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Abstract—Detection and analysis of a land-cover change pattern
from remotely sensed imagery have gained increasing research
interests in recent years. A number of spatial statistics and land-
scape pattern metrics have been explored for this purpose. Moran’s
index (Moran’s I) of spatial autocorrelation is one such spatiostatis-
tical measure, which has been proved to be useful in characterizing
the land-cover change, especially in Landsat data. However, since
the Moran’s I estimation needs to deal with spatial weight between
each pair of spatial data objects, it becomes almost unfeasible to
apply Moran’s I in the case of large-scale remote sensing data, con-
taining several millions of pixels. This paper proposes a method
for computing Moran’s I in the Hadoop MapReduce framework
and thereby helps in describing spatial patterns in large-scale re-
motely sensed data. The contributions of the work include: 1) the
exhaustive description of the Mapper and Reducer implementation
for cost-effective estimation of Moran’s I, and 2) the computational
complexity analysis of the respective algorithms. Furthermore, two
case studies have been presented, considering both the rook case
and the queen case of spatial contiguity. Case Study 1 demonstrates
the computational efficiency of the proposed implementation, and
Case Study 2 illustrates an application of Moran’s I in describing
the urban sprawling pattern in two large spatial zones in Kolkata,
India.

Index Terms—Land-cover change pattern, large-scale data,
Moran’s index (Moran’s I), MapReduce, remote sensing imagery.

I. INTRODUCTION

HE change in land use/land cover is a key driver of the

global change, and it can have a significant effect on the
socioeconomical, ecological, and other environmental systems,
like climate [1], [2]. Therefore, research on detection and anal-
ysis of a land-cover change pattern has acquired increasing in-
terest in present days, and in this regard, the satellite remote
sensing plays a crucial role by providing an important source
of land-use/land-cover data [3], [4]. Variants of spatial statistics
and landscape pattern metrics have been explored for describ-
ing land-cover dynamics in remotely sensed data. Among these
techniques/measures, the Moran’s index (Moran’s I) of spatial
autocorrelation is proved to provide a comparatively rapid and
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automated technique [5] for the identification of interesting spa-
tial patterns, such as dispersion, randomness, clustering, etc.
Several land-cover change processes, such as deforestation,
urban sprawl, etc., are manifested in small spatial scale and,
thus, need high-resolution remote sensing data for better anal-
ysis [6]. However, since the Moran’s I estimation deals with
spatial weight between each pair of spatial data objects, it be-
comes almost unfeasible to conventionally measure Moran’s I
from such large-scale raster data, containing several millions of
pixels. In this work, we have used a cost-efficient method for
measuring Moran’s I to facilitate the process of characterizing
the spatial change pattern in large-scale remotely sensed im-
agery. This work can be treated as a more detailed presentation
of our work proposed in [7]. In the present paper, the proposed
approach has been described along with additional datasets and
comparisons in an enhanced experimental section.

A. Related Work

Down through the years, Moran’s I has been adopted in sev-
eral research works for characterizing the spatial pattern in land-
cover data [8]. For example, Overmars et al. [9] have proposed
a mixed regressive-spatial autoregressive model, which uses
Moran’s I of spatial autocorrelation for spatial analysis purpose.
The model has been employed in analyzing the land-use data in
Ecuador. Estiri [10] has used Moran’s I for quantitatively iden-
tifying the urban sprawl from remotely sensed data. The study
also found it useful to develop a regression model to predict the
urban sprawl based on the outcomes of Moran’s I analysis on
land-cover data. In [11], Pierre et al. have utilized Moran’s 1
as global statistical metrics to analyze landscape disturbances.
The 30-m resolution raster National Land Cover Dataset has
been used for this purpose. Read and Lam, in [5], have analyzed
a number of spatial methods for the detection of a land-cover
change and the characterization of a land-cover pattern. The
study demonstrates Moran’s | to be more useful than standard
landscape indices for characterizing the spatial pattern, espe-
cially in Landsat-TM data. Chen et al. [12] have used Moran’s
I of spatial autocorrelation to describe the spatial pattern of
change in lake area and also to identify the clusters of lakes
with similar change trends. In the work of Roberts et al. [13],
Moran’s I has been proved to be useful for analyzing forest
fragmentation as well. An exhaustive study on application of
Moran’s I in urban growth analysis has been performed by Tsai
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[14]. The study has been conducted with vector data, and it con-
cludes that the Moran’s coefficients are low, intermediate, and
high for decentralized, polycentric, and monocentric sprawling
patterns, respectively.

