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Timely and accurate prediction of remote sensing data is of utmost importance especially in
a situation where the predicted data is utilized to provide insights into emerging issues, like
environmental nowcasting. Significant research progress can be found to date in devising variants of
neural network (NN) models to fulfil this requirement by improving feature extraction and dynamic
process representation power. Nevertheless, all these existing NN models are built upon rigid
structures which often fail to maintain trade-off between bias and variance, and consequently, need
to spend a lot of time to empirically determine the most appropriate network configuration. This
paper proposes SARDINE, a novel variant of deep recurrent neural network with intrinsic capability
of self-constructing the network structure in dynamic and incremental fashion while learning from
observed data samples. Moreover, the proposed SARDINE is able to model the spatial feature
evolution while scanning the data in single pass manner and this further saves significant time
when dealing with remote sensing imagery containing millions of pixels. Subsequently, we employ
SARDINE in combination with a spatial influence mapping unit to accomplish the prediction. The
effectiveness of the proposed model is evaluated in terms of predicting time series of normalized
difference vegetation index (NDVI) data derived from Landsat TM-5 and MODIS Terra satellite
imagery. The experimental result demonstrates that the SARDINE-based prediction is able to
achieve state-of-the-art accuracy with significantly reduced computational cost.

CCS Concepts: � Information systems � Spatio-temporal systems; Geographic infor-
mation systems.

Additional Key Words and Phrases: Spatio-temporal prediction, Evolving RNN, Incremental
model, Remote sensing

ACM Reference Format:
Monidipa Das, Mahardhika Pratama, and Soumya K. Ghosh. 2020. SARDINE: A Self-Adaptive
Recurrent Deep Incremental Network Model for Spatio-temporal Prediction of Remote Sensing
Data. ACM Trans. Spatial Algorithms Syst. XX, X, Article XXX (January 2020), 28 pages. https:
//doi.org/10.1145/1122445.1122456

Authors’ addresses: Monidipa Das, Nanyang Technological University, Singapore, monidipadas@ntu.edu.sg;

Mahardhika Pratama, Nanyang Technological University, Singapore, mpratama@ntu.edu.sg; Soumya K.
Ghosh, Indian Institute of Technology Kharagpur, India, skg@cse.iitkgp.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2374-0353/2020/1-ARTXXX $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Spatial Algorithms Syst., Vol. XX, No. X, Article XXX. Publication date: January 2020.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


XXX:2 Monidipa Das, et al.

1 INTRODUCTION

In the present era of advanced science and technology, the remote sensing data play central
role in studying various spatio-temporal processes on the earth surface. Whether captured by
a geo-stationary or polar orbiting satellite, the remotely sensed imagery provide continuous
and synoptic observations covering large areas of the earth surface, which are enormously
useful for detailed monitoring and damage assessment purpose. Analysis of urban sprawl
pattern [12, 30], assessment of coastal vulnerability [6], monitoring natural disasters (like
flood, cyclone etc.) [33] are popular domains with wide applicability of remote sensing data.

However, analyzing remote sensing data often becomes challenging due to missing image or
missing values introduced by defective sensor, low temporal frequency, cloud cover, and other
poor conditions of the atmosphere [4][11]. Consequently, the usability of the data becomes
limited in many situations. In order to deal with this issue, low-quality or defected data are
often discarded and the missing data are reconstructed by means of prediction from observed
data. The gapfill-MAP [19], spatio-temporal interpolation techniques [8], TIMESAT [19]
etc. are some popular approaches in this respect. Research efforts can also be noticed in
employing techniques like multi-sensor data fusion [37] and multi-temporal-complementation
[26] for this purpose. The situation becomes even more serious when all the complementary
spatial information for a particular time instance is missing in a series of derived remotely
sensed imagery, and in such case, it becomes necessary to predict the entire image by utilizing
the spatio-temporal information from the available data. Recently, the Deep-STEP [10] and
the STBN [13] models are typically proposed to deal with such scenario. This paper also
focuses on spatio-temporal prediction of full derived image for a particular time stamp, based
on the observed data from earlier time instances, while assuming all the source imagery are
captured through similar sensor.

1.1 Challenges and Motivations

With the recent advancements of AI and machine learning, there has been significant
progress in remote sensing data prediction technology. More prominently, variants of neural
network models with their deep architectures and hierarchical feature learning capability
have been found to show promising performance in spatio-temporal prediction of satellite
remote sensing imagery. However, despite these progressions, there remain several issues
such as fixed network architecture, multi-pass parameter learning, and large parameter
requirements, which impose serious challenges especially when the prediction is necessary
to be accomplished in a timely manner. A timely as well as accurate prediction of remote
sensing data plays significant role especially in a situation when the predicted data is
utilized to provide insights into urgent issues, like environmental nowcasting, civil protection
alarming etc. Though variants of neural-network-based models in the literature [40][32] have
already demonstrated their effectiveness in remote sensing image prediction, the successful
applications of these models are often restricted because of the following concerns.

∙ Fixed network architecture: The existing models mostly aim at improvising feature
extraction and dynamic process representation power, and pay little focus on the issue of
on-the-fly structural adaptation of the model. Because of rigid network structure, these
models often fail to maintain trade off between bias and variance. That means, either
the model can move into over-fitting zone due to too complex network architecture and
show high degree of variance, or it can move into under-fitting zone due to insufficient
network configuration and show high degree of bias [1]. Further, because of rigid
structure of the network, these models often fail to appropriately deal with the change
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in spatial contexts throughout the image. In order to avoid such situations, the model
needs to empirically determine the most appropriate network configuration for each
different scenario. This requires substantial time to be spent, and as a consequence,
the model becomes unsuitable for timely prediction in diverse contexts.
∙ Multi-pass parameter learning: Another major limitation with several of the
existing approaches lies in their parameter updating process which often involves
multi-pass data scanning strategy i.e. iterating over the training data. However, in case
the prediction is meant for quick decision making process, the multi-pass parameter
learning approach may obstruct the model to behave desirably, since each remote
sensing image contains very large number of pixels.
∙ Large parameter requirements: Although the various deep learning models like
convolutional neural networks are found to work extremely well with image data, in
many of the cases, these require very large number of parameters that grow substantially
with the increasing volume of the data. Similar issues also arise with the long-short
term memory (LSTM) recurrent neural network models. Though LSTMs perform
notably well in predicting image sequences, the success of these models are mainly due
to various gating mechanisms which need to exploit a large number of parameters, and
this eventually leads to high computational cost.

Motivated by the above-mentioned issues, in this paper we attempt to develop a neural
network variant with flexible network architecture and single-pass learning ability, so as
to accomplish spatio-temporal prediction of derived remote sensing imagery in a timely
manner.

1.2 Our Contributions

This paper proposes SARDINE, a novel variant of recurrent neural network with the intrinsic
capability of self constructing the network structure in dynamic and incremental fashion
while learning from observed data samples. Moreover, the proposed SARDINE is able to
model the spatial feature evolution while scanning the data in single pass manner and this
further saves significant amount of time during the course of prediction. The effectiveness of
the proposed prediction model is evaluated in terms of predicting time series of remotely
sensed normalized difference vegetation index (NDVI) data derived from Landsat TM-5 and
MODIS Terra satellite imagery [35]. The comparative study is carried out with a number of
traditional baselines as well as state-of-the-art deep learning techniques for remote sensing
image prediction. Our key contributions in this work are as follows:

∙ We propose SARDINE as a deep recurrent neural network variant for learning the
temporal evolution of spatial features in single pass, on-the-fly, and incremental manner.
∙ The proposed SARDINE features flexible architecture and self-evolution power. Ac-
cordingly, it begins the learning using a single hidden unit in a single hidden layer and
auto-construct the network to cope with variants of spatial contexts of the pixels in
the imagery.
∙ The network structure of SARDINE is auto-adjusted and needs no additional empirical
study to find the best configuration. This saves substantial amount of computational
time and also helps optimal exploitation of network parameters.
∙ The proposed SARDINE is designed to learn using teacher forcing mechanism, and
thus, overcomes the computational burden and gradient vanishing/exploding problems
in conventional RNN learning that uses back propagation through time (BPTT).
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∙ Finally, we develop SARDINE-based prediction model with embedded mechanism
of auto-modeling spatial influence, for spatio-temporal prediction of derived remote
sensing imagery;

To the best of authors’ knowledge, this is the first work on a self-evolving deep architecture
for a recurrent network model and employing the same in remote sensing image prediction.
The incremental learning capability of the proposed model offers added benefit while dealing
with variants of spatial contexts from widely spread region as captured through the satellite
imagery. To be noted, though our earlier work in [14] introduced the concept of evolving
recurrent neural network, the model is not self-evolving in terms of deep architecture. Further,
since the model in [14] uses only the norm of previous output without any explicit recurrent
connection, the model [14] loses significant information from the past and becomes unsuitable
for the present image regression context.
The rest of the paper is organized in following manner. The Section 2 discusses on

the existing techniques for predicting remote sensing data. A formal description of the
problem formulation is presented in Section 3. The detailed illustration of the methodology
is provided in Section 4 with a special focus on proposed self-adaptive recurrent deep
incremental network model, SARDINE. The experimental evaluation of the proposed model
is extensively described in Section 5 in comparison with a number of baseline techniques.
Finally, the concluding remarks along with several future prospects are summarized in
Section 6.

2 RELATED WORKS ON PREDICTION OF REMOTE SENSING DATA

Prediction under spatio-temporal framework is one of the hot research topics in recent
years and has attracted considerable attentions from diverse areas [22, 25, 42]. The domain
of satellite remote sensing is also not an exception in this respect. However, the existing
spatio-temporal prediction models in this domain are mostly intended for remote sensing
image classification, while the regression of remote sensing data derived from satellite imagery
still remains comparatively little explored. Nevertheless, as per the current context of this
paper, we will focus on the space-time regression of single-sensor satellite remote sensing
data, with typical distinctions between conventional statistical and deep learning models.

