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Abstract—Natural systems, like the hydrological, climatological, atmospheric, or any other environmental processes, are extremely

complex as well as dynamic in nature. It is therefore difficult to forecast, analyze, and quantify these processes by using simple

empirical equations. Modeling and forecasting of reservoir water dynamics are not exceptions in this respect, as these involve various

challenges due to the effect of meteorological factors, natural processes of stream flow, climatic change, and so on. The intent of our

present work is to propose a novel forecasting model, FORWARD, that handles some of these issues in complex reservoir dynamics.

FORWARD is based on a variant of spatial Bayesian network (SpaBN), having inherent capability of modeling impact of spatial

variability of meteorological factors over the river catchment. The forecasting efficiency of FORWARD has been compared with four

other linear and non-linear techniques based on six different statistical performance measures. The experimental results show the

superiority of FORWARD over the other techniques. Though FORWARD has been demonstrated with respect to a case study on

forecasting reservoir live capacity, the model possesses a generic structure that can also be applied in other domains by introducing

minimal augmentation.

Index Terms—Spatial Bayesian network, spatial importance, spatio-temporal system, probabilistic reasoning, forecasting

Ç

1 INTRODUCTION

FORECASTING any natural event or process is an extremely
complex and challenging task involving various signifi-

cant issues related to its spatio-temporal dependency, non-
linearity, uncertainty and inherent chaos [1]. The reservoir
water dynamics is not an exception in this regard. Reser-
voirs are effective water-storage areas which are mostly
made by constructing dams across rivers or at the outlet of
a natural lake (refer Fig. 1). Accurate prediction of reservoir
water level, live capacity etc. are important for handling
various water management issues including water supply
for hydroelectric energy production and irrigation, flow
control during floods and droughts, and so on. However,
the reservoir water dynamics is not merely a simple peri-
odic event that shows the highest degree of change during
summer and rainy season, and the least change during win-
ter. In fact, it is a result of complex interplay among various

water balance components, like the flow of incoming or out-
going rivers and streams, seepage of water from or into the
groundwater-bed etc. [2], [3]. Above all, the meteorological
factors, including precipitation over the catchment area [4],
evaporation from the water-surface [2], [5], wind velocity,
humidity, and temperature in the adjacent lower atmo-
sphere play significant roles in determining the live capacity
of a reservoir. It is therefore crucial to properly understand
the spatial variability of various meteorological factors in
reservoir-catchment area and their hydrological influence
on reservoir water dynamics.

Throughout the last few decades various Artificial Intelli-
gence (AI) based techniques, such as artificial neural
networks (ANN) [6], Genetic Algorithms (GA), Gene
Expression Programming (GEP) [7], fuzzy theory etc., have
increasingly been applied to tackle many of these issues
related to water resource systems (e.g., reservoir) [8]. Major-
ity of these works are based on ANN [9], [10] or a combina-
tion of ANN with other intelligent methods [11], [12]. For
example, in order to model the impact of meteorological
variables on reservoir dynamics, Ondimu and Murase [13]
applied ANN considering a feature set comprising of rain-
fall, evaporation rate, river-discharges, and the water levels.
Coulibaly [9] has employed reservoir computing technique,
based on a special kind of recurrent neural network (termed
as echo state network or ESN), for forecasting water level in
lake. Adaptive network-based fuzzy inference system
(ANFIS), proposed by Chang and Chang [11], has been able
to show highly accurate and reliable prediction for a very
short duration. Bazartseren et al. [12] have proposed a sys-
tem, based on ANN and neuro-fuzzy technique, which has
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proved to be considerably effective in short term water level
forecast. In a comparative study over fifteen ephemeral
catchments, Daliakopoulos and Tsanis [14] have found that
ANN can be superior than the conventional conceptual
models for modeling the complex hydrological processes.

In all these cases, thoughANNhasproved itself to be a use-
ful technique to determine more or less exact pattern between
the input and output variables, its effectiveness is highly influ-
enced by proper understanding of the inter-variable depen-
dency and the extent of knowledge regarding functionality of
neural network [15]. So, according to Maier et al. [16], there is
a need for incorporating robustness in those ANN-based
approaches. On the other hand, our knowledge regarding the
natural hydrological systems is limited over space as well as
time. Therefore, it is also necessary to simulate the complex
interactions between reservoir water and other influencing
factors using some physical models, so that these can further
aid in quantitative analysis and prediction process.

Our present work aims at proposing a computational
intelligence framework (FORWARD), based on the spatial
extension of standard/classical Bayesian network. It mainly
concentrates on modeling the spatial influence of meteoro-
logical variables in the catchment area and the sensitivity of
water dynamics in the respective reservoir. The dynamic
behaviors of the hydrological processes in a reservoir
depend not only on the meteorological features at the reser-
voir location, but also on those features associated with the
locations over whole catchment (or watershed region).
Moreover, based on the diverse topographical characteris-
tics of the locations, these features show significant spatial
variation and thereby affect the reservoir dynamics in differ-
ent ways. Thus, the two main objectives in this work are:

� Modeling the influence of spatial variability of vari-
ous meteorological variables on the hydrological
process in a reservoir.

� Spatio-temporal prediction of reservoir dynamics by
utilizing the knowledge of spatial variability
obtained from the developed model.

1.1 Problem Statement, Challenges, and
Contributions

Given a set of x number of meteorological variables M ¼
v1; v2; . . . ; vxf g ðx > 1Þ, influencing the natural hydrological

process in a reservoir at location Lðlat; longÞ. Also given the
corresponding historical data series HðliÞ ¼ v11; v
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� �g for a set of k loca-
tions l1; l2; . . . ; lkf g in the reservoir catchment area, where t
is the total number of temporal observations. The problem
is to forecast the reservoir water dynamics for a given time
instant with consideration to the impact of the spatial vari-
ability of the variables inM.

