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a b s t r a c t 

With the proliferation of sensor generated weather data, the data-driven modeling for prediction of mete- 

orological time series has gained increasing research interest in current years. The recent advancement in 

machine learning and artificial intelligence paradigm has made such data analysis process more effective, 

flexible and sound. This paper attempts to provide a comparative study of the state-of-the art compu- 

tational intelligence (CI) techniques, which have been successfully applied for meteorological time series 

prediction purpose. The study has been carried out considering eleven distinct variants of CI techniques, 

especially based on artificial neural network (ANN), fuzzy logic, Bayesian network (BN) and other proba- 

bilistic models. Further, one more hybrid CI technique (SpaFBN), derived from the existing approaches, has 

been proposed in the present work. All these CI techniques have been empirically studied with respect to 

a multivariate meteorological time series prediction problem, in comparison with three benchmark statis- 

tical approaches. Overall, the experimental results demonstrate the superiority of the BN-based models in 

meteorological prediction. The presently proposed spatial fuzzy Bayesian network (SpaFBN) is also found 

to be an effective tool, especially for predicting humidity and precipitation rate time series. Moreover, the 

proposed SpaFBN is a generic CI technique which can be applied for predicting spatial time series from 

the domains other than meteorology as well. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Meteorological time series prediction is important not only for

ur day-to-day planning, but also for long term decision making,

hich can have grave influence on the economic development of

ny country. Traditionally, the meteorological predictions are made

ainly based on physics driven approaches as followed by various

lobal circulation models or numerical weather prediction (NWP)

odels [2] . However, the recent data explosion has led to the

mergence of a new paradigm, termed as data driven modeling

r DDM [29] , which aims at extensively analyzing historical data

or generating insights, and utilizing those in further studies. The

athematical equations underlying such approaches are not de-

ived from physical processes. Rather, these approaches are mainly

ased on various computational intelligence (CI) techniques, like ar-

ificial neural network (ANN), Bayesian/Belief network (BN), fuzzy

ogic (FL), genetic algorithms (GAs) and so on. 
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In this work, an attempt has been made to provide a compre-

ensive study of the various CI techniques that have been applied

or meteorological time series prediction . The focus is kept on pre-

iction of spatial time series data obtained from the spatially dis-

ributed sensors, and on the CI techniques which have been either

ecently proposed or most widely used in the recent past. 

A number of works reporting the application of CI techniques in

ime series prediction can be found in literature. Sapankevych and

ankar [28] have presented an exhaustive survey on time series

rediction using support vector machines (SVMs). SVM based pre-

iction of air quality, rainfall, environment pollution etc. has been

tudied here along with other applications. A survey of the wind

peed and wind power prediction has been provided by Lei et al.

16] . In their work, Thissen et al. [31] have found that the SVMs

erform better than recurrent neural network (RNN) and statistical

utoregressive model, in predicting nonlinear chaotic time series.

he existing prediction approaches on SVM, ANN, fuzzy logic or

ombined neuro-fuzzy techniques have been reported here. Predic-

ion of daily precipitation time series, considering variants of ANN

odels, has been discussed in the work by Partal et al. [24] . Sim-

lar study on rainfall prediction can be found in the work by Wu

t al. [33] . A comparative study of traditional statistical autoregres-
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Fig. 1. Relationship between the various CI techniques. 
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sive models and autoregressive NN model, with respect to univari-

ate prediction of rainfall time series, has been reported in the work

of Chattopadhyay and Chattopadhyay [7] . The study shows superi-

ority of NN model over the traditional statistical approaches. 

However, most of the above-referred works either focus on

a single computational intelligence family or consider a single

meteorological/environmental parameter. Moreover, none of these

works has studied on the Bayesian network-based approaches,

which also belong to the computational intelligence family and

have proved to show encouraging performance in environmental

modeling [1] . 

In contrast, the present work provides a comparative study con-

sidering ANN, SVM, hybrid fuzzy-based model, BN and other prob-

abilistic models together. The novelty lies here in accounting for

the Bayesian network and its recently proposed variants. Moreover,

one of the major contributions in this work is to propose SpaFBN

as new CI technique, extending spatial Bayesian network with in-

corporated fuzziness . Further, in the present work, the comparative

study has been made with respect to prediction of three primary

meteorological variables, namely temperature, relative humidity and

precipitation rate , from two separate climate regions. 

In the present context of meteorological time series prediction,

the overall prediction problem and the associated challenges have

been discussed in the subsequent part of this section. Incidentally,

the proposed SpaFBN and the other CI techniques discussed in

this paper are applicable for predicting not only the meteorolog-

ical time series but also the spatial time series from various other

disciplines. 

1.1. Problem statement and challenges 

The problem of meteorological time series prediction, with re-

spect to which the comparative empirical study has been made,

can be formally stated as follows: 

• Given, the historical daily time series data set over n meteoro-

logical parameters in Z = { z 1 , z 2 , · · · , z n } , corresponding to a set

of L locations: Loc = { l 1 , l 2 , · · · , l L } for previous t years: { y 1 , y 2 ,

���, y t }. Also given, the spatial attributes SA = { sa 
l i 
1 
, sa 

l i 
2 
, · · · , sa 

l i 
p }

for each location l i ∈ Loc . The problem is to determine the daily

time series of the variables in Z for any location x ∈ Loc for

future q years { y (t+1) , y (t+2) , . . . , y (t+ q ) } , when the spatial at-

tributes of x is observed as { sa x 
1 
, sa x 

2 
, · · · , sa x p } . Here, q is a posi-

tive integer, i.e. q ∈ {1, 2, 3, ���}. 