2.1 Conventional models

Among the various conventional statistical approaches, the space-time Kriging [8], singular
spectrum analysis, linear regression [24], spatio-temporally weighted regression [4], Kalman
filtering [31], and the spatiotemporal Markov random field models [5] are widely used in
remote sensing image prediction. However, one of the key limitations of these techniques is
that these are mostly not scalable to large datasets and also sometimes not suitable for par-
allelization. Further, these approaches are more applicable on predicting corrupted/missing
pixel values in the imagery and often fail in the situation when missing values fall within
large gaps. For the same reason, these are not at all suitable for forecasting the full imagery
for some future time stamps. Another major issue with these models is that these lack
proper quantification of prediction uncertainties and also suffer from low speed due to com-
putationally expensive methods requiring large-scale storage. Though the recently proposed
spatio-temporal Bayesian network (STBN)-based prediction model [13] is found to show
some advantages regarding uncertainty handling, large-scale data modeling, computational
resource requirements etc., like all other previously-mentioned models, STBN is also based
on hand-crafted architecture for learning the space-time dependency.
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2.2 Deep learning models

The key advantage of the deep learning approaches remain in their automatic and hierarchical
feature extraction capability from huge volume of datasets, which eventually makes them
highly potential to deal with satellite remote sensing images, each of which contains very
large number of pixels. Among the various deep learning approaches, Deep-STEP [10] and
Deep-STEP FE [11] are some recently proposed and pioneering models which are able to
predict missing derived remote sensing imagery for future or intermediate time stamps.
Both Deep-STEP and Deep-STEP FE are derived from deep stacking network (DSN) [15]
which is based on the concept of stacking simple modules built upon single hidden-layer
network. Currently, Marzano [27] have used RC-NN as a recurrent neural network (RNN)
variant which is found to be effective for nowcasting rainfall from Multisatellite passive-sensor
images. Zhang et al. [46] have proposed a recurrent neural network model with long short
term memory (LSTM) architecture to predict sea surface temperature from high resolution
remote sensing data. There also exist some works employing convolutional neural network
(CNN) for space-time regression from satellite remote sensing imagery [23]. However, these
are mostly focused towards mapping of remote sensing data into a different quantitative
variable to be predicted, instead of predicting the imagery over the original data. Recent
research trend also shows an attempt to use combination of RNN-LSTM and convolutional
neural network to utilize the power of LSTM for handling sequential input imagery and that
of CNN for better extraction of spatial/spatio-temporal features. For example, You et al.
[44] have applied combined LSTM and CNN with incorporated Gaussian process for crop
yield prediction. Yang et al. [41] have used LSTM model with added convolutional layer for
predicting high resolution sea surface temperature data derived from satellite remote sensing
imagery. However, the use of large number of parameters becomes a major issue which
restricts these models to successfully operate only when the number of image in the sequence
is quite large. Further, all these models are built upon fixed-layered network architecture,
and thus, can contribute less in the scenario of prompt prediction, as thoroughly discussed
in the Section 1.1.

In order to address the issues with rigid architecture, iterative learning, and large parameter
requirements, in this paper we have proposed a new variant of deep recurrent neural network
with online learning capability and self-evolution property, which subsequently leads the
model to deal with optimal number of parameters. When evaluated on remote sensing
time series of NDVI (normalized difference vegetation index) imagery, the proposed model
consistently outperforms the state-of-the-art deep-learning models.

3 PROBLEM FORMULATION

In this section, we present the overall spatio-temporal prediction problem as the prediction
of derived remote sensing imagery with consideration to the influence of temporally evolving
spatial features in the neighborhood of each pixel.
Let’s denote the derived remote sensing imagery at time instance 𝑡 as 𝐼𝑡 and any pixel

corresponding to the spatial location (𝑝, 𝑞) in 𝐼𝑡 as 𝑃 (𝑝, 𝑞, 𝑡), where 𝑃 (𝑝, 𝑞, 𝑡) ∈ R. Then, given
the sequence of remote sensing imagery 𝐼 = {𝐼1, 𝐼2, · · · , 𝐼𝑇−1, 𝐼𝑇 } over any derived variable
for 𝑇 number of time stamps, the goal is to predict 𝐼𝑇+1, considering each 𝑃 (𝑝, 𝑞, 𝑇 +
1) ∈ 𝐼𝑇+1 to be attributed by the spatio-temporal features from a predefined spatial
neighborhood coverage 𝑆. The concept of spatial neighborhood coverage is depicted in the
Fig. 1. As illustrated through the figure, for any pixel 𝑃 (𝑝, 𝑞, 𝑡), the spatial neighborhood

coverage 𝑆 of degree 𝑑 is comprised of
[︁
(2𝑑+ 1)

2 − 1
]︁
number of neighboring pixels which
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can be represented as 𝑆(𝑃 ) = 𝑆(𝑃 (𝑝, 𝑞, 𝑡)) = {𝑃 (𝑝± 1, 𝑞 ± 1, 𝑡), · · · , 𝑃 (𝑝± 𝑑, 𝑞 ± 𝑑, 𝑡)} −
{𝑃 (𝑝, 𝑞, 𝑡)}.

Fig. 1. Illustration of spatial neighborhood coverage with respect to a central pixel

Under this scenario, the generic objective function can be formulated as follows:

min̂︀𝐼𝑇+1∈R𝑁 ,𝐼𝑇+1∈R𝑁

𝑙𝑜𝑠𝑠
(︁
𝐼𝑇+1, ̂︀𝐼𝑇+1

)︁
(1)

where, ̂︀𝐼𝑇+1 = argmax
𝐼𝑇+1∈R𝑁

𝑃𝑟(𝐼𝑇+1|𝐼1, 𝐼2, · · · , 𝐼𝑇−1, 𝐼𝑇 ) (2)

𝑁 is the total number of pixels in each image and 𝑙𝑜𝑠𝑠 indicates the loss function. This can
also be represented approximately as follows.

min̂︀𝑃 (𝑝,𝑞,𝑇+1)∈R,𝑃 (𝑝,𝑞,𝑇+1)∈R

√
𝑁∑︁

𝑖,𝑗=1

𝑙𝑜𝑠𝑠
(︁
𝑃 (𝑝𝑖, 𝑞𝑗 , 𝑇 + 1), ̂︀𝑃 (𝑝𝑖, 𝑞𝑗 , 𝑇 + 1)

)︁
(3)

where,̂︀𝑃 (𝑝, 𝑞, 𝑇 + 1) = argmax
𝑃 (𝑝,𝑞,𝑇+1)∈R

𝑃𝑟(𝑃 (𝑝, 𝑞, 𝑇 + 1)|𝑃 (𝑝± 𝑑, 𝑞 ± 𝑑, 1), · · ·𝑃 (𝑝± 𝑑, 𝑞 ± 𝑑, 𝑇 ))

(4)

This paper attempts to solve the objective function by employing a deep evolving recurrent
network model, along with an embedded spatial influence mapping unit working in parallel
to capture the spatial influence. The detailed architecture as well as working principle of the
proposed model is described in the following section.

4 PROPOSED PREDICTION MODEL BASED ON SARDINE

4.1 Model Overview

The overall flow of the proposed prediction model is depicted in the Fig. 2. At first, the model
learns how the neighboring spatial features of each pixel evolves with time, and eventually,
predicts the condition of each pixel of the prediction image, based on the predicted condition
of the neighboring pixels.
It may be observed from the Fig. 2 that, the proposed prediction model is comprised of

three major modules corresponding to spatial feature representation, modeling of spatial
feature evolution, and finally, prediction with consideration to the spatial influence. The
spatial feature representation (Module-I) as well as spatial influence modeling (Module-III)
are based on the assumption that a pixel at a particular location is likely to have similar
value as that of the pixels in its spatial/temporal neighborhood. This is supported by Tobler’s
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Fig. 2. Proposed prediction model based on SARDINE

‘First Law of Geography’ [3]. Accordingly, each pixel of the forecast image is finally produced
as a function of predicted values of the neighboring pixels which are, meanwhile, determined
as per the process of spatial feature evolution, captured through the Module-II. Incidentally,
the modeling of spatial feature evolution is itself a crucial task as it may be driven by
several geo-spatial or anthropogenic process intervention in the background. In our model,
we employ a deep recurrent neural network model (SARDINE) for this purpose. The idea is
to indirectly capture the effect of the background processes in terms of the temporal change
in surrounding spatial features represented at various levels of abstractions. The learning of
multi-level feature abstraction is accomplished through the incremental deep architecture of
SARDINE, whereas the modeling of temporal change in the feature is achieved through its
self-evolving recurrent structure. The dynamically adaptive network structure of SARDINE
not only helps to auto-adjust the model capability with the change in spatial context, but
also this resolves the issue of timely prediction as it does not require additional empirical
analysis to identify the best suitable configuration.
The technical details for each key module in our proposed model are provided in the

subsequent subsections.