Hydrological processes in a reservoir depend not only on
meteorological variables (e.g., temperature, rainfall) at the
reservoir location, but also on other factors (e.g., soil, slope,
and land use/cover distribution in the entire watershed),
which influence these variables. One such example is
depicted in Fig. 1. In the figure, W is the watershed/catch-
ment area of a river, say p, and R is the location of the reser-
voir on p. L1, and L2 are two sample locations in the
watershed. Each of them has been expressed in terms of
quadruple < xi; yi; di; si > , where, ðxi; yiÞ is the geo-spatial
coordinate of the location Li, di is the spatial distance (SD)
of Li from the reservoir R, and si is the soil category in the
location. It has been assumed that the topographical slope is
same for L1 and L2, and the locations are characterized by
open forest associated with sandy soil texture, and built-up
associated with clay soil, respectively. Therefore, for similar
rainfall conditions at both locations, L2 is likely to produce
more surface runoff because of favorable runoff characteris-
tics and will influence the reservoir inflows and reservoir
capacity. Thus, the spatial variation of geographic features
and meteorological factors has significant effect on hydro-
logical processes in the watershed as well as on the reservoir
water dynamics. Although the runoff generated from L2 is
higher than L1, due to its proximity to reservoir location,
runoff generated from the location L1 will reach the reser-
voir earlier than location L2. Thus, not only land use/cover,
soil, and slope influence reservoir water dynamics, but also
distances of the contributing areas play important role.

In this study, in order to account for spatial variability in
the watershed, NRCS-curve number (CN) has been assigned
to different soil and land use/land cover associations. The
NRCS-CN is a dimensionless runoff index,which is a function
of hydrologic soil group (HSG), land use, land treatment,
hydrologic conditions, and antecedent moisture conditions
(AMC). AMC is an indicator of watershed wetness and avail-
ability of soil storage prior to a storm. In general, three levels
of AMC [17], namely AMC-I, AMC-II and AMC-III indicate
dry, normal and wet conditions in the watershed, respec-
tively. In the present work, CNs for AMC-II condition have
been considered. Although surface runoff is slope dependent,
most of the hydrological studies that involved NRCS-CN
based approaches often ignored slope. In this study, NRCS-
CN has been modified using Fuzzy Inference System (FIS),
taking topographic slope into account. Further, the assump-
tion of a uniform rainfall over the entire watershedmay result
in over/under estimation of reservoir inflows at gauge sta-
tions. Hence, the study area has been categorized into differ-
ent clusters based on the meteorological conditions, where
each cluster indicates single representative time series meteo-
rological factor. In order to deal with the response times of
contributing areas, the normalized inverse spatial distances
have been computed for different clusters.

A novel framework, termed as FORWARD, has been pro-
posed to accommodate the above-discussed tactics for
modeling and forecasting the reservoir dynamics. The

Fig. 1. A typical watershed (W), and a reservoir (R) on the river p.
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FORWARD is based on a spatial Bayesian network based anal-
ysis technique and is inherently capable of modeling spatial
impact of such topographical and meteorological factors on
hydrological processes in reservoir, assuming no human
intervention in the present context. FORWARD has been
evaluated with a case study on forecasting the daily live
capacity of Mayurakshi reservoir in Jharkhand, India (refer
Fig. 5) for the period of 1998-2001. Comparison with the
results of classical/ standard Bayesian network, ANN and
other techniques has established FORWARD as the most
effective one in this regard.

The major contributions in this work can be stated as
follows:

� Incorporating spatial information with the standard/
classical Bayesian network to model the spatial vari-
ability of the factors influencing prediction variable.

� Developing a spatial Bayesian network (SpaBN) based
novel approach (FORWARD) for modeling and fore-
casting the dynamics in water resource system (e.g.,
reservoir).

� Applying fuzzy inference system based technique to
generate the slope-adjusted modified curve number as a
new runoff prediction parameter.

� Evaluating the proposed FORWARD model in compar-
ison with the existing time series forecasting techni-
ques including the traditional statistical models
(ARIMA), standard BN, and ANN (feed forward
back propagation network).

The rest of the paper is organized as follows. The pro-
posed FORWARD model has been illustrated in Section 2
with a central concentration to our newly defined spatial
Bayesian network, followed by analysis of the same in Sec-
tion 3. A brief description of the case study has been pro-
vided in Section 4 along with the details of study area, data
sets, and experimental setup. The results of experimentation
on predicting reservoir live capacity using FORWARD
framework has been thoroughly discussed in Section 5.
Finally, we conclude in Section 6.

2 FORWARD: PROPOSED MODEL FOR

FORECASTING RESERVOIR WATER DYNAMICS

USING SPATIAL BAYESIAN NETWORK

This section presents the theoretical description of proposed
FORWARD model along with the details of our newly
defined spatial Bayesian network analysis technique.

The workflow in FORWARD has been depicted in Fig. 2.
From the figure it can be noted that the overall approach takes
various topographical, meteorological and historical reservoir
data as input, and as an output it produces the predicted value
of daily reservoir data for a given prediction year. The entire
model is composed of sixmain steps: i) Interpolation of meteoro-
logical data, ii) Modified curve number generation, iii) Feature set
preparation, iv) Dividing the watershed into homogeneous regions,
v) Spatial importance calculation, and vi) Spatio-temporal Data
Analysis using Spatial Bayesian Network. Each of these steps has
been thoroughly discussed in the following sections.

2.1 Interpolation of Meteorological Data

The objective of this step is to compensate the scarcity of high
resolution meteorological data over the associated river
watershed/catchment area. For this purpose, the whole
watershed is first placed on a higher resolution grid and then
for each of the intersecting grid locations, say l, the meteoro-
logical data is interpolated using thewell-established interpo-
lation techniques, e.g., IDW, Kriging [18] etc. One may also
use Thiessen polygon [19] based raingauge network, for gen-
erating average daily precipitation time series for all the loca-
tions over the watershed. In the present study, the IDW
technique has been used for interpolation purpose.

2.2 Modified Curve Number Generation

Curve number [20], also called runoff curve number, is an
empirical measure of run-off prediction from the rainfall
excess. It can be used as a good indicator of land cover charac-
teristics and hydrologic soil group, i.e., two of the major topo-
graphical factors influencing the hydrological process in a
watershed. However, there are several other factors (e.g.,

Fig. 2. Workflow for the proposed FORWARD model.
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land slope), which can significantly affect the run-off poten-
tiality of a given region with known land cover category
and hydrologic soil group. Therefore, to incorporate these
information as well, the FORWARD model generates a vari-
ant of curve number, named as modified curve number
(MCN), in its intermediate step. The internal process of
modified curve number generation has been pictorially rep-
resented in Fig. 3. The process is based on a fuzzy inference
system, which takes as input the fuzzy membership func-
tions for the land slope and curve number respectively. Then,
based on the rules defined in the rule base, it generates the
modified curve number for a given slope value.