The key challenges in such meteorological prediction mainly

arise due to the spatio-temporal nature of the data. Unlike the

classical data, the spatio-temporal data are highly autocorrelated,

that means, the data from nearby locations are more likely to have

similar values than those from locations that are far apart. Besides,

such data are not independent; rather these are dependent on

various co-located variables. Therefore, the conventional statistical

methods, which assume that the data are independent and iden-

tically distributed, are not very suitable for analyzing such kind of

data. Moreover, the meteorological data are non-linear, inherently

chaotic, and full of uncertainty. 

Research effort s have been made to extend existing tradi-

tional statistical and artificial intelligence techniques to cope up

with these special properties of meteorological time series data.

The present paper aims at summarizing the well-used and re-

cently proposed variants of computational intelligence (CI) tech-

niques, along with their pros and cons in respect of meteorolog-

ical time series prediction . Comparative study has also been car-

ried out empirically, with consideration to three meteorological

variables. 
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.2. Contributions 

The key contributions of the present study are as follows: 

• providing a compact discussion on the various CI techniques

(including ANN, SVM, fuzzy logic, BN etc.) used for meteoro-

logical time series prediction; 
• taking into account the recently proposed variants of Bayesian

networks (BNs) which has not been covered by the earlier stud-

ies; 
• proposing a new extension of spatial Bayesian network , namely

SpaFBN, that can aid in meteorological prediction with reduced

parameter uncertainty; 
• performing a comparative empirical study of all the discussed

CI techniques, in the light of predicting temperature , humidity

and precipitation time series for two separate climate regions in

India. 

.3. Organization of the paper 

The rest of the paper is organized as follows. A comprehensive

verview of all the considered CI techniques has been provided

n Section 2 . The theoretical foundation of the proposed hybrid CI

echnique (SpaFBN) has been presented in Section 3 . The compar-

tive study of all the considered and proposed CI techniques has

een extensively discussed in Section 4 , with respect to a multi-

ariate time series prediction problem. Finally, the concluding re-

arks have been made in Section 5 . 

. Overview of the state-of-the-art computational intelligence 

CI) techniques 

Computational intelligence (CI) is a set of nature-inspired com-

utational methods to address the real world problems. It is based

n the hypothesis that ‘reasoning is computation’. According to

onar [15] , the CI family consists of granular computing (fuzzy sets,

robabilistic reasoning etc.), neural computing (e.g. artificial neu-

al network or ANN), evolutionary computing (genetic algorithm,

enetic programming etc.) and their interaction with artificial life,

haos theory and others. 

The recent advancement of CI has greatly influenced the data-

riven modeling, since CI techniques are capable of modeling the

omplex relationships among the parameters without knowing ac-

ual natural processes. A brief overview of all the CI techniques,

hich have been dealt with in the present study, is presented

ubsequently. The relationships among these CI techniques are de-

icted in Fig. 1 . 
approaches for meteorological time series prediction: A 
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Fig. 2. A typical structure of RNN. 

2

 

m  

p

 

o  

L  

d

w  

w  

i  

v

 

F  

b  

a  

p

2

 

n  

h  

t  

t  

R  

i

 

d  

u

 

a  

s

h  

W  

t

2

 

w  

f  

s  

r

y  

T  

t  

e

 

a  

r  

i  

p

2

 

(  

s  

a  

r  

b

 

 

w  

d  

a  

m

m

w  

l  

m

 

s  

h  

a

2

 

b  

o  

G  

c

 

t  

y  

 

T  

a

Z  

w  

t  

p  

i

 

y  

a

2

 

o  

t  

a  

e  

b  

w  

i  

t  

a  

t  
.1. Feed forward back propagation neural network (FFBP) 

The feed forward back propagation (FFBP) neural network is the

ost popular ANN architecture which has widely been applied es-

ecially for precipitation/rainfall prediction [12,23,24] . 

Levenberg–Marquardt backpropagation (LMBP) algorithm is one

f the fastest methods used for NN training in this regard. The

MBP algorithm uses approximate Hessian matrix for weight up-

ate process in the following manner: 

 i +1 = w i − [ J T J + μI] −1 J T e (1)

here, I is the identity matrix, J is the Jacobian matrix, J T J approx-

mates to Hessian matrix, J T e computes the gradient, μ is a scalar

alue controlling the learning rate, e is residual error. 

Though FFBP is self-adaptive, the training performance of the

FBP is highly dependent on the random weight assignment at the

eginning of each training simulation, number of hidden layers,

nd on the rate of learning. Therefore, to achieve the best FFBP

erformance, excessive FFBP simulations are needed [24] . 

.2. Recurrent neural network (RNN) 

A recurrent neural network (RNN) is a class of artificial neural

etwork with at least one feed-back connection allowing it to ex-

ibit dynamic temporal behavior and to learn sequences. In order

o process the arbitrary sequences of inputs, RNN has the advan-

age of using their internal memory. A number of applications of

NN, especially for short term wind speed prediction, can be found

n literature [3,4] . 

There exists several models for RNN. The Elman networks, Jor-

on networks, echo state network etc. are some of the commonly

sed RNN models. A typical structure of RNN is shown in Fig. 2 . 

Let, x t is the input at time step t and h t be the hidden state

t time step t . Then h t is calculated based on the previous hidden

tate and the current input, as follows: 

 t = f (Ux t + W h t−1 ) (2)

here, f is a nonlinear function; W and U denotes the weight ma-

rices. 

.3. Nonlinear autoregressive neural network (NARNET) 

In contrast to the RNN, the nonlinear autoregressive neural net-

ork (NARNET) uses the past values of the time series to predict

uture values. The NARNET model, to predict the value of a data

eries y at time t using the past p values of the series, can be rep-

esented as follows: 

 (t) = f (y (t − 1) , y (t − 2) , · · · , y (t − p)) + ε(t) (3)

he function f (.) is approximately determined during training of

he neural network by updating weights and bias. ε( t ) denotes the

rror of approximation. 