4.2 Module-I: Input-Output Spatial Feature Representation

The primary aim of this module is to represent each pixel in terms of intensity of its
neighboring pixels so that these form the input spatial feature vector for the corresponding
pixel and help in defining the associated record in the dataset. This makes the proposed
model consistent with both our problem statement and the state-of-the-art convention [7, 10].
Numerically, this can be expressed as follows:

𝑃 (𝑝, 𝑞, 𝑡) = 𝜓(𝑃 (𝑝± 𝑑, 𝑞 ± 𝑑, 𝑡)) (5)

where, 𝑑 ̸= 0 denotes the degree of spatial neighborhood coverage in space. Thus, the input
feature for a data record corresponding to 𝑃 (𝑝, 𝑞, 𝑡) becomes: ⟨𝑃 (𝑝− 𝑑, 𝑞 − 𝑑, 𝑡),
𝑃 (𝑝− 𝑑+ 1, 𝑞 − 𝑑+ 1, 𝑡), · · ·𝑃 (𝑝+ 𝑑− 1, 𝑞 + 𝑑− 1, 𝑡), 𝑃 (𝑝+ 𝑑, 𝑞 + 𝑑, 𝑡)⟩.
Now, the output feature for each data record is prepared in two ways to serve the objec-

tives of Module-II and Module-III respectively. For the Module-II, the output feature set
is prepared based on the spatial feature of the corresponding pixel in the immediate next
time stamp. Thus, for Module-II, the output feature set for a data record corresponding to
𝑃 (𝑝, 𝑞, 𝑡) is represented in terms of neighboring pixel intensity in the next time stamp as fol-
lows: ⟨𝑃 (𝑝− 𝑑, 𝑞 − 𝑑, 𝑡+ 1), 𝑃 (𝑝− 𝑑+ 1, 𝑞 − 𝑑+ 1, 𝑡+ 1), · · ·𝑃 (𝑝+ 𝑑− 1, 𝑞 + 𝑑− 1, 𝑡+ 1),
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𝑃 (𝑝+ 𝑑, 𝑞 + 𝑑, 𝑡+ 1)⟩. Accordingly, a dataset of dimension [𝑁 × (2𝑀)] is produced for the
Module-II, with consideration to each individual timestamp 𝑡, where 𝑀 = (2𝑑+ 1)2 − 1 is
the size of input/output spatial feature vector associated with each of the 𝑁 pixels observed
at 𝑡.
On the other side, the output feature set to be used in Module-III is prepared to reflect

the condition of each pixel in central position with respect to its spatial neighbors. Thus,
for Module-III, the output feature set in a data record corresponding to a pixel at (𝑝, 𝑞)
position is represented in terms of its own pixel intensity as follows: ⟨𝑃 (𝑝, 𝑞, 𝑡)⟩. On following
the same way, a dataset of dimension [𝑁 × (𝑀 + 1)] is produced for the Module-III, with
consideration to each individual timestamp 𝑡, where 𝑀 = (2𝑑+ 1)2 − 1 is the size of input
spatial feature vector associated with each of the 𝑁 pixels observed at 𝑡.

4.3 Module-II: Modeling of Spatial Feature Evolution using SARDINE

The key objective of this module is to hierarchically learn complex rules/functions for
modeling the temporal evolution of spatial features during the observed time period. Later,
in Module-III, the spatial influence of these temporally evolved features are utilized to predict
each pixel value in the prediction image (refer to Fig. 4). The modeling of Spatial feature
evolution in the Module-II is accomplished by a self-adaptive variant of recurrent neural
network, termed as SARDINE, which is one of the key contributions of this paper. The
details of recurrent architecture, parameter learning policy, and layer adaptation mechanisms
of proposed SARDINE is thoroughly described in the subsequent subsections.

Fig. 3. Recurrent architecture of SARDINE and a typical state of its unfolded computational graph at a
particular instant

4.3.1 Architecture. The recurrent network architecture along with the associated unfolded
computational graph of our proposed SARDINE is depicted in Fig. 3. As shown in the figure,

at each time instance 𝑡, the input to SARDINE is 𝑥(𝑡)
⊤ ∈ R𝑀 (𝑀 =

[︀
(2𝑑+ 1)2 − 1

]︀
is the

dimension of input feature), the hidden layer activation is 𝐻
(𝑡)
(𝑘)

⊤
∈ R𝑒𝑘 (𝑒𝑘 is hidden unit

count for layer 𝑘, 1 ≤ 𝑘 ≤ 𝑙), un-stretched output 𝑂(𝑡) is subsequently updated using linear
stretching function to generate the predicted output ̂︀𝑦(𝑡) in the desired range corresponding
to the associated variable. Typically, for SARDINE, ̂︀𝑦(𝑡) ⊤ ∈ R𝑀 (where 𝑀 is the number of
spatial features from neighborhood) and the loss is 𝐿(𝑡). The connections between input 𝑥(𝑡)

and the first hidden layer 𝐻
(𝑡)
(1)) are parameterized by weight matrix U[𝑒1×𝑀 ]=V(0)[𝑒1×𝑀 ]

;
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Fig. 4. Typical architecture of learning within the Module-II and Module-III of the proposed prediction
model

the feed-forward connections between each 𝑘-th and (𝑘+1)-th hidden layer are parameterized
with weight matrix V(k)[𝑒𝑘+1×𝑒𝑘]

where (1 ≤ 𝑘 < 𝑙); and the forward connections between

the top-most hidden layer 𝐻
(𝑡)
(𝑙) and the output layer 𝑂(𝑡) are parameterized with V(k)[𝑀×𝑒𝑘]

,

where 𝑘 = 𝑙. Most importantly, neither the 𝑒𝑘 (1 ≤ 𝑘 ≤ 𝑙) nor the 𝑙 is fixed for SARDINE.
Both change dynamically depending on the spatial location of the input pixel during the
training time. Moreover, in SARDINE, the recurrent connections exist between output and
hidden layers, as represented using dashed arrows in the Fig. 3 and are parameterized with
weight matrix W(k)[𝑒𝑘×𝑀 ]

where (1 ≤ 𝑘 ≤ 𝑙). Because of these output-to hidden recurrent

connections, the proposed SARDINE can learn from exact outputs from previous time stamps
according to the teacher forcing policy [21] and thereby ensures greater parallelization in
the training phase.

4.3.2 Parameter Learning. This section provides a detailed discussion on parameter learning
of SARDINE in terms of forward propagation and backward propagation computation.

Forward-propagation computation. The forward propagation in SARDINE is performed
by applying ReLU (rectified linear unit) and linear stretching function in the hidden layer
and output layer, respectively. Accordingly, the hidden layer activation (𝐻) computation
becomes as follows.

When 𝑘 = 1,

𝐻
𝑖(𝑡)
(𝑘) = 𝑚𝑎𝑥

(︁
0,
[︁
𝑏𝑖(𝑘) + 𝑈𝑖𝑥

(𝑡) +𝑊(𝑘)𝑖𝑦(𝑡−1)

]︁)︁
(6)

and when 𝑘 > 1

𝐻
𝑖(𝑡)
(𝑘) = 𝑚𝑎𝑥

(︁
0,
[︁
𝑏𝑖(𝑘) + 𝑉(𝑘−1)𝑖𝐻

(𝑡)
(𝑘−1) +𝑊(𝑘)𝑖𝑦(𝑡−1)

]︁)︁
(7)
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Here, 𝑖 = 1, 2, · · · 𝑒𝑘 denotes the hidden unit in the 𝑘-th hidden layer 𝐻
(𝑡)
(𝑘) at time 𝑡,

𝑏(𝑘)
⊤ ∈ R𝑒𝑘 denotes the bias for 𝑘-th level. At the time of testing, the actual output 𝑦(𝑡−1)

is replaced with the predicted output ̂︀𝑦(𝑡−1), as depicted in Fig. 3. The use of ReLU as
the hidden layer activation ensures that the model becomes free from vanishing gradient
issue even when the depth of the network (𝑙 + 1) is increased. To be noted, in the Eq. 7,
the concept of using the output from previous layer and the original feature from earlier
timestamp is different from that proposed for deep residual neural network [22]. Our Eq.
7 is formulated to realize the recurrent connection as influenced from the teacher forcing
principle [21], whereas the formulation proposed in [22] is primarily designed to realize
“shortcut connections” in feed-forward neural networks.
Once the hidden layer activations are determined, the un-stretched output at 𝑡 is estimated
as follows:

𝑂(𝑡) = 𝑐+ 𝑉(𝑘)𝐻
(𝑡)
(𝑘) (8)

where 𝑘 = 𝑙, and 𝑐⊤ ∈ R𝑀 denotes the bias in the output layer. The un-stretched outcomes
are obtained within a range [𝑟1, 𝑟2] which needs to be further stretched into the desired
range [𝑠1, 𝑠2] to generate the predicted output ̂︀𝑦(𝑡) in following manner:

̂︀𝑦(𝑡) = 𝑔(𝑂(𝑡)) = 𝑎𝑂(𝑡) + 𝑧 (9)

where, 𝑔 is the linear stretching function [20], 𝑎 = (𝑠2−𝑠1)
(𝑟2−𝑟1)

, and 𝑧 =
(︁
𝑠1 − 𝑟1×(𝑠2−𝑠1)

(𝑟2−𝑟1)

)︁
.

After the estimation of predicted output ̂︀𝑦, the squared loss 𝐿 is computed as follows:

𝐿(𝑦, ̂︀𝑦) = 1

2𝑀

𝑀∑︁
𝑖=1

(𝑦𝑖 − ̂︀𝑦𝑖)2 (10)

Here 𝑦 denotes the observed value at the same time stamp. As per the problem definition
(refer to Section 3), the predicted value ̂︀𝑦 here is nothing but the predicted spatial featureŝ︀𝑆(𝑃 ) = ̂︀𝑆(𝑝, 𝑞, 𝑡+ 1) for the pixel 𝑃 (𝑝, 𝑞, 𝑡+ 1).

Back-propagation computation. The back-propagation computation in SARDINE is per-
formed by applying stochastic gradient descent technique on the unfolded computational
graph. However, since the recurrent connection in SARDINE is achieved through output-to-
hidden connection, according to the teacher forcing principle [21], the network can directly
use the spatial feature from earlier time stamps rather than using the predicted outputs.
Thus, the back-propagation algorithm can be applied in isolation to each time stamp, instead
of using generalized back-propagation-through-time (BPTT) algorithm. This ultimately re-
duces the computational burden and also resolves the exploding-gradient/vanishing-gradient
problem, as often faced by traditional RNN with hidden-to-hidden recurrent connection [21].
Hence, the gradient computation in SARDINE for each time stamp becomes as follows.

The recursive computation is initiated with 𝜕𝐿
𝜕𝐿(𝑡) = 1 and then it proceeds to the output

layer and hidden layers.