2.3 Feature Set Preparation

This step of FORWARD model generates the feature set for
characterizing each of the grid locations li in the watershed
region. The feature set is comprised of the mean monthly
values for meteorological factors, e.g., temperature, rainfall,
and the modified curve number, associated with the loca-
tion. That is, for any location l, the feature set can be repre-
sented as follows:

< mf11 ; mf12 ; . . . ;mf1
12; . . . ;mfx

1 ;mfx
2 ; . . . ;mfx

12;MCN > ;

where, mfi
j is the mean value of the ith meteorological fac-

tor for the jth month, and MCN is the modified curve number
value corresponding to the location l.

2.4 Dividing the Watershed into Homogeneous
Regions

In this step, all the grid locations in the watershed are clus-
tered into K number of groups C1; C2; C3; . . . ; CKf g, based
on the feature set as prepared previously. Each cluster of
locations, thus generated, becomes homogeneous with
respect to both topographical and meteorological property.

The step starts with a classical clustering technique (e.g., K-
means), which basically generates non-spatial clusters, i.e.,
same cluster can be distributed over the space. In order to
identify spatially distributed groups, the clustering is fol-
lowed by spatial group identification process, performed
using GIS software such as ArcGIS. After this processing,
each newly identified group becomes a continuous region.
The main objective here is to simplify the spatial analyses in
following steps by grouping the similar category locations
into single cluster, so that each of the group/cluster can be
treated as a unique representative of a number of locations.

2.5 Spatial Importance Calculation

Once the spatial clusters are identified, each of the spatially dis-
tributed cluster Ci is assigned appropriate weight (SWi) based
on its significance in determining the hydrological processes in
the reservoir. This weight is also termed as spatial importance.
Threemain parameters have been considered for this purpose:

� Modified Curve Number: As discussed earlier, MCN
takes into account the land cover characteristics,
land slope, and hydrological property of soil. The
higher is the run-off potentiality, i.e., the MCN value
of the locations in the cluster, the more is its contri-
bution to the water dynamics in the reservoir.

� Spatial Distance: Influence of a cluster on the reser-
voir dynamics is inversely proportional to the spatial
distance of the cluster from the reservoir location.

� Water Contributing Area (WCA): It takes into account
the portions of the associated river or its tributary in
the cluster. If the water-spread area is high in a par-
ticular cluster, then its effect will be higher during
heavy rainfall conditions.

Since the range of values of these above-mentioned
parameter may vary significantly, each of them are normal-
ized before estimating the spatial importance of a cluster.
Thus, the spatial weight (or, spatial importance) for a cluster
Ci is determined as follows:

SWi ¼ NMCNi þNISDi þNWCAiPK
j¼1ðNMCNj þNISDj þNWCAjÞ

; (1)

where, NMCNi (normalized value of modified curve num-
ber for Ci) ¼ MCNiPK

j¼1
MCNj

, NISDi (normalized inverse spatial

distance of Ci from the reservoir) ¼ 1=SDiPK

j¼1
1=SDj

, NWCAi (nor-

malized value of water contributing area in Ci) ¼ WCAiPK

j¼1
WCAj

,

andK is the total number of generated clusters.

The spatial weights, thus calculated, help in modeling the
spatial impact of each cluster on the reservoir dynamics.

2.6 Spatio-Temporal Data Analysis Using Spatial
Bayesian Network

This is the final and the most significant step in the pro-
posed FORWARD model. The objective here is to predict
the daily hydrological process in a typical reservoir (for a
given year in future), with consideration to the spatial
impact of each cluster over the corresponding watershed/
catchment area. The whole analysis is based on a novel vari-
ation of spatial Bayesian network, which is one of our major

Fig. 3. Modified curve number (MCN) generation using fuzzy inference
system.
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contributions in this work. The overall process of data analy-
sis and forecast using SpaBN is illustrated in the subsequent
parts of this section.

2.6.1 Data Pre-Processing

Before applying the spatio-temporal analysis using spatial
Bayesian network, we perform pre-processing on the avail-
able data in two steps. The pre-processing is carried out to
generate average time series per each cluster, and to discre-
tize the data for making it fit for discrete Bayesian analysis.

1) Generating average time series per each cluster: In this
step, the meteorological time series data correspond-
ing to each location under a particular cluster is aver-
aged out to produce a single representative time
series for that cluster, and this is done considering
each meteorological factor separately. Since all the
locations under a same cluster are both topographi-
cally and meteorologically similar, this avoids any
kind of inconsistency generated due to averaging.

2) Data discretization: This step discretizes the meteoro-
logical as well as the historical reservoir data (e.g.,
live capacity, water level) so as to make these
suitable for spatial Bayesian network training and
inference process in the following steps. The discreti-
zation is performed based on the maximum and
minimum values observed in the training data and
finally dividing the whole data range into suitable
number of bins/intervals. The size of each interval is
determined in the following manner: If, for any vari-
able vi, the maximum observed value is maxðviÞ and
the minimum observed value is minðviÞ, then the
interval size becomes

intervalSizeðviÞ ¼ ½maxðviÞ �minðviÞ þ 1�
R

;

where, R is the total number of intervals or discre-
tized range of vi. The value of R may be pre-defined
intuitively, or can be determined empirically so that
it leads to optimum result with respect to prediction
accuracy as well as execution time.

2.6.2 Spatial Bayesian Network Based Analysis

Spatial Bayesian network is a variant of classical/standard
Bayesian network which has an intrinsic property of captur-
ing spatial influence over the variables in the network.
Unlike the standard Bayesian network, SpaBN contains

composite nodes along with the standard/classical nodes in
the directed acyclic graph (DAG). One such example net-
work structure (or DAG) is shown in Fig. 4. Here, the nodes,
denoted by double lined circles, are the composite nodes. A
composite node is a composition of a number of standard/
classical nodes associated with same but spatially distrib-
uted variable. For example, composite node V4, as depicted
in Fig. 4, consists of eight standard/classical nodes
V 1
4 ; V

2
4 ; V

3
4 ; . . .V

8
4 , where V i

4 indicates the variable V4 at the
ith spatial location (or region). The purpose of introducing
composite node is to reduce the learning time and space
complexity in spatial Bayesian network. If instead of each
single composite node, the constituting nodes were being
used as standard/classical node, then it would introduce
one or more edges for each such node leading to exponen-
tially very high time and space requirement [21], [22].
Replacing all these nodes with a single composite node
drastically reduces the algorithmic complexity in SpaBN.
Moreover, being a variation of the classical Bayesian net-
work, SpaBN retains the inherent property of uncertainty
management [23], [24]. The learning and inference process
for spatial Bayesian network is explained below.