The work by Benmouiza and Cheknane [5] , Huang et al. [14] etc.

re some examples where NARNET has been used for time se-

ies prediction. However, the major drawback of NARNET is that

t needs high delay horizon and several neurons to achieve better

rediction accuracy. 
Please cite this article as: M. Das, S.K. Ghosh, Data-driven 
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.4. Support vector machine (SVM) 

SVM based prediction, also called support vector regression

SVR), is a mechanism by which a function is estimated using ob-

erved data that in turn trains the SVM [28] . There can be linear

nd non-linear versions of SVM based regression. Given a time se-

ies x ( t ), the prediction functions for linear and non-linear SVR can

e represented as follows: 

f l (x ) = (w.x ) + b (4)

f nl (x ) = (w.φ(x )) + b (5)

here, φ( x ) is called the ‘Kernel function’ with maps a non-linear

ata to a higher dimensional feature set. w and b are the weights

nd threshold respectively, the optimal values for which are deter-

ined by solving the following minimization problem: 

inimize 
1 

2 

|| w || 2 + C 

n ∑ 

i =1 

L (y (i ) , f (x (i ) , w )) 

here, C is a constant, y denotes the truth data, and L indicates a

oss function. In case the loss function is a quadratic function, the

ethod is called LS-SVM. 

In a number of cases, the SVM/LS-SVM based prediction has

hown encouraging result, outperforming the ANN [31,32] . An ex-

austive study of SVMs can be found in the work of Sapankevych

nd Sankar [28] . 

.5. Hierarchical Bayesian autoregressive (HBAR) model 

The hierarchical Bayesian autoregressive (HBAR) model has

een developed by Sahu and Bakar [27] for space-time modeling

f large scale data. This is achieved by defining the autoregressive

aussian predictive process approximation method within hierar-

hical Bayesian framework. 

Let Z y ( l i , d ) represents the observed value of a variable, at loca-

ion l i , (i = 1 , · · · , L ) , on day d ( d = 1 , · · · , D ) within year y for y =
 1 , · · · , y t . Also let c yj ( l, d ) denotes the value of the j th covariate,

j = 1 , · · · , n, on day d in year y and C yd = (c ′ y (l 1 , d) , · · · , c ′ y (l L , d)) ′ .
hen, as per the HBAR model, the variable value at new location x

nd at day D + 1 becomes: 

 y (x, D + 1) = c ′ y (x, D + 1) β + ˜ ηy (x, D + 1) + εy (x, D + 1) (6)

here, β denotes the prior distribution, and ˜ ηy and εy are de-

ermined through autoregressive models with Gaussian predictive

rocess approximations. The details of HBAR model can be found

n the work of Sahu and Bakar [27] . 

Though HBAR is feasible for simultaneous modeling and anal-

sis of large data sets, this is still time intensive because of non-

vailability of appropriate software. 

.6. Classical/standard Bayesian network (SBN) 

The standard Bayesian network (SBN), also called Bayes network

r belief network, is a probabilistic graphical model that allows us

o represent and reason about uncertain domain. It is essentially

 directed but acyclic graph, the nodes of which represent differ-

nt random variables, and the edges represents the dependency

etween the variables. Each node X , in the network is associated

ith conditional probability distribution P ( X i | Parents ( X i )), quantify-

ng the effect of the parents on the node. The dependency struc-

ure in Bayesian network can be simply represented as joint prob-

bility density function (PDF) of the variables, by using factoriza-

ion as a product of conditional/marginal probability distributions
approaches for meteorological time series prediction: A 

elligence techniques, Pattern Recognition Letters (2017), 
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as presented below: 

P ( x 1 , x 2 , · · · , x i , · · · , x n ) = 

n ∏ 

i =1 

P ( x i | parents ( x i ) ) (7)

where, x i is a specific value for variable X i and parents ( x i ) denotes

the specific values of the variables in Parents ( X i ). This helps to eas-

ily get solutions of complex problems. 

As per [1] , Bayesian networks are highly suitable for environ-

mental modeling. The work by Nandar [22] , Madadgar and Morad-

khani [18] etc. are some examples in this regard. 

2.7. Fuzzy Bayesian network (FBN) 

Fuzzy probability theory is an extension of classical probabil-

ity theory that can better handle the uncertainty or imprecision

present in data. A number of Bayesian network models with incor-

porated fuzzy logic [17,25,30] have been proposed till date. Among

these, the most widely used fuzzy Bayesian network (FBN) is the

one proposed by Tang and Liu [30] . 

Let X = { X 1 , X 2 , · · · , X p } and Y = { Y 1 , Y 2 , · · · , Y q } be two sets of

events. Also let ˜ X and 

˜ Y be two corresponding fuzzy events. Then

according to this system of FBN, 

P 
(

˜ Y | ̃  X 

)
= 

∑ q 
j=1 

∑ p 
i =1 

μ ˜ Y 

(
Y j 

)
· μ ˜ X ( X i ) · P 

(
X i | Y j 

)
· P 

(
Y j 

)
P 
(

˜ X 

) (8)

where, P 
(

˜ X 
)

is fuzzy marginal probability, estimated as follows: 

P 
(

˜ X 

)
= 

p ∑ 

i =1 

μ ˜ X ( X i ) · P ( X i ) (9)

In the meteorological prediction [9] , FBN has shown better per-

formance than ANN, SBN and the traditional statistical prediction

models. However, the FBN suffers from high computational com-

plexity. 

2.8. New fuzzy Bayesian network (NFBN) 

The NFBN [9] is a variant of FBN [30] , and it produces more

precise parameter estimates, considering the fuzzy membership of

each individual observed values into the other ranges. Moreover,

NFBN reduces the time requirement by using more simplistic com-

putation involving only the observed values having non-zero mem-

bership in the considered range. 

Let x and y be two variables, and { X 1 , ���, X p } and { Y 1 , ���, Y q }

be the two sets of events corresponding to x and y respectively.