However, using Moran’s I to characterize the landscape pat-
tern in remotely sensed imagery is a less explored area [5]. A
high computational cost of measuring Moran’s I in large-scale
raster data is a crucial issue in behind [15]. The same reason also
limits the existing techniques to be applied on high-resolution
remote sensing imagery.

B. Challenges in Computing Moran’s I from Large-Scale
Remotely Sensed Data

Moran’s I, developed by P. A. P. Moran in 1950 [16], [17], is
a widely used measure of spatial autocorrelation. Numerically,
Moran’s I (I) can be expressed as follows:

P (Oizy 2 wij- (i — ) (w5 — 7)) o
(i Yoo wig) x (01 (z — 2)?)
where z; and x; are observed values of a spatial feature at
locations ¢ and j, respectively. Z is the mean of observed values
in all the sites, n is the number of observation locations/sites,
and w;; is the weight, defined based on the spatial proximity
between locations ¢ and ;.

The values of I range between —1 and +1. Negative values
indicate negative spatial autocorrelations and positive values
indicate positive spatial autocorrelations. A zero value indicates
existence of a random spatial pattern.

However, since the Moran’s I computation needs to deal with
weight w;; between each pair of spatial locations < 7,j >, it
becomes computationally intensive in the case where the total
number of observation locations or sites (n) becomes very large.
A critical situation arises while estimating Moran’s I in a very
large raster data, like satellite remote sensing image, containing
millions of pixels or spatial grids, each of which represents an
observation location. One such example scenario is depicted in
Fig. 1. It can be visualized from the figure (refer to Fig. 1) that
the computation time for Moran’s [ is increasing in polynomial
order with respect to the total pixels under study. Moreover,
from the trend line equation, it can be inferred that, under similar
experimental setup, it may take years to estimate Moran’s I in
a satellite image having 10 million pixels. Furthermore, storing
the large weight matrix in a single stand-alone computer system
also becomes difficult during Moran’s I computation. In these
circumstances, a cost-effective solution for measuring Moran’s
I in large-scale raster data is severely needed.

C. Contributions

The present work provides a cost-efficient solution for char-
acterizing a spatial pattern in large-scale raster data. This has
been achieved by proposing a MapReduce [ 18] implementation
of Moran’s I estimation, which drastically reduces the compu-
tation time. The MapReduce framework is inherently capable
of efficiently processing huge volume of data in a parallel and
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Fig. 1. Change in the computation time of Moran’s I versus change in the
total pixel count in the raster data.!

distributed fashion. However, to the best of our knowledge, this
is the first attempt in using the MapReduce implementation of
Moran’s I for characterizing the land-cover pattern in large-
scale remote sensing imagery. The major contributions in this
work are summarized as follows:

1) proposing a cost-efficient solution of describing a land-

cover pattern from large-scale satellite imagery based on
the MapReduce implementation of Moran’s I;

2) extensively illustrating the map and reduce algorithms to

measure Moran’s I in large-scale remotely sensed data;

3) theoretically analyzing the computational complexity of

the proposed MapReduce implementation of Moran’s [;

4) empirically analyzing the runtime performance of the pro-

posed algorithm in comparison with the single-machine
setup;

5) applying the proposed cost-efficient measure of Moran’s

I to describe the pattern of the urban sprawl in two large
spatial zones in Kolkata, India.

The rest of this paper is organized as follows. The proposed
approach of characterizing a land-cover change pattern using
a cost-efficient measure of Moran’s I has been illustrated in
Section II. The theoretical performance analysis of the proposed
implementation of Moran’s I has been presented in Section III.
The experimental results have been thoroughly discussed in
Section IV with respect to two case studies, and finally, the
concluding remarks have been made in Section V.

II. PROPOSED APPROACH: DESCRIBING A LAND-COVER
CHANGE PATTERN USING COST-EFFICIENT MORAN’S 1

This section provides a detailed description of the proposed
approach for describing a land-cover change pattern by using
a cost-efficient measure of Moran’s I. The central concentra-
tion of the section has been kept on explaining the MapReduce
implementation of Moran’s I.

As shown in Fig. 2, the overall approach consists of a data
preprocessing step followed by Moran’s I computation in the
MapReduce framework and land-cover pattern analysis. In order
to describe the overall process, let us assume that each of the
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Fig. 3. Illustration of the step of data preprocessing.

input imagery R contains r number of rows and ¢ number of
columns, i.e., a total of n = (r X ¢) number of pixels.