𝜕𝐿

𝜕̂︀𝑦(𝑡)𝑖

=
(︀
∇̂︀𝑦(𝑡)𝐿

)︀
𝑖
= −

(︁
𝑦
(𝑡)
𝑖 − ̂︀𝑦𝑖(𝑡))︁ (11)

𝜕𝐿

𝜕𝑂
(𝑡)
𝑖

= (∇𝑂(𝑡)𝐿)𝑖 = −𝑎
(︁
𝑦
(𝑡)
𝑖 − ̂︀𝑦𝑖(𝑡))︁ (12)
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When 𝑘 = 𝑙,
∇

𝐻
(𝑡)

(𝑘)

𝐿 = 𝑉 ⊤
(𝑘) (∇𝑂(𝑡)𝐿) (13)

and when 1 ≤ 𝑘 < 𝑙,

∇
𝐻

(𝑡)

(𝑘)

𝐿 =

(︂
∇

𝐻
(𝑡)

(𝑘+1)

𝐿

)︂
, if 𝐻

(𝑡)
(𝑘+1) > 0

= 0, otherwise (14)

After the gradient computation for the internal nodes is over, the gradients for the parameters
are estimated as follows:

Gradient calculation for bias parameters:

∇𝑐𝐿 =

(︂
𝜕𝑂(𝑡)

𝜕𝑐

)︂⊤

(∇𝑂(𝑡)𝐿) = (∇𝑂(𝑡)𝐿) (15)

∇𝑏(𝑘)
𝐿 =

(︂
∇

𝐻
(𝑡)

(𝑘)

𝐿

)︂
, if 𝐻

(𝑡)
(𝑘) > 0

= 0, otherwise (16)

where 1 ≤ 𝑘 ≤ 𝑙.

Gradient calculation for weight parameters:

∇𝑉(𝑘)
𝐿 = (∇𝑂(𝑡)𝐿) ·

(︁
𝐻

(𝑡)
(𝑘)

)︁⊤
(17)

when 𝑘 = 𝑙, and

∇𝑉(𝑘)
𝐿 =

(︂
∇

𝐻
(𝑡)

(𝑘+1)

𝐿

)︂(︁
𝐻

(𝑡)
(𝑘)

)︁⊤
, if 𝐻

(𝑡)
(𝑘+1) > 0

= 0, otherwise (18)

when 1 ≤ 𝑘 < 𝑙.

∇𝑊(𝑘)
𝐿 =

(︂
∇

𝐻
(𝑡)

(𝑘)

𝐿

)︂(︁
𝑦(𝑡−1)

)︁⊤
, if 𝐻

(𝑡)
(𝑘) > 0

= 0, otherwise (19)

when 1 ≤ 𝑘 ≤ 𝑙.

4.3.3 Self-adjustment of within layer architecture. This section describes the self-evolution
principle of SARDINE in adapting the within layer structure. The overall formulation
for layer structure adaptation as adopted by proposed SARDINE is derived based on
network significance (NS) method [1, 14], which is defined on the concept of expectation of
mean squared error in prediction. Formally, this is expressed in terms of bias and variance
formulation as given below.

𝑁𝑆 = 𝐵𝑖𝑎𝑠(̂︀𝑦)2 + 𝑉 𝑎𝑟(̂︀𝑦) (20)

The key utility of NS method lies in its capability of estimating the predictive model quality
by direct assessment of the possible over-fitting/under-fitting condition of the model, which
is not normally captured through standard system error index. A high NS value signals
either a high variance condition, indicating model overfitting issue, or signals a high bias
condition, indicating model underfitting issue.
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For the proposed SARDINE, the bias-variance formulation is derived based on Eq. 20 in
following manner.

𝑁𝑆 = (𝐸[̂︀𝑦2]− 𝐸[̂︀𝑦]2) + (𝐸[̂︀𝑦]− 𝑦)2 (21)

where, 𝐸[̂︀𝑦] represents the expectation of output from SARDINE, and it can be recursively
estimated for any time instance 𝑡 as follows.

𝐸[̂︀𝑦] = ∫︁ ∞

−∞
(𝑎 ·𝑂 + 𝑧)𝑝(𝑂)𝑑𝑂 = 𝑎 · 𝐸[𝑂] + 𝑧 (22)

𝐸[𝑂] =

∫︁ ∞

−∞
(𝑐+ 𝑉 ·𝐻)𝑝(𝐻)𝑑𝐻 = 𝑐+ 𝑉 · 𝐸[𝐻] (23)

𝐸[𝐻(𝑘)] =

∫︁ ∞

−∞
𝑚𝑎𝑥(0, 𝐻(𝑘−1))𝑝(𝐻(𝑘−1))𝑑𝐻(𝑘−1) (24)

Now, as per the theory of spatial autocorrelation [3, 9], the spatial features from the
neighboring locations are more likely to be similar. Accordingly, we can assume that the
input spatial feature shows normal distribution with low standard deviation, and so, the
value of 𝐸[𝐻(𝑘)] when 𝑘 = 1 can be approximated as follows, where 𝜇 indicates the mean of
feature values at the given time stamp.

𝐸[𝐻(1)] = 𝑏(1) +
(︀
𝑈 +𝑊(1)

)︀
𝜇 (25)

Subsequently, we can estimate 𝐸[𝐻(𝑘)] (when 𝑘 > 1), in recursive manner, using the Eq. 24.

In a similar fashion, we can recursively calculate 𝐸[̂︀𝑦2], considering the approximate value
of 𝐸[𝐻(1)] as 𝑏(1) +

(︀
𝑈 +𝑊(1)

)︀
𝜇2.

After the NS is estimated, it is used to update the structural configuration of hidden layer
in SARDINE, in a manner as illustrated in the subsequent parts of this section.

Hidden unit growing mechanism. The purpose of hidden unit growing is to overcome the
under-fitting situation which is attributed by high bias condition. This is addressed by
increasing the structural complexity of the network, i.e., by adding more nodes/units in the
hidden layer. Thus the high bias condition for adding new hidden unit can be mathematically
formulated in following manner:

𝜇𝑡
𝐵𝑖𝑎𝑠 + 𝜎𝑡

𝐵𝑖𝑎𝑠 ≥ 𝜇𝑚𝑖𝑛
𝐵𝑖𝑎𝑠 + 𝜋𝜎𝑚𝑖𝑛

𝐵𝑖𝑎𝑠 (26)

Here 𝜇𝑡
𝐵𝑖𝑎𝑠 and 𝜎𝑡

𝐵𝑖𝑎𝑠 respectively denote the mean and the standard deviation of bias at
the time instance 𝑡; 𝜇𝑚𝑖𝑛

𝐵𝑖𝑎𝑠 and 𝜎𝑚𝑖𝑛
𝐵𝑖𝑎𝑠 represent that of the minimum bias till time 𝑡. We set 𝜋

as 1.3 exp(−𝑏𝑖𝑎𝑠2) + 0.7 leading to attain a level of confidence between 68% and 95%. When
a new hidden unit/node is added, the attached parameters, i.e. 𝑏, 𝑉 , and 𝑊 , are randomly
sampled from the scope: [-1,1]. The new parameters may also be initialized using adaptive
scope selection mechanism [36] to ensure better convergence of the model. To be noted, the
hidden unit growing is performed only in the topmost hidden layer at a given time instance.

Hidden unit pruning mechanism. The purpose of hidden unit pruning is to tackle the
over-fitting condition of the model, which is attributed by a high variance situation. This
can be achieved by reducing the structural complexity of the network, i.e., by decreasing the
hidden units in the layers. Thus, the high variance condition for pruning hidden unit can be
mathematically formulated in following manner:

𝜇𝑡
𝑉 𝑎𝑟 + 𝜎𝑡

𝑉 𝑎𝑟 ≥ 𝜇𝑚𝑖𝑛
𝑉 𝑎𝑟 + 2𝜒𝜎𝑚𝑖𝑛

𝑉 𝑎𝑟 (27)
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Here 𝜇𝑡
𝑉 𝑎𝑟 and 𝜎𝑡

𝑉 𝑎𝑟 respectively denote the mean and the standard deviation of the variance
at the time instance 𝑡; 𝜇𝑚𝑖𝑛

𝑉 𝑎𝑟 and 𝜎𝑚𝑖𝑛
𝑉 𝑎𝑟 represent that of the minimum variance till time 𝑡;

𝜒 = 1.3 exp(−𝑉 𝑎𝑟) + 0.7 controls the confidence-level for the sigma rule.
If a high variance condition is identified, the least significant hidden unit in layer 𝑙 is

selected as the candidate to be pruned. The node significance for the 𝑖-th hidden node is
estimated as the average activation over the elapsed time stamps. Thus, if the 𝑚-th unit

in 𝑙 is the pruning candidate, then, 𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖

(︂
lim𝑇→∞

∑︀𝑇
𝑡=1

𝐻
𝑖(𝑡)
𝑙
𝑇

)︂
. The overall process of

within layer adaptation is summarily presented through the Algorithm 1. The Fig. 3 depicts
a typical instance of unfolded SARDINE structure along with hidden unit growing and
pruning scenario.

4.3.4 Self-adjustment of network depth. The key objective of layer growing is to learn more
complex function for better modeling of the spatial feature evolution at various spatial
contexts. Accordingly, whenever there is a drift in spatial context, a new layer is added in
the network. The spatial raster time series like satellite remote sensing imagery are usually
prone to such drift since these imagery may not be captured at exactly the same temporal
condition, and eventually, there remains a high chance of change in spatial context, for
example, due to crop harvesting or urban sprawl etc. [39]. Thus, whenever a drift is detected,
the addition of new layer can help in better distinguishing between the spatial contexts
while modeling the feature evolution.