Here, X 1 , ���, X p and Y 1 , ���, Y q are in the form of range of val-

ues achieved by x and y ; p, q ∈ I + , where I + is the set of positive

integers. Also let ˜ X and 

˜ Y be any two corresponding fuzzy events.

Then according to NFBN [9] , 

P ′ 
(

˜ Y / ̃  X 

)
= 

| {m i | μ ˜ Y ( y m i 
) > 0 , μ ˜ X ( x m i 

) > 0 

}| 
N.P ′ 

(
˜ X 

) (10)

where, { m 1 , m 2 , ���, m N } is a set of all the observations for the

variable x and y; N is the total number of such observations; x m i 
=

Value of the variable x in the i th observation ( m i ); y m i 
= Value of

the variable y in the i th observation ( m i ); μ ˜ X (x m i 
) = Membership

of the value x m i 
in the fuzzy set ˜ X ; μ ˜ Y (y m i 

) = Membership of the

value y m i 
in 

˜ Y ; ‘||’ denotes set cardinality. 

In NFBN , the fuzzy marginal probability P ′ 
(

˜ X 
)

is defined as: 

P ′ 
(

˜ X 

)
= 

| {m i | μ ˜ X (x m i 
) > 0 , m i ∈ { m 1 , m 2 , · · · , m N } 

}| 
N 

(11)

where, { m 1 , ���, m N } is a set of all observations for the variable x; N

is the total number of observations for x ; μ ˜ X (x m i 
) = Membership

of the value x m 

in the fuzzy set ˜ X . ‘||’ denotes set cardinality. 

i 
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In meteorological time series prediction [9] , NFBN has been

ble to show better performance than ANN, SBN, FBN and tradi-

ional statistical models. 

.9. Hybrid BN with residual correction (BNRC) 

In the work of Das et al. [11] , a hybrid structure of Bayesian

etwork with residual correction module has been proposed to

andle the situation of scarce data availability. As the number of

ariables increases, the parameter estimation in SBN requires more

nd more data to maintain the accuracy. To overcome this limita-

ion, during the inference generation in BNRC, the inferred values

re tuned/ corrected in an exponential manner with the help of

rror in previous state. 

Let, at the end of training with the data of past t years, the

nal value of residual is εt , and the inferred value of the prediction

ariable for the year y (t+1) is I (t+1) . Then, as per BNRC, the final

redicted value of the variable becomes: 

 (t+1) = I (t+1) + εt (12)

he residual value εt is determined as follows: 

t = (αE t−1 ) + (1 − α) εt−1 (13)

here, α ∈ [0, 1]; E t−1 is the error corresponding to the year y (t−1) 

nd is calculated as follows: 

 t−1 = Actual V al ue − P t−1 (14)

n comparison with the ANN (having FFBP architecture) and stan-

ard Bayesian network (SBN), the BNRC has been found to show

etter performance in hydrological time series prediction [11] . 

.10. Semantic Bayesian network (semBnet) 

The semBnet is an extension of SBN, which is able to incorpo-

ate domain knowledge or semantics during data analysis and pre-

iction. It has been recently proposed by Das and Ghosh [10] and

as been able to show encouraging performance in meteorological

ime series prediction. 

The causal dependency graph of semBnet consists of two types

f nodes: one set of nodes represents random variables with no

emantic information available for themselves, and the other set

f nodes represents random variables having semantic informa-

ion available for themselves. The semantic information or domain

nowledge is represented in terms of some semantic hierarchy or

oncept hierarchy. Then, during the semantic Bayesian learning, the

arginal and conditional probabilities ( P † ) are determined consid-

ring semantic similarity ( SS ) between all relevant concepts. It can

e represented as follows: 

 

† = f (P, SS) (15)

here, P is the probability distribution obtained through SBN anal-

sis. The semantic similarity SS ( c 1 , c 2 ), between any two concepts

 1 and c 2 , is determined based on the length of the shortest path

etween the two concepts and the depth of the subsume, i.e. the

earest common concept. The detailed working principle of semB-

et can be found in the work by Das and Ghosh [10] . 

Though semBnet provides better prediction accuracy than SBN,

NN, FBN etc., it is time intensive like the SBN. 

.11. Spatial Bayesian network (SpaBN) 

SpaBN has been proposed by Das et al. [8] to model the spa-

ial variability of the influencing variables and thereby improve

patio-temporal prediction. Unlike the standard Bayesian network,

paBN contains composite nodes along with the standard/classical

odes in the directed acyclic graph (DAG). Each composite node
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elligence techniques, Pattern Recognition Letters (2017), 

http://dx.doi.org/10.1016/j.patrec.2017.08.009


M. Das, S.K. Ghosh / Pattern Recognition Letters 0 0 0 (2017) 1–10 5 

ARTICLE IN PRESS 

JID: PATREC [m5G; August 12, 2017;23:33 ] 

Table 1 

Comparative study of the various computational intelligence (CI) techniques. 

CI Family CI Technique Pros Cons 

ANN FFBP Efficient alternative for traditional methods for modeling 

the nonlinear time series; 

Performance is sensitive to the initial weight assignments, 

the number of hidden layers, and proper setting of the 

learning rate; 

Self adaptive, having advantage of learning from previous 

error; 

Can not implicitly cope up with spatial/ spatio-temporal 

properties of data; 

RNN Able to learn temporal sequences; High complexity; 

Takes into account some kind of long-term dependencies; Can not implicitly cope up with spatial property of data; 

NARNET If properly trained, it can provide suitable prediction 

accuracy for non-linear time series prediction; 

Needs more complex model to get a good predictor; 

Can not utilize external information; 

SVM SVM Convergence to the optimal solution is guaranteed; Finding suitable heuristic to determine the free parameters 

is challenging; 

Less parameters involved; Can not implicitly cope up with spatial/ spatio-temporal 

properties of data; 

Bayesian HBAR Fit for spatio-temporal modelling; Time intensive; 

Shows good performance for out-of-sample predictions as 

well; 