A. Data Preprocessing

In this step, the remote sensing raster data are first converted
into ASCII format and further processed by appending the row
number at the beginning of each row. The idea has been ex-
plained through Fig. 3. The figure illustrates the preprocessing
of a 5 x 5 image, where a pixel at the ith row/line and the jth
column has been denoted with P;;, and the variable value cor-
responding to the pixel has been denoted by V' F;;. Since the
MapReduce execution framework automatically splits the input
data records into physical blocks and distributes them among
different mappers, the original position/location and, hence, the
spatial relationships among the pixels can be lost. Inclusion of
this row number information can help to track the original pixel
location in the input file. The processed ASCII file is then fed
to the next step for Moran’s I computation.

B. Moran’s I Computation in the MapReduce Framework

Given a preprocessed remote sensing image (raster data),
this step computes Moran’s I in a cost-efficient manner, based
on the MapReduce framework. Typically, a MapReduce process
consists of three stages: map, shuffle, and reduce. The work only
illustrates the map and reduce function for calculating Moran’s 1
from the input raster. The shuffle step is automatically performed
using the built-in logic of the MapReduce programming model.

1) Mapper Implementation: The proposed map function is
presented through Algorithm 1. In the map stage, the mapper
takes the input < key; value > pair in following format:

< line offset; line/row content >

A typical value corresponding to the ith line/row looks as fol-
lows:

(iaV-Pil» sy VR(’)

Algorithm 1: Map_function(key,value).

Input : key=line offset;

value=line (row) content: (¢, V P;1, V P;a, - -
is the value of pixel P;; in j-th column of the row.
Output: < Iey, Ivar >: Intermediate < key, value > pair.

-,V Pi.), where V P

LP;; = location of P;; in the original raster image;

LPZ.J;.]’“ = location of the k-th neighbor Ny of P;; (k= 1,---,b);
b =number of neighbors for P;; as per the given spatial contiguity;
m = mean of all the feature values in the input data;

B W oN =

5 for each V P;; € value do
Iiey = LPij; Ivai = (V Py, LP;;,1,(VPi; —m));

7 emit(lxey lval);
8 for each neighbor Ny, (k =1,--- ,b) of P;; do
Np,
9 Iney = LP;¥: Iyar = (V Pij, LP;j, 1, (VPi; —m));
10 emit(Ixey.lval);
1 end
12 end

where V' P;; is the value of a spatial feature at pixel F;; in the
jth column of the row.

Now, let, for any pixel P;;, the number of neighbors
is b. Then, as per the proposed map function, for each row
element (except the first field representing the row number),
(b+1) number of intermediate < key;value > pairs are
generated in the following manner. For each V P;; in the line,
the generated set of intermediate < key; value > pairs becomes
{<LP;; (VP;,LP;,1,(VP; —m)) >, < LP}'; (VPy,
LPija 1) (VPLJ - m)) >, 0, < LP{y“ (Vpija LPijv 17 (V
P;; —m)) >}, where LPZ-];[ * is the location of the kth neighbor
Ny, of Py, LP;; is the location of P;;, V P;; is the value of
spatial feature at F;;, and m is the mean of all the feature values
in the input raster. The maximum value of b in the rook case
of spatial contiguity is 4, and that in the queen case is 8. The
LPZ.]J\.[  (k=1,...,b) values can be determined in terms of i
and j.

An example scenario has been illustrated in Fig. 4 with respect
to pixel P33 and the rook case of spatial contiguity. As per the
rook case of contiguity, the neighbors of pixel P33 are Ps3, Pso,
P34, and P,3, respectively, as highlighted with shades/patches.
Now, let us consider the left-most mapper, which has been as-
signed the third row as split data. Therefore, as per the proposed
approach, the initial < key; value > pair for this mapper be-
comes

<3V, VP, VP33, VP34, VP35 >

Then, while processing the element V P33, (44 1) = 5 num-
ber of intermediate < key; value > pairs will be produced as
follows:

< LPy3;(VPs3,LPs3,1, (VP33 —m)) >
< LPs2; (V Ps3, LPs3, 1, (VP33 —m)) >
< LPy; (V Py, LPss,1,(V Py — m)) >
< LPy; (V Py, LPys,1,(V Py — m)) >
< LPy3;(VPs3,LP33,1, (VP33 —m)) >

_ 1 5 5 »
where m = 32307 | Zj:l VPij.
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Fig.4. Illustrating example for measuring Moran’s I in the MapReduce frame-
work.