2.7 Spatial Bayesian Network Learning

Consider a similar directed acyclic graph GðVs; Vc; EÞ, as
shown in the Fig. 4, where Vs ¼ V1; V2; V3; V6f g is the set of
standard/classical nodes; Vc ¼ V4; V5f g is the set of compos-
ite nodes; and E is the set of edges V1 ! V6; V2 ! V6;f
V3 ! V6; V4 ! V6; V5 ! V6; V4 ! V5g. An edge from Vi to Vj

can be interpreted as Vi influences Vj. Let us also assume
that the variable associated with the composite nodes are
spatially distributed over K (=8 in this case) number of
regions (each cluster, as generated previously, can represent
a region).

Now, as per the principle of SpaBN, the marginal
probabilities of the composite nodes 2 Vc are calculated as
follows:

P ðV4Þ ¼ g �
XK
i¼1

P ðV i
4 Þ � SWi

" #
(2)

P ðV5Þ ¼ g �
XK
i¼1

P ðV i
5 Þ � SWi

" #
; (3)

where, g is the normalizing constant, P ðV i
4 Þ is the marginal

probability of singular component V i
4 in V4, P ðV i

5 Þ is the
marginal probability of singular component V i

5 in V5, and
SWi is the spatial weight/importance of the ith region.

Fig. 4. Example DAG for spatial Bayesian network: SpaBN.
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Similarly, the conditional probabilities, involving com-
posite nodes 2 Vc, can be calculated as follows:

P ðV5jV4Þ ¼ g �
XK
i¼1

nðV i
4 ; V

i
5 Þ

nðV i
4 Þ

� SWi

" #
(4)

P ðV6jV1; V2; V3; V4; V5Þ ¼ g �
XK
i¼1

nðV1; V2; V3; V
i
4 ; V

i
5 ; V6Þ

nðV1; V2; V3; V
i
4 ; V

i
5 Þ

� SWi

" #
;

(5)

where, nð< � > Þ denotes the total count of observation for
the combination < � > .

Now, in order to capture the large scale temporal change
in variable characteristics, the learning is performed for each
instant (say a year) Ti in the time scale, and the final probabil-
ity (whether marginal or conditional) is generated by honor-
ing the temporal auto-correlation property [25], so that the
final probability (marginal or conditional) Pf becomes

Pf ¼
Xt
i¼1

PTi �
1=diPt
j¼1 1=dj

 !
; (6)

where, di is the temporal distance of the time instant Ti from
the prediction time Tp, and t is the total number of time
instants considered for training.

2.8 Spatial Bayesian Network Inference

Now, in order to explain the inference generation principle
in SpaBN, let’s consider a case, where the observed/ evi-
dence variables are: V1; V2; V3; V

1
4 ; V

2
4 ; . . . ; V

K
4 ; V 1

5 ; V
2
5 ; . . . ;

V K
5 , from which the value of V6 is to be inferred.
Then, as per the principle in FORWARD,

Inferred value of V6 ¼
XK
i¼1

P ðV6jV1; V2; V3; V
i
4 ; V

i
5 Þ � SWi; (7)

where the value for P ðV6jV1; V2; V3; V
i
4 ; V

i
5 Þ can be determined

from the conditional probability table for the variable V6.
Among these inferred values of V6, the predicted value

becomes the one corresponding to the maximum probabil-
ity. Since, in the data pre-processing step, the variable val-
ues are discretized into certain number of ranges, the
predicted value of V6 is also obtained in the form of a range.
In order to obtain a single continuous value, the mean of the
range is assigned to the predicted variable.

3 ALGORITHMIC COMPLEXITY ANALYSIS FOR

PROPOSED SPATIAL BAYESIAN LEARNING

In this section, we analyze the computational cost of learning
the proposed spatial Bayesian network in FORWARDmodel.
The computational cost has been measured with respect to
parameter learning in terms of both time and space.

Let GðVs; Vc; EÞ be a directed acyclic graph of spatial
Bayesian network containing n number of nodes, where
Vc is the set of composite nodes and Vs is the set of stan-
dard/classical nodes. Likewise, assume that the variables
corresponding to the composite nodes are distributed
over K number of spatial regions. Moreover, let the maxi-
mum number of parents of any node in G is P and the
domain size of any variable is D.

3.1 Time Complexity for SpaBN Parameter Learning

As per the network learning equations for SpaBN (refer Sec-
tion 2), total number of iterations required for learning/
updating a composite node, having i number of parents, is
ðD� 1Þ:Di:K, and that for learning/updating a standard/
classical node, having i number of parents, is ðD� 1Þ:Di.

Now, if we consider that the number of composite node
having i ð0 � i � P Þ number of parents is nci, and the num-
ber of standard/classical node having i ð0 � i � P Þ number
of parents is nsi, then computational cost for learning
parameters of all the composite nodes is

TCcompositeðGÞ ¼
XP
i¼0

ðD� 1Þ:nci:Di:K: (8)

Similarly, computational cost for learning parameters of all
the standard/classical nodes is

TCstandardðGÞ ¼
XP
i¼0

ðD� 1Þ:nsi:Di; (9)

where,
PP

i¼0 nci ¼ jVcj;
PP

i¼0 nsi ¼ jVsj, and
PP

i¼0 ðnciþ
nsiÞ ¼ n

Therefore, the overall time complexity for learning
parameters in SpaBN is

TCðGÞ ¼
XP
i¼0

ðD� 1Þ:nci:Di:K þ
XP
i¼0

ðD� 1Þ:nsi:Di (10)

�
XP
i¼0

K:ðD� 1Þ:Di:ðnci þ nsiÞ

¼ K:ðD� 1Þ: DP :ðncP þ nsP Þ þDP�1:ðncP�1 þ nsP�1Þ
�

þ � � � þD0:ðnc0 þ ns0Þ
�

� K:ðD� 1Þ: DP :nþDP�1:ðncP�1 þ nsP�1Þ þ � � � þ�
D0:ðnc0 þ ns0Þ

�
½{ðncP þ nsP Þ � nAlways�

¼ Oðn:K:DPþ1Þ:
(11)

Now, since the number of region K tends to be limited
within a certain small range, it can be treated as a constant,
and therefore the time complexity of SpaBN becomes
TCðGÞ ¼ Oðn:DPþ1Þ, which is similar to that of standard/
classical Bayesian network containing no spatially distrib-
uted variable.