Can not deal with the spatial semantics and any other kind 

of domain knowledge; 

SBN Can reason with risk and uncertainty; Can not implicitly cope up with spatial/ spatio-temporal 

properties of data; 

Can automatically capture probabilistic information; Sometimes needs expert knowledge for structuring; 

Exponential time and space complexity; 

BNRC Retains all the advantages of BN/SBN; Needs expert knowledge for structuring; 

Self adaptive, having advantage of learning from previous 

error; 

Can not implicitly cope up with spatial/ spatio-temporal 

properties of data; 

FBN Retains all the advantages of BN/SBN; Needs expert knowledge for structuring; 

Better deals with ambiguity due to lack of 

information/knowledge; 

Can not implicitly cope up with spatial/ spatio-temporal 

properties of data; 

Bayesian Can deal with the problem of data discretization; Extremely high time and space complexity; 

Networks NFBN Retains all the advantages of BN/SBN and FBN; Needs expert knowledge for structuring; 

(BNs) Better alternative for FBN; Can not implicitly cope up with spatial/ spatio-temporal 

More precise and less complex than FBN; properties of data; 

semBnet Retains all the advantages of BN/SBN; Needs expert knowledge for structuring; 

Can incorporate the domain knowledge for providing 

better insights; 

Time intensive like the SBN; 

SpaBN Retains all the advantages of BN/SBN; Needs expert knowledge for structuring; 

Implicitly cope up with spatial variability and 

auto-correlation property of data; 

Suffers from parameter uncertainty due to sampling of 

discretized data; 

Drastically reduces the time complexity; Can not deal with the spatial semantics; 
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Fig. 3. A typical causal dependency graph (CDG) for SpaFBN. 
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V  
s a composition of a number of standard/classical nodes associ-

ted with the same but spatially distributed variable. In SpaBN,

he marginal and conditional probabilities are measured consider-

ng the classical probability distribution and also the spatial im-

ortance of each representative location associated with each con-

tituting node within a composite node. Therefore, in SpaBN, the

robability distribution ( P †† ) can be represented as follows. 

 

†† = f (P, SW ) (16)

here, P is the probability distribution obtained through SBN anal-

sis. SW denotes some spatial weight, reflecting the relevant im-

ortance of the associated spatial locations. The details of SpaBN

an be found in the work by Das et al. [8] . 

The pros and cons of the discussed CI techniques are summa-

ized in Table 1 . 

. Proposed spatial fuzzy Bayesian network (SpaFBN) 

Though the SpaBN has proved itself to be a superior extension

f standard Bayesian network by outperforming the other mod-

ls, it considers all the variables to be discrete, and therefore, suf-

ers from the generic problem of data discretization to deal with

he continuous variables. Whenever, a variable is discretized into

anges, problem arises for the boundary values. Each value, at the

ange boundary or adjacent to it, is treated to be strictly within

ne range, though it has enough relevance with its subsequent
Please cite this article as: M. Das, S.K. Ghosh, Data-driven 
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ange. Therefore, during parameter learning in SpaBN, a substan-

ial number of records are skipped, leading to increased parameter

ncertainty. 

In order to overcome this limitation, in the present paper, a

ew variant of SpaBN, termed as SpaFBN, has been proposed. The

roposed SpaFBN is a fuzzy extension of the spatial Bayesian net-

ork (SpaBN), which is able to reduce parameter uncertainty with

he incorporated fuzziness. It can be treated as a hybrid CI tech-

ique, taking advantages of both NFBN and SpaBN. 

To explain the working principle of proposed SpaFBN, let’s con-

ider the example causal dependency graph, shown in Fig. 3 . 

According to the scenario depicted through Fig. 3 , the variables

 , V and V are spatially distributed over L = 9 number of loca-
3 4 5 
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Fig. 4. Study zones and prediction locations: Loc-1 (22.82 °N, 88.29 °E) in West Ben- 

gal, India; Loc-2 (28.66 °N, 77.07 °E) in Delhi, India. 
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tions, and therefore have been represented with composite nodes,

denoted by double-lined circles. The internal structure of a com-

posite node is shown in Fig. 3 . Variables V 3 , V 4 , and V 5 are also

influenced by V 1 and V 2 , which are not distributed spatially. There-

fore, V 1 and V 2 have been represented by standard/ classical nodes.

Now, as per SpaFBN, the marginal probability distribution for

any composite node, say V 3 , is determined as follows: 

P 
′′ 
(V 3 ) = α. 

[ 

L ∑ 

i =1 

P ′ (V 

i 
3 ) .SW i 

] 

(17)

where, α is normalization constant and SW i is the spatial weight/

importance for the i -th location. P 
′ 
(V i 

3 
) is the marginal probability

of the singular component V i 
3 

of composite node V 3 , obtained in

similar manner as that of NFBN (refer Eq. (11) ). This helps to deal

with the problem of data discretization, as faced by the SpaBN. 

The marginal probability of other (standard) nodes (e.g. V 1 , V 2 

etc.) in the proposed SpaFBN are determined in a similar way as

that of NFBN (refer Eq. (11) ). 

In the proposed SpaFBN, the conditional probability involving

composite nodes is also determined with consideration to the spa-

tial importance of the associated locations. For example, the con-

ditional probability P ′ ′ ( V 4 | V 1 , V 2 , V 3 ) is calculated as follows: 

P 
′′ 
(V 4 | V 1 , V 2 , V 3 ) = α. 

[ 

L ∑ 

i =1 

P ′ (V 

i 
4 | V 1 , V 2 , V 

i 
3 ) .SW i 

] 

(18)

where, α is normalization constant; SW i is spatial weight/ impor-

tance for the i th location; and P ′ (V i 
4 
| V 1 , V 2 , V i 3 

) is the conditional

probability involving singular component V i 
3 

and V i 
4 

of composite

nodes V 3 and V 4 , respectively. The P ′ (V i 
4 
| V 1 , V 2 , V i 3 

) is estimated in

the same way as that of NFBN (refer Eq. 10 ). It helps to overcome

the problem of data discretization and leads to reduced parameter

uncertainty. 