2) Reducer Implementation: The mapper function has been
designed in such a way that each of the values associated with
a single key in the reduce stage are nothing but the details
of each of its neighbors including itself. The set of values
for a single key LP;; becomes {(VP;, LP;, 1, (VP —
m)), (VPz'[]\'jl 7LP72];T1 L (VPz'[]\'fl - m)), ) (VPz'IJ\']b ’ LPi]]\‘[b ’
1, (VPZJJV » —m))}, where LP,L-‘;[" is the location of the kth neigh-
bor Nj, of P;;, LP;; is the location of P;;, V P;; is the spatial
feature value at P, Vng' is the spatial feature value at the kth
neighbor of P;;, m is the mean of all the feature values in the
input data, and b is the number of neighbors for the pixel F;;.

With this neighborhood information, output < key; value >
pair for each key is at first generated as follows:
<0; (22:1 (VP — m)-(VP[y’“ - m), 22:1 3 b, 22:1
(VPIZJ” —m)?/b) >. Then, each of these values are further
summed over the new key = 0 to generate the final output
< key; value > pair:

<0:;(A,B,C,D) >

where

c b

A= S S VR —m VP —m) @

i=1j=1k=1

r c b
B:ZZZ%:nb/b:n 3)

i=1j=1k=1
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Algorithm 2: Reduce_function(key,value).

Input : key=location LP;; of a pixel P;; in j-th column of the i-th row in
original raster; value=A set of values of the form (v1, va, v, v4).
v € {VP; uVPIF s € {LPy; ULPS* L =1, and
ve € (VP —m) U (Vng — m))}, where k € {1,---b}

Output: < frey, fuar >: Final < key, value > pair.

m= mean of all the feature values in the input data;

L P;j= location of P;; in the original raster image;

V' P; j= spatial feature value at P;;;

LPiij= location of the k-th neighbor Ny, of P;j;

b= number of neighbors for P;; as per the given spatial contiguity;

[ SR CN

6 A=0,B=0;C =0; D=0, /* initialization */

<

if key # O then

8 for each val € value do

9 if key # vo then

10 A=A+ (VP —m)(vy —m);B = B+ (1/b);
11 C:C+1;D:D+vi/b;

12 end

13 end

14 emit(0,(A,B,C,D));

15 end

16 else

17 for each val € value do

18 ‘ A=A+ v; B=B+v3;C=C+w3; D=D +wvy;
19 end

20 frey = key: foar = (A, B,C, D);

21 emit(frey, foal);

22 end

C’:ZZb )
i=1j=1
r c b

D=Y" Z > (VPYE —m)*/b. (5)

i=1j=1k=1

Now, the Moran’s I value can be estimated based on these
A, B, C, D, as stored in the output file. Moran’s I, thus, becomes

I=(AxB)/(C x D). (6)

As per this design, the proposed reduce function is applicable
for a single reduce task setup. The detailed structure for the
proposed reduce function is presented in Algorithm 2.

C. Land-Cover Pattern Analysis

This step takes as input the estimated Moran’s I and gener-
ates various insights on the land-cover pattern. The values of
Moran’s I along with a statistical significance (Z-score) indi-
cates a cluster pattern in the distribution of spatial features, in the
case where the value is positive; dispersed pattern, in the case
where the value is negative; and randomness, in the case where
the value is zero. Moreover, Moran’s I can also be utilized to
distinguish between compactness and sprawl at both metropoli-
tan and local levels. For example, a high value of Moran’s |
indicates monocentric sprawling [14], an intermediate value of
the Moran coefficient indicates polycentric sprawling, and a low
value of the Moran coefficient indicates decentralized sprawling
pattern at the metropolitan level.

III. ANALYZING COMPUTATIONAL COMPLEXITY OF
MAPREDUCE IMPLEMENTATION OF MORAN’S I

This section analyzes the computational complexity of mea-
suring Moran’s I using the proposed MapReduce implementa-
tion. Let us assume that the total number of rows and columns
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in an input image is r and c, respectively. Therefore, each image
raster consists of n = (r X ¢) number of pixels. Also consider
that the number of neighbors for any pixel is b.

Now, as per the proposed mapper implementation, for a sin-
gle < key; value > pair, the number of generated intermediate
< key; value > pair is (¢ x (b4 1)). Therefore, the maximum
space required to store all the intermediate keys for the entire
input data is

Smax = O(’I”C(b + 1)) = O(Tb(b + 1)) @)

However, for large-scale raster data, b << n. Therefore, (7)
yields the following:

Smax = O(n(b+ 1)) << O(n?). (8)

Moreover, since the total number of generated intermediate
< key; value > pair is (r x ¢ x (b+ 1)), the reducer takes
maximum O(re(b+ 1)) = O(n(b+ 1)) time for computation.
However, as mentioned previously, for large-scale raster data,
b << n. Therefore, the maximum time taken by the reducer is

Tnax = O(n(b+ 1)) << O(n?). )

Thus, the problem of handling an n x n spatial weight ma-
trix is resolved in the proposed MapReduce implementation of
Moran’s L.