3.2 Space Complexity for SpaBN Parameter
Learning

For any Bayesian network, the minimum amount of space
requirement for any node x= ðjDðxÞj � 1Þ:Qi jDðPaiÞj,
where jDðPaiÞj denotes the domain size of the ith parent
Pai of x, and jDðxÞj is the domain size for the variable x.
Therefore, in SpaBN, space required for learning/updat-
ing a composite node, having i number of parents,
becomes ðD� 1Þ:Di:K, and that for learning/updating a
standard/classical node, having i number of parents,
becomes ðD� 1Þ:Di.

Now, if we consider that the number of composite
nodes having i ð0 � i � P Þ number of parents is nci, and
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the number of standard/classical node having i
ð0 � i � P Þ number of parents is nsi, then space require-
ment for learning parameters of all the composite nodes
becomes

SCcompositeðGÞ ¼
XP
i¼0

ðD� 1Þ:nci:Di:K: (12)

Similarly, space requirement for learning parameters of all
the standard/classical nodes becomes

SCstandardðGÞ ¼
XP
i¼0

ðD� 1Þ:nsi:Di; (13)

where,
PP

i¼0 nci ¼ jVcj,
PP

i¼0 nsi ¼ jVsj, and
PP

i¼0 ðnci þ
nsiÞ ¼ n

Therefore, the overall space complexity for learning
parameters in SpaBN becomes

SCðGÞ ¼
XP
i¼0

ðD� 1Þ:nci:Di:K þ
XP
i¼0

ðD� 1Þ:nsi:Di (14)

�
XP
i¼0

K:ðD� 1Þ:Di:ðnci þ nsiÞ

� K:ðD� 1Þ: DP :nþDP�1:ðncP�1 þ nsP�1Þ þ � � �� þ
D0:ðnc0 þ ns0Þ

�
½{ðncP þ nsP Þ � nAlways�

¼ Oðn:K:DPþ1Þ:
(15)

Now, since the number of region K tends to be limited
within a certain small range, it can be treated as a constant,
and therefore the space complexity of SpaBN becomes
SCðGÞ ¼ Oðn:DPþ1Þ, which is similar to that of standard/
classical Bayesian network containing no spatially distrib-
uted variable.

Therefore, in spite of being spatial extension of stan-
dard/ classical Bayesian network, the proposed SpaBN
does not show any degradation with respect to computa-
tional complexity.

4 CASE STUDY

In the present work, we have proposed a spatial Bayesian net-
work based forecast model (FORWARD), that incorporates the
spatial impact of meteorological factors while forecasting
the water dynamics in a reservoir. In order to validate the
performance of the proposed FORWARD model, we have
considered a case study on forecasting the daily live capacity
of a reservoir. The details of study area, data sets, and
experimental setup have been discussed in the subsequent
part of this section.

4.1 Data Sets and Study Area

In this work, the watershed [26] of riverMayurakshi in Jhark-
hand, India and its associated reservoir (Mayurakshi reser-
voir), has been considered as the area of case study.
Geographically, the reservoir is located at 24�6:60N latitude
and 87�18:90E longitude (refer Fig. 5) and the entire water-
shed is composed of nearly 1,866 sq. km area (Bottom-Left:
½24:09�N; 86:84�E�, Top-Right: ½24:62�N; 87:40�E�). The
region belongs to the tropical climate zone and shows three
well defined seasons, namely (i) summer season from March
to June, (ii) rainy season from July to October, and (iii) winter
season from November to February.

For experimental purpose, the whole watershed region
has been divided based on 10� 10 grid with each cell com-
prising approximately 33 sq. km area. The detailed specifi-
cations of the data collected from the study region are
described below:

� Daily rainfall data: The daily data of rainfall for each
of these gridded locations in the watershed has been
interpolated for a span of 10 years (1st January, 1991
to 31st December 2000) from the daily data of four
rain gauge stations (situated in Dumka (24:28�N ,
87:24�E), Jama (24:35�N , 87:15�E), Jharmundi
(24:40�N , 87:05�E), and Sariyahat (24:58�N , 87:01�E)
and also using 0:5� � 0:5� gridded rainfall data from
Indian Meteorological Department (IMD).

� Daily temperature data: The daily data of temperature
for each of the gridded locations has been interpo-
lated from IMD high resolution 1� � 1� gridded tem-
perature data.

Fig. 5. Study area: Mayurakshi river watershed, Jharkhand, India.
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� Daily live capacity data of the reservoir: The live capac-
ity data of the reservoir has been collected for the
same time span (1st January, 1991 to 31st December
2000) from the office of Irrigation and Waterways Dept.
Govt. of West Bengal, Kolkata, India.

� Topographical data: The topographical data, namely
the soil map (Fig. 6b), land slope map (Fig. 6d), and spa-
tial distribution of land use land cover (LULC) (Fig. 6c)
for the entire watershed region, have been collected
from theNational Bureau of Soil Survey and Land Use
Planning, Govt of India, and the Bhuvan portal [27],
respectively. From these maps, it is found that our
studywatershed is rich in diverse categories of LULC
and soil, where almost 66 percent of the total area con-
tains agricultural crop land, and about 74 percent of
the region is coveredwith fine loamy soil.

4.2 Experimental Setup

The proposed model, FORWARD, has been implemented
using R-tool version 3.2.2 (64 bit) [28] and MATLAB 7.12.0
(R2011a) [29] in Windows 7 (64 bit Operating System,
3.10 GHz CPU, 4.00 GB RAM). R-tool has been used for data
pre-processing, interpolation, feature set preparation, cluster
analysis, and spatial importance calculation purpose.

MATLAB has been utilized to implement the spatial
Bayesian network-based spatio-temporal analysis part of
FORWARD model. Moreover, the ArcGIS tool [30] has been
used for generating spatially distributed clusters/ regions.
The meteorological data over rainfall has been interpolated
for 45 locations (in the Mayurakshi watershed), placed over
a 10� 10 gridwithin thewatershed bounding box.