In the proposed SpaFBN, the conditional probability involving

only standard nodes are determined in a similar manner as that of

NFBN (refer Eq. (10) ). 

Now, once the parameter learning is over, the inference in

SpaFBN is generated by utilizing the spatial weights ( SW i ). For ex-

ample, let the observed/ evidence variables are V 1 and V 2 , from

which the value of V 4 is to be inferred. 

Then, as per SpaFBN, the inferred value of V 4 becomes: 

 

in ferred 
4 

= 

L ∑ 

i =1 

P ′ (V 

i 
4 | V 1 , V 2 ) · SW i (19)

= 

L ∑ 

i =1 

∑ 

V 3 

P ′ (V 

i 
4 | V 1 , V 2 , V 

i 
3 ) · P ′ (V 

i 
3 | V 1 , V 2 ) · SW i (20)

where the value for P ′ (V i 
4 
| V 1 , V 2 , V i 3 

) and P ′ (V i 
3 
| V 1 , V 2 ) can be deter-

mined from the conditional probability table for the variable V 4 

and V 3 , respectively. Among these inferred values, the predicted

value becomes the one corresponding to the maximum probabil-

ity estimate. 

Spatial Weight/Importance calculation: 

In the work of Das et al. [8] , the spatial weight ( SW i ) estimation

has been illustrated with respect to hydrological prediction. In the

present study, the weight estimation is described with respect to

meteorological prediction. 

Let the normalized inverse spatial distance between the i th lo-

cation and the prediction location is NISD i . Also let the normalized

correlation between the time series of k th meteorological variable

in the i th neighborhood location and that in the prediction location
Please cite this article as: M. Das, S.K. Ghosh, Data-driven 

comparative study of the state-of-the-art computational int

http://dx.doi.org/10.1016/j.patrec.2017.08.009 
s NCor r i 
V k 

. Then the spatial weight of the i th location is determined

s follows: 

W i = 

∑ n 
k =1 NCor r i V k 

+ NISD i ∑ L 
j=1 ( 

∑ n 
k =1 NCor r j 

V k 
+ NISD j ) 

(21)

here, i = 1 , 2 , · · · , L . The estimation of SW i can be varied based

n the area of application. 

. Performance evaluation using empirical study 

This section provides a comparative performance analysis of all

he discussed CI techniques (including the proposed SpaFBN), with

espect to a case study on meteorological time series prediction

n India . The details of study area, data sets, experimental setup,

nd prediction results have been thoroughly described in the sub-

equent part of this section. 

.1. Data set and study area 

The experimentation has been carried out to predict three pri-

ary meteorological variables, namely temperature, humidity , and

recipitation time series in two separate study zones in India. The

one-1 belongs to tropical climate region in Eastern India, whereas

he zone-2 belongs to semi-arid climate in North-Western India

refer Fig. 4 ). From each study zone, a set of 10 locations have been

andomly chosen as the sensor locations. The historical time series

ata on the considered meteorological variables for each selected

ocation in the study zones have been collected from the Fetch-

limate Explorer [21] . Prediction has been made for two locations,

ne from each study zone, for the year 2015 and 2016 respectively.

he details of the experimental data sets are given in Table 2 . 
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Table 2 

Details of data sets used in the comparative study. 

Data sets Prediction location details Time series details 

Locations Latitude Longitude Land-cover Zone details Training Yr. Prediction Yr. 

Data set-1 (West Bengal) Loc-1 22.82 °N 88.29 °E Rural zone-1 [Tropical climate] 2001–2014 2015 

Data set-2 (Delhi) Loc-2 28.66 °N 77.07 °E Urban zone-2 [Semi-arid climate] 2011–2015 2016 
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.2. Experimental setup 

The comparative study of proposed SpaFBN and all the above-

iscussed CI techniques has been carried out with respect to three

enchmark time series prediction techniques, namely Automated

utoregressive Integrated Moving Average (A-ARIMA), Vector Auto-

egressive Moving Average (VARMA), and Generalized Autoregressive

eteroskedasticity (GARCH) model. The standards provided by R-

ool packages [26] have been used to generate predicted time se-

ies from each of these models. R-tool has also been used to get

orecast results from HBAR model [27] . 

Besides, the proposed SpaFBN have been implemented using

ATLAB 7.12.0 (R2011a) in Windows 7 (64 bit OS, 3.10 GHz CPU,

.00GB RAM). MATLAB has also been used to achieve predicted se-

ies from SpaBN [8] , SBN, NFBN [9] , FBN [30] , BNRC [11] , and sem-

net [10] model. In order to get prediction results from FFBP [24] ,

NN, NARNET and SVM, the NNToolbox of MATLAB [19] has been

tilized. 

For all the considered CI techniques, which can explicitly deal

ith the spatial information (e.g. SBN, FBN, NFBN, BNRC etc.), the

and elevation, latitude , and land-cover have been used as the spa-

ial attributes. Moreover, the domain knowledge on land-cover, as

tilized by semBnet [10] , has been collected from the Bhuvan geo-

ortal [6] . 

.3. Performance metrics 

The performance has been measured in terms of four pop-

lar statistical measures: normalized root mean square deviation

NRMSD), mean absolute error (MAE), mean absolute percentage er-

or (MAPE) [20] , and Coefficient of determination or R-squared ( R 2 ).