Fig. 5. Self-adjustment of network structure by addition of new hidden layers

Now, in order to detect the drift, we apply the Hoeffding’s error bound technique [18],
which is primarily proposed for concept drift detection in classification problem. In order to
make it fit for the present context of spatio-temporal regression, we modify the accuracy
matrix generation process so that it records a value of 1 when the error percentage is less
than a desired level (say 2%) and records 0, otherwise. Whenever a drift is detected, the
new layer 𝑙𝑛𝑒𝑤 is added as per the following rules:

∙ 𝑙𝑛𝑒𝑤 is placed on the top of the current top-most layer 𝑙𝑐𝑢𝑟𝑟 and it is initialized with
the same number of hidden units as that of 𝑙𝑐𝑢𝑟𝑟, i.e. 𝑒𝑙𝑛𝑒𝑤

= 𝑒𝑙𝑐𝑢𝑟𝑟
;

∙ the weights between 𝑙𝑛𝑒𝑤 and output layer are initialized with the latest weight matrix
between 𝑙𝑐𝑢𝑟𝑟 and output layer;
∙ the weights between 𝑙𝑐𝑢𝑟𝑟 and 𝑙𝑛𝑒𝑤 are initialized with an identity matrix of dimension
[𝑒𝑙𝑛𝑒𝑤 × 𝑒𝑙𝑛𝑒𝑤 ]=[𝑒𝑙𝑐𝑢𝑟𝑟 × 𝑒𝑙𝑐𝑢𝑟𝑟 ];

The idea is illustrated through the Fig. 5 and Algorithm 2. To be noted, the creation of
a new hidden layer may lead to catastrophic forgetting of previously acquired knowledge
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[29]. However, the above-mentioned rules ensure that the previously acquired knowledge is
retained during the layer growing process for accommodating the new knowledge. Thus, the
proposed SARDINE can be treated as an incremental learning model [1] and effectively used
to learn new knowledge from variants of spatial contexts captured through the imagery.

In summary, the proposed SARDINE aims to achieve the desired result with optimal
usage of parameters. It does not need to deal with extra parameter like that introduced in
terms of gating mechanism in LSTM architecture or in terms of filtering mechanism in CNN.

Algorithm 1: SARDINE within layer updation()

1 /* This algorithm takes the whole network of SARDINE as input and updates the
within layer structure of the topmost hidden layer 𝑙 */

2 Estimate 𝐸[̂︀𝑦] and 𝐸[𝐻]; /* refer Section 4.3.3 */

3 Calculate the mean (𝜇𝑡
𝐵𝑖𝑎𝑠) and variance ((𝜎𝑡

𝐵𝑖𝑎𝑠)
2
) of network bias; /* see Section 4.3.3 */

4 Calculate the mean (𝜇𝑡
𝑉 𝑎𝑟) and variance ((𝜎𝑡

𝑉 𝑎𝑟)
2
) of network variance; /* see Section

4.3.3 */

5 /*—— Growing of Hidden Units in Topmost Layer 𝑙 ——-*/

6 if
(︀
𝜇𝑡
𝐵𝑖𝑎𝑠 + 𝜎𝑡

𝐵𝑖𝑎𝑠 ≥ 𝜇𝑚𝑖𝑛
𝐵𝑖𝑎𝑠 + 𝜋 · 𝜎𝑚𝑖𝑛

𝐵𝑖𝑎𝑠

)︀
then

7 𝑒𝑙 ← (𝑒𝑙 + 1);

8 𝑉 𝑛𝑒𝑤
𝑙 ← [−1, 1]; 𝑊𝑛𝑒𝑤

𝑙 ← [−1, 1]; 𝑏𝑛𝑒𝑤𝑙 ← [−1, 1]; /* initiating weights and bias for new

unit (𝐻𝑛𝑒𝑤
𝑙 ) */

9 Reset 𝜇𝑚𝑖𝑛
𝐵𝑖𝑎𝑠 and 𝜎𝑚𝑖𝑛

𝐵𝑖𝑎𝑠;

10 grow ← 1;

11 end

12 else
13 𝑒𝑙 ← 𝑒𝑙; grow ← 0;

14 end

15 /*—— Pruning of Hidden Units from Topmost Layer 𝑙 ——-*/

16 if
(︀
𝜇𝑡
𝑉 𝑎𝑟 + 𝜎𝑡

𝑉 𝑎𝑟 ≥ 𝜇𝑚𝑖𝑛
𝑉 𝑎𝑟 + 2𝜒 · 𝜎𝑚𝑖𝑛

𝑉 𝑎𝑟

)︀
&& (𝑔𝑟𝑜𝑤 == 0) && (𝑒𝑙 > 1) then

17 Calculate significance of each hidden unit 𝐻𝑖
𝑙 , 𝑖 ∈ {1, 2, · · · , 𝑒𝑙}, /* refer Section 4.3.3

*/
18 𝑒𝑙 ← (𝑒𝑙 − 1); /* Eliminate hidden node having the least significance */

19 Reset 𝜇𝑚𝑖𝑛
𝐵𝑖𝑎𝑠 and 𝜎𝑚𝑖𝑛

𝐵𝑖𝑎𝑠;

20 prune ← 1;

21 end

22 else
23 𝑒𝑙 ← 𝑒𝑙; prune ← 0;

24 end

25 if (grow==1) or (prune==1) then
26 Execute forward propagation computation as described in Section 4.3.2;

27 end

28 return
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Algorithm 2: SARDINE layer grow()

1 /* This algorithm takes the whole network of SARDINE as input and generates an updated
network structure with an added hidden layer at the top */

2 𝑙 : Total number of layers in SARDINE;

3 𝑙𝑐𝑢𝑟𝑟 : Current topmost hidden layer;

4 𝑒𝑙𝑐𝑢𝑟𝑟 : No. of hidden units in the current topmost layer;

5 𝑉 𝑢𝑝𝑝𝑒𝑟 ← 𝑉𝑙𝑐𝑢𝑟𝑟 ;

6 𝑙← 𝑙 + 1;

7 𝑙𝑛𝑒𝑤 ← Create new layer(); /* contains same number of elements as 𝑙𝑐𝑢𝑟𝑟; i.e. 𝑒𝑛𝑒𝑤 = 𝑒𝑐𝑢𝑟𝑟*/

8 𝑉𝑙𝑛𝑒𝑤 ← 𝑉 𝑢𝑝𝑝𝑒𝑟;

9 𝑉𝑙𝑛𝑒𝑤−1 ← 𝐼[𝑒𝑙𝑐𝑢𝑟𝑟 ]; 𝑉𝑙𝑐𝑢𝑟𝑟 ← 𝑉𝑙𝑛𝑒𝑤−1; /* 𝐼[𝑒𝑙𝑐𝑢𝑟𝑟 ] is an identity matrix of dimension

𝑒𝑙𝑐𝑢𝑟𝑟 × 𝑒𝑙𝑐𝑢𝑟𝑟 */
10 return

Algorithm 3: SARDINE-based-Prediction(𝐼, 𝑇𝑝𝑟𝑒𝑑)

Input : 𝐼 = {𝐼1, 𝐼2, · · · , 𝐼𝑇 }: Series of observed imagery each containing 𝑁 pixels denoted by
𝑃

Input :𝑇𝑝𝑟𝑒𝑑 = Prediction timestamp = (𝑇 + 1)

Output : ̂︀𝐼= Predicted image containing predicted pixels ̂︀𝑃
1 for all pixels do
2 𝑆(𝑃 )← 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐼); (refer Section 4.2)

3 end

4 for all pixels do
5 SARDINE forward(S[1:T-1]); /* refer SARDINE forward propagation in Section 4.3.2 and

consider 𝑡 = 1 · · ·𝑇 − 1 */
6 if drift is detected at the end of SARDINE forward propagation then
7 SARDINE layer grow(); /* refer Section 4.3.4 and Algorithm 2 */

8 SARDINE forward(S[1:T-1]);

9 end

10 SARDINE within layer adaptation(); /* refer Section 4.3.3 and Algorithm 1 */

11 SARDINE backward(S[1:T-1]); /* refer SARDINE backward propagation in Section 4.3.2
and consider 𝑡 = 1 · · ·𝑇 − 1 */

12 end

13 for all pixels do

14 ̂︀𝑆 ← SARDINE test(S[2:T]); /* primarily this is SARDINE forward propagation using data
from 𝑡 = 2 · · ·𝑇 */

15 ̂︀𝑃 ← SIM(̂︀𝑆); /* refer Section 4.4.2; ̂︀𝑆 is predicted spatial feature; ̂︀𝑃 is predicted pixel */

16 end

17 return ̂︀𝐼 containing all the predicted pixels ̂︀𝑃
4.4 Module-III: Prediction based on Spatial Feature Influence

While the Module-II of the prediction model learns the temporal evolution of the spatial
features, the Module-III executes in parallel to acquire the knowledge of how the spatial
features from neighboring locations influence on a central target pixel. Subsequently, the
Module-III utilizes this knowledge to finally predict each pixel of the prediction imagery.

ACM Trans. Spatial Algorithms Syst., Vol. XX, No. X, Article XXX. Publication date: January 2020.



XXX:16 Monidipa Das, et al.

4.4.1 Modeling of Spatial Feature Influence. The objective here is to learn a function 𝑆𝐼𝑀
that can utilize the spatial feature information from the neighboring pixels so as to determine
the condition of the target pixel. Mathematically, this can be represented as follows.

𝑆𝐼𝑀 : R𝑀 → R (28)

where 𝑀 is the number of neighboring pixels within the spatial neighborhood coverage 𝑆
such that—

𝑃 (𝑝, 𝑞, 𝑡) = 𝑆𝐼𝑀(𝑆(𝑃 (𝑝, 𝑞, 𝑡))) (29)

where, 𝑃 (𝑝, 𝑞, 𝑡) is any pixel condition at time 𝑡 and 𝑆(𝑃 (𝑝, 𝑞, 𝑡)) indicates the neighboring
spatial features of the pixel.

We learn 𝑆𝐼𝑀 simply by employing a multilayer perceptron model (MLP) (refer to Fig. 4)
with the layer configuration as follows:

[︀
𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟 : (2𝑑+ 1)2 − 1, 𝐻𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟 : ((2𝑑+ 1)2 − 1)/2,

𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟 : 1]. Since we aim to define 𝑆𝐼𝑀 as a generic function applicable for the en-
tire study zone (captured through the remote sensing image), we use a fixed-layered NN
architecture for this purpose, rather than dynamically evolving it.