The proposed approach has been evaluated in compari-
son with other popular linear as well as nonlinear time series
forecasting approaches like exponential model (Holt-winters
approach), automated ARIMA, standard BN (SBN), and
ANN.MATLAB (NNTool) has been utilized to perform time
series forecast of live capacity using artificial neural network
(ANN), and implementing the standard BN technique. As
the model of ANN, we have considered the feed-forward
neural network, trained with the Levenberg-Marquardt algo-
rithm [31], and as the Bayesian network inference technique,
we have used the exact method [32]. On the other side, the
R-tool has been used for forecasting water level using
Holt-Winters method [33], andAutomated ARIMA [34].

In the present work, the simulation has been carried out
for three conditions, representing (i) normal rainfall year
(1998), (ii) high rainfall years (1999, 2000), and (iii) low rainfall
year (2001). Same combinations of input data have been

Fig. 6. Topographical features in Mayurakshi river watershed, Jharkhand, India.
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used for the proposed approach and all the other methods
for carrying out the comparative study. The various combi-
nation of training years and the corresponding prediction year
is presented in Table 1. However, our proposed model
FORWARD is flexible enough to adjust with any other com-
binations of training and testing year as well.

5 RESULTS AND DISCUSSION

In this section, we have discussed the details of various out-
comes of our experimentation on forecasting daily live capac-
ity of the Mayurakshi reservoir. The overall results of
forecasting are found to be promising.

5.1 Modified Curve Number Generation and Feature
Set Preparation

In order to generate modified curve number, the slope data
in the study region has been fuzzified into three linguistic
variables: Low,Medium, andHigh. Besides, each time a curve
number is modified, it is fuzzified into three different lin-
guistic variables in similar manner. The process of MCN
generation for the CN value 72 is shown in Fig. 3. Moreover,
the generated MCNs associated with all the 45 grid loca-
tions are presented in the Table 2.

Once the modified curve numbers have been generated,
the feature set is prepared based on the mean temperature
and rainfall data for each month, and the modified curve
number value. A typical form of feature set for any location
l in the study watershed region is given below

Fl ¼ mt1;mt2; . . . ;mt12;mp1;mp2; . . . ;mp12;mcnf g;
where, mti and mpi are the mean temperature and mean
rainfall for the ith month respectively, and mcn is the modi-
fied curve number corresponding to the location l.

5.2 Cluster Generation and Spatial Importance
Calculation

K-means clustering technique has been adopted to segre-
gate the study watershed area (45 locations) into six groups
based on the feature set. The results thus produced are non-
spatial clusters, which are further processed in ArcGIS to
identify eight spatially distributed clusters as described in
Table 3 and depicted in Fig. 7. Once the spatially distributed
clusters are identified, we determine the average value of
modified curve number, average water contributing area,
and mean spatial distance for each of the clusters (Table 3).
Then, the spatial weight/ importance for each cluster is
determined on the basis of average MCN, WCA, and SD
values. The percentage (%) spatial importance value, thus
obtained for each cluster, is graphically shown in Fig. 7.

5.3 Forecasting Reservoir Live Capacity Using
FORWARD Approach

In the proposed FORWARD model, the spatio-temporal
analysis has been performed based on the spatial Bayesian

network. The structure of the network used for this purpose
is shown in Fig. 4. Before performing the parameter learn-
ing, all the historical meteorological data (on temperature,
and rainfall), and the reservoir live capacity data has been
discretized into eight and nine classes, respectively. Once the
learning has been performed, the inference is generated for
live capacity for each day in the prediction year. The mean
of the inferred live capacity range, producing the highest
probability value, is considered as the predicted value in
each case. The results of forecasting with respect to various
performance measures have been discussed next, in com-
parison with various linear and non-linear approaches.

5.3.1 Model Evaluation Criteria

In order to evaluate the effectiveness of the proposed FOR-
WARD approach, six statistical indicators (goodness-of-fit
criteria), namely Normalized Root Mean Square Deviation
(NRMSD), Nash-Sutcliffe efficiency (NSE) [35], [36], Mean per-
cent deviation (Dv) [37], Percent standard error of prediction
(SEP) [36], Coefficient of determination or R-squared (R2) [37],
and Pearson’s correlation coefficient (CC), have been used in
the present study. The respective formulations for each of
these measures are as follows:

NRMSD ¼ 1

ðOmax �OminÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðVoi � VpiÞ2
vuut (16)

NSE ¼ 1�
PN

i¼1 ðVoi � VpiÞ2PN
i¼1 ðVoi � VoÞ2

(17)

Dv ¼ 1

N

XN
i¼1

ðVpi � VoiÞ
Voi

 !
� 100 (18)

SEP ¼ 1

Vo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðVoi � VpiÞ2
vuut

0
@

1
A� 100 (19)

R2 ¼
PN

i¼1ðVoi � VoÞðVpi � VpÞ
h i2

PN
i¼1 ðVoi � VoÞ2:

PN
i¼1 ðVpi � VpÞ2

(20)

CC ¼
PN

i¼1ðVoi � VoÞðVpi � VpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðVoi � VoÞ2

PN
i¼1 ðVpi � VpÞ2

q ; (21)

where, Omax is the maximum observed value of reservoir
live capacity, Omin is the minimum observed value of reser-
voir live capacity, Voi is the observed value of reservoir live
capacity on the ith day, Vpi is the predicted value of reser-
voir live capacity for the ith day, Vo is the mean of observed
values of reservoir live capacity, Vp is the mean of predicted
values of reservoir live capacity, and N is the total number
of prediction day considered.

The best-fit between observed and predicted live capac-
ity under ideal conditions yields NRMSD = 0, NSE = 1, Dv =
0, SEP = 0, R2 = 1, and CC = 1.