RMSD, also called Normalized Root Mean Square Error (NRMSE),

s the normalized value of RMSE. The formal definition for each of

hese metrics are given below: 

RMSD = 

1 

(O max − O min ) 

√ 

1 

N 

N ∑ 

i =1 

(Z o i − Z p i ) 
2 (22) 

AE = 

1 

N 

N ∑ 

i =1 

| Z o i − Z p i | (23) 

AP E = 

| Z s mo − Z s mp | 
| Z s mo | × 100 (24) 

 

2 = 

[∑ N 
i =1 (Z o i − Z s mo )(Z p i − Z s mp ) 

]2 

∑ N 
i =1 (Z o i − Z s mo ) 

2 . 
∑ N 

i =1 (Z p i − Z s mp ) 
2 

(25) 

here O max is the maximum value in the observed series; O min is

he minimum value in the observed series; Z o i and Z p i denote the

bserved value and the corresponding predicted value of the vari-

ble for the i th observation; Z s mo is the mean value of the observed

eries; Z s mp is the mean value of the predicted series; and N is the

otal number of observations in the series. 

The best-fit between observed and predicted series leads to

RMSD = 0, MAE = 0, MAPE = 0, and R 2 = 1. 

Moreover, in order to quantify the prediction uncertainty for

ach variable, the Dawid–Sebastiani scores [13] corresponding to
Please cite this article as: M. Das, S.K. Ghosh, Data-driven 

comparative study of the state-of-the-art computational int

http://dx.doi.org/10.1016/j.patrec.2017.08.009 
ll the considered CI techniques have been estimated. The Dawid–

ebastiani score ( DSS ) is measured as follows: 

SS ( p, Z o ) = 

(
Z o − Z s mp 

Z s sp 

)2 

+ 2 log Z s sp (26) 

here, Z o is the observed value, p is the predicted time series, Z s mp 

s the mean prediction value, and Z s sp is the standard deviation of

he predicted time series. 

.4. Results and discussions 

The prediction performances in terms of NRMSD, MAE, MAPE

nd R 2 have been presented in Tables 3 and 4 , for the Data set-

 and Data set-2 respectively. Further, the DSS scores for each CI

echnique have been graphically plotted in Fig. 5 (a)–(f), in com-

arison with the ideal prediction scenario. It is assumed that, in

n ideal scenario, the predicted time series is exactly same as the

bserved time series. 

Analyzing the results, summarized in Tables 3 –4 and in Fig. 5 ,

he following inferences can be drawn: 

• Tables 3 –4 show that, for both the data sets all the CI tech-

niques have outperformed the traditional statistical models

(ARIMA, VARMA and GARCH) and thereby proved themselves

to be effective tools for data-driven modeling of meteorological

time series prediction. 
• Among the ANN models, the FFBP with Levenberg–Marquardt

backpropagation algorithm is found to show comparatively bet-

ter performance in case of predicting temperature. The FFBP

also tends to produce lesser MAPE in case of predicting precipi-

tation. However, the overall performance of NARNET in predict-

ing precipitation is far better than FFBP. NARNET shows its effi-

cacy in predicting humidity as well. The DSS values in Fig. 5 in-

dicate that the prediction uncertainty corresponding to NARNET

model is also lesser than the other ANN models. 
• On the other side, it is evident from the Tables 3 to 4 that

the HBAR, being a hybrid statistical space-time model, is able

to outperform the pure statistical benchmark prediction tech-

niques. However, the performance of ANN and BN based pre-

diction is far better than that of HBAR. 
• It can be noted from Tables 3 to 4 and Fig. 5 that the BN based

prediction techniques have a generic tendency to outperform

the ANN-based models, from both the perspective of predic-

tion accuracy and prediction uncertainty. In case of predicting

temperature, NFBN and semBnet are found to be most effec-

tive among the fuzzy BN and classical BN models, respectively.

However, for the variable precipitation and humidity, the SpaBN

and the newly proposed SpaFBN outperforms the others. 
• On analyzing the performance of the proposed SpaFBN (refer

Tables 3 and 4 ), it can be found that in most of the cases of pre-

diction (especially for precipitation and humidity), the SpaFBN

outperforms the other CI techniques by producing least NRMSD

and least MAE values. The high values of R 2 ( ≈ 1) in all cases

also indicate that the series predicted by the SpaFBN have the

best match with the observed time series.The performance of

SpaFBN in case of temperature prediction is also comparable to

that of the NFBN and semBnet. 
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Table 3 

Prediction performance in case of the Data set-1: Comparative study of the proposed SpaFBN and other CI techniques. 

Prediction Prediction variables 

Techniques Temperature (T) Humidity (H) Precipitation (P) 

NRMSD MAE MAPE R 2 NRMSD MAE MAPE R 2 NRMSD MAE MAPE R 2 

A-ARIMA 0.252 3.064 7.278 0.019 0.325 8.873 2.093 0.367 0.389 86.448 37.718 0.150 

GARCH 0.214 2.592 0.993 0.0 0 0 0.355 8.612 5.137 0.0 0 0 0.526 110.975 88.258 0.0 0 0 

VARMA 0.248 3.293 10.320 0.412 0.407 9.425 11.030 0.137 0.429 101.408 59.257 0.151 

SVM 0.222 2.314 4.920 0.130 0.310 6.337 8.832 0.530 0.078 21.026 16.846 0.991 

NARNET 0.145 2.093 6.813 0.832 0.137 3.601 5.303 0.960 0.066 20.007 16.133 0.994 

FFBP 0.097 0.761 2.529 0.864 0.252 6.077 6.524 0.625 0.146 24.462 15.913 0.884 

RNN 0.104 1.315 0.619 0.783 0.266 6.799 4.332 0.491 0.495 119.292 24.845 0.0 0 0 

HBAR 0.170 2.371 3.899 0.472 0.133 3.386 2.420 0.874 0.355 88.518 71.203 0.744 

SBN 0.080 1.028 0.085 0.862 0.101 2.374 3.239 0.958 0.093 21.457 9.430 0.953 

FBN 0.065 0.815 0.101 0.908 0.101 2.374 3.239 0.958 0.080 17.540 6.271 0.962 

NFBN 0.061 0.712 0.649 0.921 0.156 4.102 4.436 0.954 0.060 13.410 0.796 0.975 

BNRC 0.078 1.026 1.070 0.874 0.100 2.344 3.175 0.958 0.092 21.191 8.771 0.953 

semBnet 0.067 0.967 0.025 0.875 0.096 2.245 2.639 0.958 0.083 19.273 7.668 0.961 

SpaBN 0.078 0.997 0.072 0.876 0.100 2.487 2.635 0.960 0.036 6.819 1.449 0.991 

SpaFBN 0.077 0.977 0.060 0.876 0.091 2.247 1.702 0.960 0.029 4.555 0.281 0.994 

(proposed) 

The boldface value indicates the best performance with respect to a given evaluation criteria. 