4.4.2 Prediction. Let the predicted spatial features as generated for any target pixel 𝑃 (𝑝, 𝑞, 𝑡+
1) from the Module-II is ̂︀𝑦, and the spatial feature influence function parallelly learnt by the
Module-III is 𝑆𝐼𝑀 . Then, predicted value of the pixel becomes:̂︀𝑃 (𝑝, 𝑞, 𝑡+ 1) = 𝑆𝐼𝑀(̂︀𝑦) (30)

Since the ̂︀𝑦 = ̂︀𝑆(𝑝, 𝑞, 𝑡+ 1) is generated with consideration to the temporal change in spatial
features and the function 𝑆𝐼𝑀 is defined so as to take into account the influence from
neighboring spatial features, on combining the two, the Eq. 30 reflects a spatio-temporal
prediction for the pixels in the prediction imagery.
The overall process of proposed SARDINE-based prediction is presented through the

Algorithm 3.

5 MODEL EVALUATION

In this section, we validate the proposed SARDINE-based prediction model with respect to
a case study on predicting remote sensing data derived from satellite imagery. The details of
the dataset, baselines, performance metrics, and the prediction outcomes are thoroughly
discussed in the subsequent subsections.

5.1 Dataset: Normalized Difference Vegetation Index (NDVI)

The effectiveness of our proposed SARDINE is evaluated using two sets of normalized
difference vegetation index or NDVI1 time series data corresponding to the spatial regions of
India and Brazil, respectively, as described below.

∙ NDVI Time Series-1: This consists of annual NDVI imagery covering the Western
part of the state of West Bengal, India, during 2004-2011. The dataset is derived from
the series of Landsat TM-5 satellite remote sensing imagery having spatial resolution
of 30 meter and captured during the Spring season. The same base remote sensing
imagery for this dataset is used in [10][13] considering different spatial zone. For the
present purpose, the empirical study is carried out considering two randomly selected
zones, as indicated by Zone-1 and Zone-2 in Fig. 6 which belong to the district of
Bardhaman in the state of West Bengal, India. The primary source of these datasets is
the Land Process Distributed Active Archive Center (LPDAAC) of the United States

1https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring vegetation 2.php
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Geological Survey (USGS) [35]. Afterwards, we have used ERDAS IMAGINE tool 2 for
generating the series of NDVI images from these raw input satellite imagery. Typically,
the index is calculated based on the information of band-3 or VIS (visible red radiation)
and band-4 or NIR (near-infrared radiation) as follows: 𝑁𝐷𝑉 𝐼 = 𝑁𝐼𝑅−𝑉 𝐼𝑆

𝑁𝐼𝑅+𝑉 𝐼𝑆 . Training
is performed with NDVI data of 2004-2010, and prediction is made for the year 2011.

Fig. 6. Study region for NDVI time series-1: District of Bardhaman, West Bengal, India [2]

Fig. 7. Study region for NDVI time series-2: The State of Para, Brazil, South America

∙ NDVI Time Series-2: This dataset consists of annual NDVI imagery covering the
Northern part of Brazil, South America, during 2012-2019. The dataset is derived
from the MODIS Terra satellite remote sensing imagery having spatial resolution of
500 meter and captured in the month of January in every considered year. For the

2http://www.hexagongeospatial.com/products/remote-sensing/erdas-imagine/overview
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present purpose, the empirical study is carried out considering a randomly selected
zone, as indicated by Zone-3 in Fig. 7, which belongs to the State of Para, Brazil. The
primary source of this dataset is the Land Process Distributed Active Archive Center
(LPDAAC) of USGS [35]. The same base NDVI imagery is used in [34] for different
spatial zone.

The value of NDVI ranges between -1 and +1, where a zero or negative value of NDVI
indicates no vegetation and a value equals to or close to 1 indicates the highest possible
density of green leaves. Both the Landsat TM-5 and the MODIS Terra satellite use to
capture images on every 16 days. However, in order to avoid the usual seasonal effect and to
predict only the change due to deforestation/urbanization in the respective spatial regions,
we have considered annual data for both the above-mentioned time series.

5.2 Baseline Methods

The proposed prediction model is evaluated in comparison with eight major baselines, as
summarized below.

∙ ST-OK [8]: ST-OK is the spatio-temporal extension of ordinary Kriging [8]. It is
widely used for spatio-temporal prediction of missing values in satellite remote sensing
imagery;
∙ NARNET [45]: This is a kind of nonlinear auto-regressive neural network model
which takes into account spatial features in the form of exogenous variables. NARNET
is well-used for time series prediction;
∙ MLP [28]: In our experimentation we have considered multi-layer perceptron (MLP)
model as the representative of shallow neural network model. This comparison is
necessary to show the effectiveness of using the deep architecture.
∙ DSN [15]: It is known as deep stacking network model. DSN is built on the idea of
stacking, where simple modules of functions are developed first and then these are piled
over each other to learn more complex functions. It is highly potential for modeling
spatial change in time series data.
∙ Deep-STEP [10]: It is a recently proposed deep learning model which is found to
show promising performance in spatio-temporal prediction of remote sensing data. The
working principle of Deep-STEP model is influenced from vanilla DSN model.
∙ LSTM-GP [44]: LSTM-GP is a state-of-the-art variant of RNN Long-Short-Term-
Memory (LSTM) model. Primarily, the model uses a Gaussian Process (GP) layer on
the top of LSTM architecture to explicitly account for spatio-temporal dependencies
across various data points.
∙ CNN-GP [44]: This is a variant of Convolutional Neural Network (CNN), recently
proposed by You et al. [44]. Similar to the previously mentioned LSTM-GP, the CNN-
GP model also employs a Gaussian Process (GP) layer, on the top of CNN architecture,
to explicitly model the spatio-temporal structure from the input remote sensing data.
∙ CNN-LSTM3: In our experimentation, we have also considered a combination of
CNN and LSTM models as the baseline to compare with the proposed SARDINE.
Our considered CNN-LSTM model is designed with the help of Conv2D, LSTM, and
Fully-connected/Dense layers from Keras2.

All the considered models (except ST-OK) are executed in MATLAB environment in
Windows (64-bit OS, 3.10 GHz Intel(R) Xeon(R) CPU processor and 4 GB RAM) using
the same set of training and test dataset. For ST-OK, we have used the in-built model

3https://keras.io/
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Table 1. Generic architectural configuration of the models used in experimentation

Approach Input unit count Hidden layer count Per hidden layer unit count Output unit count

NARNET 1 2 10 1

MLP (2𝑑 + 1)2 2 (2𝑑 + 1)2 1

DSN (2𝑑 + 1)2 × 𝑚𝑠 𝑇 (per module one) (2𝑑 + 1)2
Topmost module:1

Other modules:(2𝑑 + 1)2

Deep Module-1: (2𝑑 + 1)2
𝑇 (per module one) (2𝑑 + 1)2

Topmost module:1
-STEP Others: (2𝑑 + 1)2 × 2 Other modules:(2𝑑 + 1)2

LSTM-GP (2𝑑 + 1)2 − 1
LSTM: 1 LSTM:

{︀
(2𝑑 + 1)2 − 1

}︀
× 2 LSTM:(2𝑑 + 1)2 − 1

Fully-Connected (FC): 1 FC:
{︀
(2𝑑 + 1)2 − 1

}︀
× 2 FC:1

CNN-GP (2𝑑 + 1)2 − 1
Convolutional: 3 Conv: Conv:

Fully-Connected
{︀
(2𝑑 + 1)2 − 1

}︀
× 2ℎ𝑙

{︀
(2𝑑 + 1)2 − 1

}︀
× 2ℎ𝑙−1

(FC): 1 FC:
{︀
(2𝑑 + 1)2 − 1

}︀
× 2 FC:1

CNN-
(2𝑑 + 1)2 − 1

Convolutional: 2 Conv:
{︀
(2𝑑 + 1)2 − 1

}︀
× 2ℎ𝑙 Conv:(2𝑑 + 1)2 − 1

LSTM LSTM: 1 LSTM:
{︀
(2𝑑 + 1)2 − 1

}︀
× 2 LSTM:(2𝑑 + 1)2 − 1

Fully-Connected (FC): 1 FC:
{︀
(2𝑑 + 1)2 − 1

}︀
× 2 FC:1

Proposed
(2𝑑 + 1)2 − 1

Automatically decided; Automatically decided; (2𝑑 + 1)2 − 1
SARDINE Starts from single Starts from single Prediction module:1
𝑑 = Degree of spatial neighborhood coverage; 𝑇 =No. of training images; 𝑚𝑠 = stacking module sequence number
ℎ𝑙 = Sequence number of the hidden layer

in ArcGIS [17]. Regarding the LSTM-GP and CNN-GP models, though originally these
were applied on image histograms [44] (instead of being executed on the actual imagery),
in our experimentation, we have employed these models directly over our input NDVI
imagery, since our objective is to predict the full-image over the same variable, without
losing any pixel-information. To be noted, we initially experimented considering both the
whole image and the local neighboring extent as the input to the CNN-GP, LSTM-GP, and
CNN-LSTM models. However, due to the issue of spatial autocorrelation [43], the models
are found to perform better in the latter case and we have considered the same to record
their best performance over our datasets. This not only satisfies our problem definition
(refer Section 3), but also helps in fair comparison with other competitor models, including
our proposed SARDINE. Nevertheless, for each of these models, we have maintained the
similar configuration of the base architecture (proportion of convolutional, fully-connected,
and LSTM layers), as mentioned in the main paper [44]. In case the performance of the
baselines are surprisingly poor, the count of hidden layer units, number of epochs, and other
hyper-parameters for these models have been empirically adjusted in multiple executions,
to record their best performances. The generic architectural configuration for each of the
neural network-based models used in the experimentation is summarized in the Table 1.

5.3 Performance Metrics

The performances of the considered models are evaluated with respect to four evaluation
criteria, namely normalized root mean square deviation (NRMSD), mean absolute error
(MAE), peak signal-to-noise ratio (PSNR) [16], and mean structural similarity (MSSIM)
[38] index. The mathematical formulation for each of these metrics is given below.