5.4 Performance Evaluation

The results for the prediction years 1998, 1999, 2000, and
2001 have been tabulated in comparison with various other
approaches (refer Tables 4, 5, 6, and 7). By analyzing the dif-
ferent outcomes, as shown in the tables and in Fig. 8, the

TABLE 1
Combination of Training Years and Prediction Year

Training years: 1991-1997 1991-1998 1991-1999 1991-2000

Prediction year: 1998 1999 2000 2001
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TABLE 2
Modified Curve Number (MCN) Associated with the Grid Locations in the Study Area

Grid
Point ID

Lat Long Soil Runoff
Potential

Land-Cover Slope Range/
Categories (%)

Modified Curve
Number

1 24.57 87.03 High Agricultural Land-Crop 3 78.00
2 24.57 87.09 Moderate Agricultural Land-Crop 3 72.00
3 24.57 87.15 Moderate Wasteland 3 80.00
4 24.57 87.22 High Wasteland 2 84.47
5 24.51 86.90 Moderate Wasteland 3 80.00
6 24.51 86.97 Moderate Wasteland 3 80.00
7 24.51 87.03 High Rural 1 87.40
8 24.51 87.09 Moderate Agricultural Land-Crop 2 71.55
9 24.51 87.15 Moderate Wasteland 2 79.50
10 24.51 87.22 Moderate Wasteland 2 79.50
11 24.51 87.28 Moderate Agricultural Land-Crop 3 72.00
12 24.45 86.90 Moderate Agricultural Land-Crop 2 71.55
13 24.45 86.97 Moderate Agricultural Land-Crop 2 71.55
14 24.45 87.03 Moderate Agricultural Land-Crop 2 71.55
15 24.45 87.09 Moderate Tree Clad Area 2 39.75
16 24.45 87.15 Moderate Agricultural Land-Crop 2 71.55
17 24.45 87.22 Moderate Rural 2 82.48
18 24.45 87.28 Moderate Agricultural Land-Crop 2 71.55
19 24.39 86.90 Moderate Agricultural Land-Crop 3 72.00
20 24.39 86.97 Moderate Agricultural Land-Crop 2 71.55
21 24.39 87.03 Moderate Agricultural Land-Crop 4 72.00
22 24.39 87.09 Moderate Agricultural Land-Crop 3 72.00
23 24.39 87.15 Moderate Agricultural Land-Crop 2 71.55
24 24.39 87.22 Moderate Agricultural Land-Crop 3 72.00
25 24.39 87.28 Moderate Agricultural Land-Fallow 3 79.00
26 24.33 86.97 Moderate Agricultural Land-Fallow 6 81.12
27 24.33 87.03 Moderate Agricultural Land-Crop 3 72.00
28 24.33 87.09 Moderate Agricultural Land-Crop 3 72.00
29 24.33 87.15 Moderate Agricultural Land-Fallow 2 78.51
30 24.33 87.22 Moderate Agricultural Land-Crop 1 71.51
31 24.33 87.28 Moderate Wasteland 2 79.50
32 24.27 86.97 High Agricultural Land-Crop 3 72.00
33 24.27 87.03 Moderate Agricultural Land-Fallow 3 79.00
34 24.27 87.09 Moderate Agricultural Land-Crop 2 71.55
35 24.27 87.15 Moderate Rural 2 82.48
36 24.27 87.22 Moderate Agricultural Land-Crop 2 71.55
37 24.27 87.28 Moderate Agricultural Land-Crop 3 72.00
38 24.27 87.34 High Rural 2 87.45
39 24.21 87.15 Moderate Agricultural Land-Crop 3 72.00
40 24.21 87.22 Moderate Agricultural Land-Crop 2 71.55
41 24.21 87.28 Moderate Agricultural Land-Crop 3 72.00
42 24.21 87.34 Moderate Agricultural Land-Crop 2 71.55
43 24.15 87.22 High Forest-Scrub 7 65.72
44 24.15 87.28 High Waterbodies 2 94.41
45 24.15 87.34 High Agricultural Land-Crop 2 77.51

TABLE 3
Details of the Clusters Generated Using Modified Curve Number (MCN)

Spatial
Cluster ID

Clustered Grid Locations
(longitude in �E, latitude in �N)

Average Modified
Curve Number

Water Containing
Area (sq. km)

Average Spatial
Distance (km)

1 (87.03,24.57), (87.09 ,24.57), (86.90,24.51),
(86.96, 24.51), (87.03 , 24.51)

79.480 21.237 52.039

2 (87.15, 24.57) 80.000 05.334 47.718
3 (87.21,24.57), (87.15,24.51), (87.21,24.51),

(87.28,24.51), (87.15,24.45), (87.21,24.45)
78.250 07.297 39.239

4 (87.09,24.51), (86.90,24.45), (86.96,24.45),
(87.03,24.45), (87.09,24.45), (86.90,24.39),
(86.96,24.39), (87.03,24.39), (87.09,24.39),
(86.96,24.39), (87.03,24.33), (86.96,24.27)

69.885 41.342 41.536

5 (87.09,24.33), (87.03,24.27), (87.09,24.27) 74.183 04.299 27.735
6 (87.28,24.45), (87.15,24.39), (87.21,24.39),

(87.28,24.39), (87.15,24.33), (87.15,24.27),
(87.15,24.21)

75.299 12.922 24.761

7 (87.21,24.33), (87.28,24.33), (87.21,24.27),
(87.28,24.27), (87.34,24.27), (87.21,24.21),
(87.28,24.21), (87.34,24.21)

74.639 44.438 13.547

8 (87.21, 24.15), (87.28, 24.15), (87.34, 24.15) 79.212 39.573 04.576
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following inferences can be drawn about the proposed FOR-
WARDmodel:

i) From the Tables 4, 5, 6, and 7, it is evident that the pro-
posed SpaBN-based approach (FORWARD) has
resulted in the highest value of NSE compared to the
standard BN, statistical ARIMA and ANN models.
Moreover, the value of NSE in almost all the cases is
	 1, indicating a highly accurate forecast made by
FORWARD. On the other side, the NSE values
corresponding to other prediction models, including

standard BN, highly deviate from 1. This proves the pre-
eminence of FORWARD over the other predictionmodels.

ii) The lower values of NRMSD (0.07-0.15), computed
for all the prediction years, indicate the efficacy of
proposed approach compared to the other techni-
ques (Tables 4, 5, 6, and 7). This also ensures that the
incorporation of spatial information has improved the
accuracy for FORWARD.

iii) From the Dv and SEP values in Tables 4, 5, 6, and 7, it
can also be inferred that the proposed approach is on
average more than 55 percent better than the statisti-
cal forecasting models (ARIMA models), and almost
25 percent better than the artificial neural network
(ANN)-based prediction technique. Moreover, the
performance of the SpaBN-based approach has improved
about 13 percent with respect to the standard Bayesian
network handling no spatial information.

iv) In order to get the view of fitness of the forecasting
methods, the R2 and CC values have also been esti-
mated as displayed in the Tables 4, 5, 6, and 7. R2

and CC value (magnitude) ranges from 0 to 1, and
the higher the value of R2 and CC, the better the
model fits for prediction. From the tables, it may be
observed that in most of the cases of prediction, the pro-
posed FORWARD approach provides a high R-squared
value 	1, whereas the R-squared value for ANN-
based model is 	 0.3, and that for the standard
BN and ARIMA models are 	 0.6 and 0.0 respec-

Fig. 7. Spatial importance/ weights ( in percentage) for different clusters.

