBnet 038 .08 023 .24 010 .58 001 .38 

Location-2 HW 157 .67 105 .28 096 .25 ≈ 0 

A-ARIMA 116 .94 084 .81 037 .07 0 0 0 .05 

ST-OK 079 .89 055 .58 007 .36 001 .10 

ANN 127 .70 078 .39 021 .58 001 .64 

HBAR 038 .65 025 .09 003 .29 001 .28 

SBN 039 .84 025 .02 012 .78 001 .41 

Proposed semBnet 038 .09 023 .43 010 .00 001 .38 

Location-3 HW 157 .25 110 .09 096 .44 ≈ 0 

A-ARIMA 113 .04 081 .27 037 .24 0 0 0 .06 

ST-OK 073 .17 051 .86 005 .18 001 .18 

ANN 057 .04 028 .28 020 .28 001 .28 

HBAR 115 .40 092 .91 081 .25 001 .25 

SBN 019 .79 012 .95 009 .63 001 .16 

Proposed semBnet 015 .34 010 .29 003 .27 001 .06 

Location-4 HW 164 .07 115 .88 093 .44 ≈ 0 

A-ARIMA 118 .00 086 .45 037 .72 0 0 0 .06 

ST-OK 073 .01 051 .87 005 .35 001 .17 

ANN 044 .17 024 .46 015 .91 0 0 0 .90 

HBAR 107 .78 088 .52 071 .20 001 .05 

SBN 028 .26 021 .46 009 .42 001 .04 

Proposed semBnet 025 .14 019 .27 007 .66 001 .02 

 

 

 

 

 

VAR = 

v ar(M 

s 
p ) 

v ar(M 

s 
o ) 

(15) 

here M o and M p denote the observed value and the correspond-

ng predicted value of a meteorological variable. M 

s 
mo is the mean

alue of the observed series; M 

s 
mp is the mean value of the pre-

icted series; v ar(M 

s 
o ) and v ar(M 

s 
p ) are the variation in the ob-

erved time series and variation in corresponding predicted time

eries respectively; and n is the total number of observations in

he series. 

The best-fit between observed and predicted values under ideal

onditions yields RMSE = 0 , MAE = 0 , MAP E = 0 , and RVAR = 1 . 

.3. Results 

Tables 2–5 present the comparative results of predicting the

eteorological time series of Temperature, Relative humidity, Rain-

all and Soil moisture respectively, for the target year 2015. Both

or standard BN (SBN) and proposed semBnet , same causal depen-

ency graph has been used for capturing the spatio-temporal in-

er relationships among the considered meteorological variables. In

he dependency graph, LULC has been the only variable having se-

antic knowledge base. In order to incorporate these semantic in-

ormation, the proposed semBnet has further utilized the semantic

ierarchy of LULC , as depicted in Fig. 2 . Moreover, to model the

early change in the inter variable dependencies, both SBN and

emBnet have used a similar learning framework as proposed by

as and Ghosh [12] , taking care of the temporal auto-correlation

roperty. 

.3.1. Discussion 

From the experimental results (refer Tables 2–5 ), the following

nferences can be drawn: 
• As shown in the Tables 2–5 (first column), RMSE for the SBN

is significantly less than that of the HW, A-ARIMA, ST-OK, ANN

and HBAR model. Further, the RMSE corresponding to proposed

semBnet is even lesser than that of SBN. This indicates that the

forecasts made by semBnet are the closest to the observed time
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Table 5 

Comparative study of proposed semBnet based multivariate prediction approach. 

Prediction variable: Soil moisture (S) 

Loc. Prediction techniques Prediction year 2015 

RMSE MAE MAPE RVAR 

Location-1 HW 54 .128 46 .797 11 .616 ≈ 0 

A-ARIMA 54 .129 46 .797 11 .616 ≈ 0 

ST-OK 32 .326 28 .007 01 .620 00 .793 

ANN 54 .378 46 .431 13 .275 00 .223 

HBAR 22 .523 19 .048 05 .581 01 .190 

SBN 22 .725 19 .861 01 .947 01 .412 

Proposed semBnet 21 .978 18 .972 01 .635 01 .390 

Location-2 HW 53 .473 46 .392 10 .601 ≈ 0 

A-ARIMA 53 .473 46 .392 10 .601 ≈ 0 

ST-OK 31 .124 26 .703 01 .825 00 .789 

ANN 40 .986 36 .177 08 .264 00 .439 

HBAR 23 .660 20 .200 06 .164 01 .157 

SBN 22 .999 20 .034 04 .667 01 .479 

Proposed semBnet 20 .837 17 .736 03 .270 01 .443 

Location-3 HW 46 .906 39 .031 03 .417 ≈ 0 

A-ARIMA 46 .906 39 .031 03 .416 ≈ 0 

ST-OK 46 .467 40 .844 13 .049 00 .402 

ANN 39 .654 30 .940 00 .735 00 .034 

HBAR 38 .347 32 .146 10 .994 01 .228 

SBN 21 .883 19 .779 00 .290 01 .239 

Proposed semBnet 18 .452 15 .895 00 .191 01 .175 

Location-4 HW 66 .396 56 .116 04 .215 ≈ 0 

A-ARIMA 62 .399 51 .311 01 .587 ≈ 0 

ST-OK 46 .959 41 .237 13 .266 00 .394 

ANN 51 .808 40 .390 03 .705 00 .066 

HBAR 30 .972 26 .014 08 .825 01 .075 

SBN 23 .603 19 .363 07 .232 00 .960 

Proposed semBnet 20 .938 16 .769 05 .976 00 .988 
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series, and proves the worth of using spatial semantics in the