𝑁𝑅𝑀𝑆𝐷 =
1

(𝑂𝑚𝑎𝑥 −𝑂𝑚𝑖𝑛)

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝒱𝑜𝑖 − 𝒱𝑝𝑖)2 (31)

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

|𝒱𝑜𝑖 − 𝒱𝑝𝑖 | (32)
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𝑃𝑆𝑁𝑅 = 20. log10

(︂
𝑀𝐴𝑋𝐼√
𝑀𝑆𝐸

)︂
(33)

𝑀𝑆𝑆𝐼𝑀(𝐴, ̂︀𝐴) =
1

𝑤

𝑤∑︁
𝑖=1

𝑆𝑆𝐼𝑀(𝑎𝑖,̂︀𝑎𝑖) (34)

In each case, 𝑂𝑚𝑎𝑥 is the maximum observed (actual) value of the prediction variable (e.g.
NDVI in the present case study), 𝑂𝑚𝑖𝑛 is the minimum observed value of the prediction
variable, 𝒱𝑜𝑖 is the actual value corresponding to the 𝑖-th pixel position, 𝒱𝑝𝑖

is the predicted
value corresponding to the 𝑖-th pixel position, 𝑁 is the total number of pixels in the image,

𝑀𝐴𝑋𝐼 is the maximum possible pixel value in the image, ̂︀𝐴 and 𝐴 are the predicted image
and original image, respectively, SSIM is the structural similarity index [38], ̂︀𝑎𝑖 and 𝑎𝑖 are
the contents of the predicted image and original image, respectively, at the 𝑖-th local window,
and 𝑤 is the number of local windows considered. The best-fit between actual and predicted
image under ideal conditions yields NRMSD = MAE= 0. On the other side, PSNR and
MSSIM are used to assess the quality of predicted imagery. The higher the values of PSNR
and MSSIM, the better the quality of the predicted image compared to the original one.
Additionally, we have also compared the execution time of proposed SARDINE-based
model with that of other considered NN variants, in order to evaluate the utility of online
self-adjustment property of SARDINE.

5.4 Results and Discussions

The results of experimental evaluation are summarized in Tables 2-4 and in Figs. 8-13. On
analyzing the tables and the figures we can infer the overall effectiveness of the proposed
SARDINE-based prediction model as thoroughly explained in the subsequent part of this
section.

I. Comparative study with respect to prediction error: The Table 2 shows the comparative
study of prediction error in terms of NRMSD and MAE. It is evident from the table that
the proposed SARDINE-based prediction outperforms the other baselines in almost all the
cases. Though the improvements seem apparently little in terms of absolute values, to be
noted, these improvements are quite significant with respect to the considered dataset on
NDVI (normalized different vegetation index), the value of which lies in between -1 and +1.
Moreover, as discussed in the subsequent part of this section, the comparable performance of

Table 2. Comparative performance study on prediction errors: NRMSD and MAE (boldface indicates the
minimum value)

Approach
Study Zones

Zone-1 Zone-2 Zone-3
NRMSD MAE NRMSD MAE NRMSD MAE

ST-OK 0.0365 0.0439 0.0510 0.0522 0.1497 0.1625

NARNET 0.0556 0.0501 0.0655 0.0501 0.1385 0.1462

MLP 0.0334 0.0492 0.0408 0.0474 0.1192 0.1328

DSN 0.0315 0.0426 0.0323 0.0463 0.1016 0.1323

Deep-STEP 0.0296 0.0420 0.0317 0.0451 0.0977 0.1321

LSTM-GP 0.0262 0.0428 0.0286 0.0419 0.0728 0.1059

CNN-GP 0.0275 0.0413 0.0301 0.0452 0.1229 0.1408

CNN-LSTM 0.0279 0.0424 0.0297 0.0425 0.0729 0.1106

Proposed (SARDINE) 0.0263 0.0400 0.0273 0.0401 0.0707 0.0914
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Table 3. Comparative performance study on image quality measures: PSNR and MSSIM (boldface
indicates the max. value)

Approach
Study Zones

Zone-1 Zone-2 Zone-3
PSNR MSSIM PSNR MSSIM PSNR MSSIM

ST-OK 28.753 0.7962 25.847 0.7751 16.496 0.5811

NARNET 25.105 0.6110 23.671 0.5206 17.169 0.6040

MLP 29.517 0.7242 27.792 0.6476 18.358 0.6498

DSN 30.044 0.8175 29.803 0.7591 19.862 0.7086

Deep-STEP 30.574 0.8379 29.979 0.7645 20.202 0.7117

LSTM-GP 31.611 0.8699 30.864 0.8409 22.757 0.8014

CNN-GP 31.215 0.8653 30.150 0.8360 18.209 0.6415

CNN-LSTM 31.092 0.8560 30.213 0.8377 22.745 0.8010

Proposed (SARDINE) 31.601 0.8701 31.277 0.8494 23.012 0.8107

the state-of-the-art deep learning models (especially LSTM-GP, CNN-GP, and CNN-LSTM)
are achieved with notably high computational time and by using empirically adjusted
configuration of the respective network models. Further, all these baselines follow the usual
convention of multi-pass parameter learning, while the proposed SARDINE-based model
achieves the similar performance by scanning the data only once (single-pass data scanning
mode). This exhibits the effectiveness of on-the-fly structural adaptation as employed by
SARDINE for better adjustment to the spatial/temporal contexts of the various pixels in
the imagery. As indicated by the Fig. 8, the percentage improvement of SARDINE is at

Fig. 8. Percentage improvement of the proposed SARDINE-based prediction model over the absolute
error of other baselines

least ∼3%, ∼4%, and ∼14% in case of the Zone-1, Zone-2, and Zone-3, respectively. The
improvement statistics reveal that the proposed SARDINE has better capability of handling
spatio-temporal diversities in larger zones, compared to the others. The normalized error
surfaces, produced by the various models under experimental study, are depicted in Figs.
9-11, from which it is evident that the predictions using SARDINE lead to least amount
of error distributions throughout the study zones. Further, though the CNN-GP model is
found to perform well in case of smaller area, its performance deteriorates notably with
the increasing spatial extents of the zones. This is so, because in order to train the large
number of parameters in the CNN models it is necessary to have considerably large number
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of input imagery in the sequence. However, in this case study, though the spatial extent of
the images over the study zones increases, the count of images per time series remains the
same. Accordingly, the CNN models fail to appropriately capture the temporal change in
the dataset though the spatial extent of the imagery is increased. For all the considered
zones, the overall performance of the LSTM-GP model is found to be better than that of
CNN-GP, since the LSTM model can better model the temporal change in the data, and
also, with the increasing spatial extent of the imagery, the LSTM model gets an opportunity
to improve the learning of spatial dependency. The performance of the CNN-LSTM model,
that can exploit both convolutional and LSTM layers, seems quite consistent in every case,
though it still cannot outperform the self-adaptive incremental learning of SARDINE.

Fig. 9. Comparative study of normalized error surface for the study Zone-1 generated by various
approaches: (a) ST-OK, (b) NARNET, (c) MLP, (d) DSN, (e) Deep-STEP, (f) LSTM-GP, (g) CNN-GP,
(h) CNN-LSTM, (i) Proposed (SARDINE) (j) Image predicted by SARDINE-based model, (k) Actual
image

Fig. 10. Comparative study of normalized error surface for the study Zone-2 generated by various
approaches: (a) ST-OK, (b) NARNET, (c) MLP, (d) DSN, (e) Deep-STEP, (f) LSTM-GP, (g) CNN-GP,
(h) CNN-LSTM, (i) Proposed (SARDINE) (j) Image predicted by SARDINE-based model, (k) Actual
image
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Fig. 11. Comparative study of normalized error surface for the study Zone-3 generated by various
approaches: (a) ST-OK, (b) NARNET, (c) MLP, (d) DSN, (e) Deep-STEP, (f) LSTM-GP, (g) CNN-GP,
(h) CNN-LSTM, (i) Proposed (SARDINE) (j) Image predicted by SARDINE-based model, (k) Actual
image

II. Comparative study with respect to predicted image quality: As mentioned earlier in
this section, we have estimated the predicted image quality in terms of PSNR and MSSIM
metrics (refer to Table 3). Since the NDVI values range between -1 and +1, we have
normalized the estimated PSNR considering the overall range size equating to (1-(-1))=2.
The high value of PSNR for our proposed model indicates that the corruption in the predicted
pixel values are comparatively less compared to the maximum pixel intensity (NDVI value) in
the original image, whereas the high value of MSSIM for the proposed model in all the cases
indicates that relative spatial orientation of the pixel-intensities in our predicted imagery
remains fairly similar as that of the actual imagery. Overall, it is evident from the Table
3 that the quality of the images predicted using proposed SARDINE is quite acceptable
and also these outperform the quality of the images predicted by the baseline techniques,
especially ST-OK, NARNET, MLP, DSN, and Deep-STEP. Though the predicted image
qualities corresponding to the LSTM-GP, CNN-GP, and CNN-LSTM are sometime similar
to that of SARDINE, these state-of-the-art models require larger number of parameter and
considerably higher computation time (refer to next section) to attain this performance.