Table 4 

Prediction performance in case of the Data set-2: Comparative study of the proposed SpaFBN and other CI techniques. 

Prediction Prediction variables 

Techniques Temperature (T) Humidity (H) Precipitation (P) 

NRMSD MAE MAPE R 2 NRMSD MAE MAPE R 2 NRMSD MAE MAPE R 2 

A-ARIMA 0.245 6.341 7.078 0.217 0.316 10.366 2.954 0.014 0.321 46.364 20.468 0.108 

GARCH 0.297 7.148 15.635 0.0 0 0 0.305 10.003 0.679 0.0 0 0 0.395 43.859 92.881 0.0 0 0 

VARMA 0.326 7.997 24.982 0.233 0.341 11.645 5.709 0.032 0.356 41.903 68.009 0.089 

SVM 0.106 2.430 2.784 0.848 0.322 7.808 11.069 0.130 0.290 29.398 53.675 0.571 

NARNET 0.134 3.140 6.536 0.818 0.111 3.595 5.462 0.927 0.095 10.007 14.720 0.927 

FFBP 0.124 3.016 1.054 0.798 0.219 6.076 7.737 0.690 0.144 15.884 3.581 0.817 

RNN 0.490 11.981 5.775 0.009 0.257 8.552 0.646 0.316 0.349 46.170 38.353 0.067 

HBAR 0.207 5.379 5.363 0.481 0.258 7.989 1.384 0.336 0.340 47.247 62.597 0.414 

SBN 0.100 2.375 0.848 0.865 0.093 1.994 1.595 0.920 0.161 15.844 10.105 0.846 

FBN 0.095 2.148 0.092 0.877 0.093 1.994 1.595 0.920 0.157 17.551 12.748 0.845 

NFBN 0.088 1.932 0.144 0.893 0.061 1.335 0.948 0.963 0.103 8.313 1.435 0.904 

BNRC 0.100 2.366 0.528 0.865 0.064 1.597 1.833 0.965 0.135 14.150 4.433 0.882 

semBnet 0.083 1.970 0.153 0.903 0.063 1.584 1.685 0.965 0.135 14.246 6.645 0.882 

SpaBN 0.106 2.388 0.639 0.874 0.063 1.584 1.685 0.965 0.123 13.478 8.061 0.910 

SpaFBN 0.097 2.169 0.117 0.888 0.059 1.247 0.510 0.965 0.091 8.015 3.141 0.927 

(proposed) 

The boldface value indicates the best performance with respect to a given evaluation criteria. 
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• Moreover, it is evident from Tables 3 and 4 that in every case

the presently proposed SpaFBN outperforms the SpaBN, from

which it has been derived. The prediction uncertainty (refer

Fig. 5 ) corresponding to SpaFBN is also lesser than both SpaBN

and NFBN in all cases, thus indicating the effectiveness of in-

corporating fuzziness in spatial BN based prediction. 

Overall, all the variants of Bayesian networks (BNs) have shown

high degree of potentiality in dealing with prediction uncertainty

and providing comparatively better prediction accuracy from every

respect. Further, the encouraging performance of the presently pro-

posed SpaFBN fulfills our motivation of incorporating fuzziness in

spatial Bayesian analysis to overcome the problem of discretized

data and thereby reducing parameter uncertainty. The compara-

tive study reveals that the proposed spatial fuzzy Bayesian network

(SpaFBN) can be used as an effective CI technique for predicting

meteorological time series, especially humidity and precipitation

rate. 

5. Conclusions 

This paper provides a comparative study of the state-of-the-art

computational intelligence (CI) techniques, which have extensively
Please cite this article as: M. Das, S.K. Ghosh, Data-driven 
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romoted the progress of data-driven modeling for meteorologi-

al time series prediction. The major contributions in this work

ies in: (i) comprehensive discussion of eleven variants of CI tech-

iques, including ANN, NARNET, RNN, SVM, HBAR, SBN, FBN, NFBN,

NRC, semBnet, and SpaBN; (ii) proposing a new, fuzzy extension

f spatial Bayesian network, namely SpaFBN; and (iii) comparative

mpirical study with respect to prediction of temperature, humidity

nd precipitation rate time series for two locations from different

limate regions in India . The study reveals that the CI-based mete-

rological prediction is more promising than that based on tradi-

ional pure statistical methods. More specifically, the experimental

esults show better performance of BN-based (especially the pro-

osed SpaFBN based) models, compared to the others. 

This study may help researchers to investigate advanced CI

ased models for meteorological time series prediction. In future,

he work can be extended by considering other families of CI tech-

iques, like genetic algorithm, genetic programming, hybrid neuro-

uzzy approach etc., and other kinds of spatial time series from di-

erse domains like hydrology, ecology, biology, medicine, remote

ensing, and so on. Further, though as per the present objective

n the paper, the performance of the proposed SpaFBN has been

tudied with respect to meteorological prediction, the SpaFBN is a
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Fig. 5. Dawid–Sebastiani scores (DSS) for the CI techniques: (a)–(c) Data set-1; (d)–(f) Data set-2. 
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emains in exploring SpaFBN for analyzing spatio-temporal data

rom other disciplines as well. 
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