prediction process. 
• Similarly, it is also evident from the Tables 2–5 (second col-

umn) that the proposed semBnet provides the best prediction,

producing the minimum MAE in all the cases. 
• The MAPE measures, as presented in third column of the

Tables 2–5 , also show a significantly lesser value of 0 . 025% −
10 . 58% for the proposed semBnet , especially for Study Area-2 .

These also demonstrate the effectiveness of considering seman-

tic information in meteorological time series prediction. 
• The measure of RVAR, that basically quantifies the ratio of

variation in the observed series and the predicted series, be-

comes unity in an ideal situation. The last column in the

Tables 2–5 show that the values of RVAR for proposed semBnet

based prediction are always towards 1, however those for other

techniques (especially ARIMA models and ANN) are far from 1.
Fig. 5. Percentage improvement (% error reduction) of semBne
This indicates that in case of semBnet , the predicted time se-

ries are more likely to maintain the similar variations as in the

original series. 

The overall percentage improvement (error reduction percent-

ge) in proposed semBnet based approach, compared to standard

ayesian network (SBN) based prediction, has been summarized

n Fig. 5 . It shows that, for Study Area-1, semBnet provides over-

ll ≈ 5% improvement in RMSE and MAE, and ≈ 17% improvement

n MAPE. Further, for the Study Area-2 , the percentage improve-

ent of semBnet in RMSE, MAE, and MAPE are 11%, 10% and ≈ 31%

espectively, which are significantly better than those in case of

tudy Area-1 . The reason is that the Study Area-1 is comparatively

maller, and most ( ≈ 73.6%) of its parts belong to agricultural land,

hereby contributing uneven semantic knowledge during the semB-

et learning. On the other hand, the training locations chosen from

he Study Area-2 have comparatively more homogeneous distribu-

ion of LULC, and thus, aid in better knowledge incorporation. 

In summary, the proposed semBnet based prediction shows im-

roved performance from all aspects, and proves to become supe-

ior to the linear statistical and non-linear prediction techniques.

onsidering the training set from a larger spatial region with suf-

cient evidence for each LULC category may lead to even better

rediction results. 

It must also be mentioned here that the proposed semBnet is

 generic model which can be used for diverse set of applica-

ions. Any problem/application, that can be modeled using stan-

ard Bayesian network, can also be modeled in terms of semBnet ,

f and only if the application involves at least one variable hav-

ng different interpretations, and the relevant domain knowledge

s available in the form of some semantic hierarchy. In semBnet ,

he semantic hierarchy plays a significant role. Since the semBnet

ssumes that the similar concepts (semantic interpretations) of a

ariable have similar influence to or from the other variables in a

ausal dependency graph, the semantic hierarchy should be formed

ccordingly. Therefore, different application may need different hi-

rarchy, based on appropriate domain knowledge. For example, in

ur experimental study we have used the domain knowledge that

imilar land-use/land-cover (LULC) category has similar effect on

he meteorological variables, like land surface temperature, precipi-

ation, soil moisture etc. Moreover, the semantic similarity measure

lso may need to be varied from one application to another [3] .

ame semantic similarity measure may not be applicable for in-

orporating every kind of domain knowledge. However, whatever

e the similarity measure, the proposed semBnet is a generic ap-

roach that shows how to incorporate such domain knowledge in

 standard Bayesian analysis. 
t in comparison with standard Bayesian network (SBN). 
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. Conclusions 

In this paper, we have proposed a semantic Bayesian network

ased approach for multivariate prediction of meteorological time

eries data. The key contribution in this work is to define a vari-

nt of Bayesian network, termed as semBnet , that can incorpo-

ate the spatial semantics in modeling the probabilistic relation-

hips among meteorological variables. The semBnet has been ana-

yzed from both theoretical and empirical perspectives in compar-

son with the linear statistical models (ARIMA, ST-OK), hierarchi-

al Bayesian autoregressive model (HBAR), and non-linear machine

earning techniques (ANN, SBN). Case studies have been performed

o predict Temperature, Relative humidity, Rainfall, and Soil mois-

ure for two spatial regions in India. The prediction performance

n terms of four different statistical measures (RMSE, MAE, MAPE,

nd RVAR) proves and validates the superiority of proposed semB-

et based prediction approach. The improved accuracy also estab-

ishes the significance of incorporating domain knowledge in mete-

rological time series prediction. 

In future, the work can be extended to incorporate the climate

hange pattern information [11] in the proposed framework to fur-

her improve the meteorological prediction accuracy. 
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