Table 4. Comparative study of execution time (in sec.) of NN-based models [For the baselines (NARNET,
MLP, DSN, Deep-STEP, LSTM-GP, CNN-GP, and CNN-LSTM) the time for empirically determining
best performing structure is not considered. For the SARDINE, the structure adjustment time is included
by default in the execution time]

NARNET MLP DSN

Proposed
Image Deep- LSTM- CNN- CNN- Approach Proposed
Pixel STEP GP GP LSTM without (SARDINE)
Count Teacher

-forcing

10000 43.1 × 102 3.60 74.30 74.24 766.98 280.72 402.63 164.40 128.06

102400 432 × 102 18.64 677.08 667.05 10124.73 6470.90 6825.46 1597.68 1013.34

250000 1330 × 102 154.16 990.87 977.54 18044.52 34432.59 20236.91 2519.57 1885.101

III. Comparative study with respect to computation cost: The results of comparative
study on prediction time is shown in the Table 4. Apparently it seems that the computation
time required for proposed SARDINE-based prediction is comparatively higher than that of
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many of the state-of-the-art prediction models, like MLP, DSN, Deep-STEP etc. However,
it must be noted that SARDINE is designed to use only one time computation for the
predictive analysis. The structural specification is adjusted automatically, as per the data
characteristics. No additional empirical execution is required to find the best fit structure
of the network. Contrarily, the execution time recorded for the other techniques in Table
4 assumes that the best fit network structure is pre-determined. As a consequence, if we
consider all the earlier executions to determine the best structure of these models (especially,
DSN, Deep-STEP, LSTM-GP, CNN-GP, and CNN-LSTM), definitely the total execution
time will exceed that of the SARDINE. Incidentally, while the Table 4 records the average
execution time of the baselines considering a single-run/execution, the prediction results
presented through Tables 2-3 and Figs. 8-11 are the best among minimum thirty times
execution of these baselines (including MLP), considering different hyper-parameters and
structural settings. We have not considered multiple-time execution in the Table 4, because
the additional time for such empirical study is not fixed and it may vary a lot as per the
expertise of the model user. Nevertheless, (even in a single execution) the larger execution
time of the LSTM and CNN models are not only led by their multi-pass data-scanning
strategy, but also it is due to their large parameter requirement. We also noticed that the
computation time increases substantially, when the Gaussian Process (GP) layer is added
at the top of LSTM and convolutional layer. In the case of our proposed SARDINE, not
only the single-pass data scanning and the on-the-fly structural adaptation properties, but
also the use of teacher forcing policy helps to further reduce the computation time through
increased parallelization, in contrast to the traditional RNN back-propagation through time
approach. Besides, the single-pass learning capability ensures that the SARDINE does not
need iteration over image data/pixels, and accordingly, this drastically reduces the storage
requirement, since it is not necessary for SARDINE to store the entire image at a time.

IV. Results on Auto-adjustment of network architecture in SARDINE:. As thoroughly
described in Section 4, the proposed SARDINE is a self-adaptive deep recurrent model
that does not require any predefined architectural specification. The Figs. 12-13 pictorially
illustrates this concept with respect to our case study on predicting NDVI imagery for the
Zone-1 (Fig. 12(a,d), Fig. 13(a)), Zone-2 (Fig. 12(b,e), Fig. 13(b)), and Zone-3 (Fig. 12(c,f),
Fig. 13(c)). It can be noted from Fig. 12(d)- Fig. 12(f) and from Fig. 13(a)- Fig. 13(c) that
for every dataset (corresponding to the three study zones), the proposed SARDINE starts
with a single hidden layer containing a single hidden unit. Then, it automatically adjusts
its layer structure based on the network significance and the change in spatial context of
the pixels, calculated from the running error measures (refer Fig. 12(a)- Fig. 12(c)). For the
current case study, the proposed SARDINE ends up with 3 hidden layers in case of Zone-1
(see Fig. 12 (d)), 7 hidden layers in case of Zone-2 (see Fig. 12(e)), and 5 hidden layers in
case of Zone-3 (see Fig. 12(f)). In each case, the layer size (number of hidden units per layer)
is dynamically and optimally set with a value of 4 (in case of Zone-1 and Zone-2) or 6 (in
case of Zone-3) through the node growing and pruning mechanism (refer to Fig. 13(a)- Fig.
13(c)). The dynamic structural adaptability of SARDINE improves the overall scalability of
the proposed prediction model.
Overall, though the prediction quality of the proposed SARDINE is quite comparable

with that of the state-of-the-art models, the SARDINE has added benefits with respect
to high flexibility and low computational cost, especially compared to the existing deep
learning models. The self-adjustment property and incremental learning power further helps
SARDINE to become scalable over diverse datasets.
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Fig. 12. Adjustment of hidden-layer count ((d)-(f)) according to the drift defined in terms of error
((a)-(c))

Fig. 13. Typical scenario of within layer architecture adjustment for SARDINE

6 CONCLUSION

In this work we have proposed SARDINE, a variant of deep recurrent neural network model
for spatio-temporal prediction of derived remote sensing imagery. The novelties in this work
are threefold. First, the proposed SARDINE does not require empirical analysis to determine
the best network configuration at a particular prediction scenario and is able to automatically
adapt its network architecture as per the characteristics of the input imagery. Second, the
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SARDINE learns online and in single-pass manner, which makes it appropriate to deal with
derived remote sensing imagery containing millions of pixels. Third, the proposed SARDINE
is able to learn new knowledge on spatial evolution, without relinquishing the previously
acquired knowledge, by using optimal set of parameters and without employing complex
gating mechanism. Further, the use of teacher forcing policy helps SARDINE to achieve
improved parallelization during training process and subsequently reduces the computational
time requirement. Due to the intrinsic property of single-pass learning, self-evolution, and
optimal parameter usage, SARDINE is found to have huge potentials to be applied for
the purpose of nowcasting from remotely sensed data. The incremental learning ability of
SARDINE also makes it suitable for dealing with large spatial imagery, since the model can
retain old knowledge for applying in similar spatial contexts without attempting to re-learn
from the scratch. Incidentally, the proposed SARDINE-based prediction model is not only
applicable for the satellite remote sensing imagery but is generic and potential enough to be
applied on any other kind of image streams. Ample scope remains in further improving the
proposed model with embedded online feature extraction mechanism that can be achieved
through added convolutional layers in the architecture.
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of prediction capability of näıve bayes, multilayer perceptron neural networks, and functional trees

methods. Theoretical and Applied Climatology 128, 1-2 (2017), 255–273.
[29] Mahardhika Pratama, Choiru Za’in, Andri Ashfahani, Yew Soon Ong, and Weiping Ding. 2019. Auto-

matic construction of multi-layer perceptron network from streaming examples. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management. 1171–1180.

[30] Atiqur Rahman, Shiv Prashad Aggarwal, Maik Netzband, and Shahab Fazal. 2011. Monitoring urban

sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 4, 1 (2011), 56–64.

[31] Fernando Sedano, Pieter Kempeneers, and George Hurtt. 2014. A Kalman filter-based method to
generate continuous time series of medium-resolution NDVI images. Remote Sensing 6, 12 (2014),
12381–12408.

[32] Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun

Woo. 2017. Deep learning for precipitation nowcasting: A benchmark and a new model. In Advances in
Neural Information Processing Systems. 5617–5627.

[33] K Sowmya, CM John, and NK Shrivasthava. 2015. Urban flood vulnerability zoning of Cochin City,
southwest coast of India, using remote sensing and GIS. Natural Hazards 75, 2 (2015), 1271–1286.

[34] Vandana Tomar, Vinay Prasad Mandal, Pragati Srivastava, Shashikanta Patairiya, Kartar Singh,

Natesan Ravisankar, Natraj Subash, and Pavan Kumar. 2014. Rice equivalent crop yield assessment

using MODIS sensors based MOD13A1-NDVI data. IEEE Sensors Journal 14, 10 (2014), 3599–3605.

ACM Trans. Spatial Algorithms Syst., Vol. XX, No. X, Article XXX. Publication date: January 2020.

http://www.esri.com/software/arcgis/ arcgis-for-desktop


XXX:28 Monidipa Das, et al.

[35] USGS-EarthExplorer. 2019. Land Processes Distributed Active Archive Center. https://lpdaac.usgs.
gov/data access/usgs earthexplorer. [Online; August 2019].

[36] Dianhui Wang and Ming Li. 2017. Stochastic configuration networks: Fundamentals and algorithms.

IEEE transactions on cybernetics 47, 10 (2017), 3466–3479.

[37] Laigang Wang, Yongchao Tian, Xia Yao, Yan Zhu, and Weixing Cao. 2014. Predicting grain yield and
protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops

Research 164 (2014), 178–188.

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004),

600–612.
[39] Geoffrey I Webb, Loong Kuan Lee, Bart Goethals, and François Petitjean. 2018. Analyzing concept

drift and shift from sample data. Data Mining and Knowledge Discovery 32, 5 (2018), 1179–1199.

[40] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. 2015.
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances

in neural information processing systems. 802–810.

[41] Yuting Yang, Junyu Dong, Xin Sun, Estanislau Lima, Quanquan Mu, and Xinhua Wang. 2017. A
CFCC-LSTM model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing

Letters 15, 2 (2017), 207–211.

[42] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction. In AAAI Conference on Artificial

Intelligence.

[43] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye,
and Zhenhui Li. 2018. Deep multi-view spatial-temporal network for taxi demand prediction. In

Thirty-Second AAAI Conference on Artificial Intelligence.
[44] Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. 2017. Deep Gaussian

Process for Crop Yield Prediction Based on Remote Sensing Data.. In AAAI. 4559–4566.

[45] Lijing Yu, Lingling Zhou, Li Tan, Hongbo Jiang, Ying Wang, Sheng Wei, and Shaofa Nie. 2014.
Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA)

and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in

Shenzhen, China. PloS one 9, 6 (2014), e98241.
[46] Qin Zhang, Hui Wang, Junyu Dong, Guoqiang Zhong, and Xin Sun. 2017. Prediction of sea surface

temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters 14, 10

(2017), 1745–1749.

ACM Trans. Spatial Algorithms Syst., Vol. XX, No. X, Article XXX. Publication date: January 2020.

https://lpdaac.usgs.gov/data_access/usgs_earthexplorer
https://lpdaac.usgs.gov/data_access/usgs_earthexplorer

	Abstract
	1 Introduction
	1.1 Challenges and Motivations
	1.2 Our Contributions

	2 Related Works on Prediction of Remote Sensing Data
	2.1 Conventional models
	2.2 Deep learning models

	3 Problem Formulation
	4 Proposed Prediction Model based on SARDINE
	4.1 Model Overview
	4.2 Module-I: Input-Output Spatial Feature Representation
	4.3 Module-II: Modeling of Spatial Feature Evolution using SARDINE
	4.4 Module-III: Prediction based on Spatial Feature Influence

	5 Model Evaluation
	5.1 Dataset: Normalized Difference Vegetation Index (NDVI)
	5.2 Baseline Methods
	5.3 Performance Metrics
	5.4 Results and Discussions

	6 Conclusion
	References