TABLE 4
Prediction Year 1998: Comparative Study of Proposed Approach (FORWARD) with Existing Prediction Techniques

Prediction Techniques Prediction Year 1998

NRMSD NSE Dv SEP R2 CC

Exponential Model [Holt-Winters Approach] 0.315 00.000 004.17 19.82 0.000 0.000
Automated ARIMA 0.518 �1.703 �22.79 32.58 0.000 0.000
ANN (feed-forward back propagation) 0.315 �0.003 002.61 19.85 0.575 0.758
Standard BN (SBN) 0.192 00.630 004.85 12.06 0.663 0.814
Proposed Approach (FORWARD) 0.157 00.751 005.39 09.89 0.805 0.897

TABLE 5
Prediction Year 1999: Comparative Study of Proposed Approach (FORWARD) with Existing Prediction Techniques

Prediction Techniques Prediction Year 1999

NRMSD NSE Dv SEP R2 CC

Exponential Model [Holt-Winters Approach] 0.475 �1.036 059.20 46.21 0.000 0.000
Automated ARIMA 0.474 �1.029 059.08 46.14 0.061 0.247
ANN (feed-forward back propagation) 0.462 �0.926 �16.95 44.94 0.286 0.534
Standard BN (SBN) 0.203 00.626 016.65 19.80 0.679 0.824
Proposed Approach (FORWARD) 0.099 00.910 004.96 09.71 0.940 0.969

TABLE 6
Prediction Year 2000: Comparative Study of Proposed Approach (FORWARD) with Existing Prediction Techniques

Prediction Techniques Prediction Year 2000

NRMSD NSE Dv SEP R2 CC

Exponential Model [Holt-Winters Approach] 0.550 �2.705 168.55 101.42 0.000 0.000
Automated ARIMA 0.550 �2.706 168.56 101.42 0.166 0.409
ANN (feed-forward back propagation) 0.419 �1.152 052.07 077.29 0.073 0.270
Standard BN (SBN) 0.168 00.654 012.12 031.00 0.719 0.848
Proposed Approach (FORWARD) 0.068 00.942 004.09 012.65 0.973 0.986
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tively. Similar observations can be found for the CC
value as well.

v) Time series of the observed daily reservoir live
capacities and the model forecasts for the five
principal prediction models for the validation
period 1998-2001 are shown in the Fig. 8. From
the figure, it is clear that the outcome from the

proposed SpaBN-based forecast model, FORWARD, is
matching well with the actual value of live capacity in
all the prediction years (1998-2001), thus indicating
better model efficiency.

Though in few cases the final prediction value
is considerably an over/under-estimation, it is
evident from the figure that, whenever there is

TABLE 7
Prediction Year 2001: Comparative Study of Proposed Approach (FORWARD) with Existing Prediction Techniques

Prediction Techniques Prediction Year 2001

NRMSD NSE Dv SEP R2 CC

Exponential Model [Holt-Winters Approach] 0.266 0.458 45.92 53.07 0.000 0.000
Automated ARIMA 0.266 0.459 45.66 53.05 0.001 0.032
ANN (feed-forward back propagation) 0.256 0.500 12.49 50.98 0.178 0.422
Standard BN (SBN) 0.254 0.506 34.40 50.68 0.357 0.598
Proposed Approach (FORWARD) 0.097 0.928 08.98 19.39 0.937 0.968

Fig. 8. Graphical plot for predicted and observed series: A. Year 1998, B. Year 1999, C. Year 2000, D. Year 2001.
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over/under-estimation produced by standard BN,
the proposed SpaBN has a notable tendency to
improve it by making it as near to the observed
value as possible. Therefore, the proposed
approach is found to be more versatile than the
standard BN. Moreover, the problem of over/
under-estimation can be reduced to a greater
extent by discretizing the variable ranges into
smaller sub-ranges. Inclusion of additional predic-
tors like evapotranspiration (ET) and evaporation
from the watershed and reservoir water surface
may further improve the proposed methodology.

6 CONCLUSION

A proper assessment of reservoir water dynamics is of
utmost importance, since it has a significant impact on the
industrial, agricultural, and socio-economic development of
any region. Various meteorological variables, e.g., rainfall,
temperature etc., are the key factors which influence the nat-
ural hydrological processes in reservoir, and for better
understanding of the same, a proper modeling is necessary.
The present work proposes a spatial Bayesian network
based approach (FORWARD), considering various meteoro-
logical and spatial parameters, for forecasting the reservoir
dynamics on a daily basis. FORWARD can intrinsically
model the impact of spatial variability of various influenc-
ing factors over the associated river-catchment area. The
performance of FORWARD has been evaluated over a case
study on forecasting daily live capacity ofMayurakshi reservoir
for a duration of four years (1998-2001). Six popular statistical
parameters, namely Normalized Root Mean Square Deviation
(NRMSD), Nash-Sutcliffe efficiency (NSE), Mean percent devia-
tion (Dv), Percent standard error of prediction (SEP), Coefficient of
determination (R2), and Correlation coefficient (CC), have been
used as the measures of goodness-of-fit criteria. The overall
estimates (NRMSD: 0:1
 0:05, NSE: 0:88
 0:13, Dv:
5:8
 3:1, SEP:12:91
 0:48, R2: 0:91
 0:1, CC: 0:95
 0:05)
have proved the efficacy as well as preeminence of FOR-
WARD in comparisonwith several other existingmethods.

Though in this work, FORWARD has been illustrated
with respect to reservoir live capacity prediction, the
generic structure of this model can easily be extended to
various domains by incorporating appropriate domain
knowledge. Moreover, the SpaBN can be treated as a generic
machine learning technique, which can be used for long-range
dependency analysis by modeling the spatial influence of
variables from neighboring locations in a large spatial
region. It can be applied as a space-time model in a wide
range of applications, including meteorological prediction,
surveillance of epidemics [38], traffic flow modeling [39],
[40], and so on.
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