IV. EXPERIMENTATION

The experimentation has been carried out on a Hadoop clus-
ter running Hadoop version 2.3.0. Each of the 25 nodes in the
cluster has two Intel(R) Xeon(R) E5-2630 v2 (2.60 GHz) CPUs,
six cores per CPU, 132-GB RAM, and 256.6-TB hard disk. Two
different case studies have been considered for the present pur-
pose. Case Study 1 has been used to demonstrate the computa-
tional efficiency of the proposed implementation in comparison
with single stand-alone machine setup, whereas Case Study 2
has been performed to illustrate the application of character-
izing the urban sprawling pattern in large-scale remote sens-
ing imagery by using the proposed cost-efficient measure of
Moran’s L.

A. Case Study 1: Empirically Analyzing the Computational
Efficiency of the Proposed Implementation of Moran’s 1

1) Dataset: Case Study 1 has been carried out with the nor-
malized difference vegetation index (NDVI) data from a set
of six satellite imagery of varying dimensions, as depicted in
Fig. 5(a)—(f). In Fig. 5(a)—(f), the NDVI datasets have been
represented with gray-scale images, where the darkest shade
(black) indicates the lowest value of NDVI and the lightest
shade (white) indicates the highest value of NDVI. The original
FCC (false color composite: near infrared (red), red (green),
green (blue))?> images have also been placed side by side for
better understanding. The primary source of these raster data is
the Landsat-7 ETM+ satellite imagery from the Land Process
Distributed Active Archive Center of the United States Geolog-
ical Survey (USGS) [19]. Later, ERDAS IMAGINE tool has

Zhttp://earthobservatory.nasa.gov/Features/FalseColor/page6.php

High: 033119

Low 1515010

High 1 8151004

‘Low: 951118 High: 1461538

ol High: 84153
(e) (H
Fig. 5. Raster datasets for Case Study 1. (a) Dataset 1. (b) Dataset 2.
(c) Dataset 3. (d) Dataset 4. (¢) Dataset 5. (f) Dataset 6.

TABLE I
RESULTS OF THE PROPOSED MAPREDUCE IMPLEMENTATION OF MORAN’S 1
CONSIDERING FIRST-ORDER SPATIAL CONTIGUITY

Dataset Pixel Count Estimated Moran’s I
Queen case Rook case
Dataset 1 1.0 x 10* 0.737 0.806
Dataset 2 4.0 x 10* 0.972 0.972
Dataset3 2.5 x 10° 0.738 0.798
Dataset 4 1.0 x 10° 0.950 0.964
Dataset 5 4.0 x 106 0.944 0.958
Dataset6 2.5 x 107 0.920 0.942

been utilized to generate the NDVI raster [20] from the input
raw satellite imagery.

The details of each raster image can be found in Table 1.

2) Results and Discussion: For each experimental dataset,
the estimated Moran’s I considering the queen case and the
rook case of spatial contiguity has been presented in Table I.
The correctness of estimated values of Moran’s I for smaller
datasets have been validated with respect to the Moran’s I mea-
sure from spatial R [21] and ArcGIS Tool [22]. The amount of
CPU time spent (considering four map tasks) for each dataset
has been depicted in Fig. 6. Moreover, the performance of the
proposed MapReduce algorithm has been studied with respect
to the change in the number of mapper tasks involved (refer to
Fig. 7). From the figures, following inferences can be drawn.

1) Fig. 6 shows that the CPU time spent increases linearly

with the number of pixels. However, as per the trend
line equation, the increment is slow for very large scale
datasets, and negligible (almost constant) otherwise.

2) It can be noted from Fig. 7 that, initially, the compu-

tation time for the proposed Moran’s I implementation
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drastically decreases with the increment in the number of
map tasks. However, the decrement is negligible beyond
four map tasks in each case. So, in an optimum setup, the
proposed algorithm can be executed using four map tasks.

3) Since a single-machine setup can work at most as effi-
ciently as a single-map task setup, from Fig. 7, it can
also be inferred that for a very large dataset, the proposed
MapReduce algorithm is able to reduce average 78% of
the computation time in the single-machine setup.

4) The trend of change in computation time requirement,
as derived from Fig. 7, is depicted in Fig. 8. The trend
equations in Fig. 8 reveal that a single-machine setup
(equivalent to a single-map task) can take days to compute
Moran’s I from just a 30 km x 30 km, 1-m resolution
satellite imagery. However, our proposed approach with
four mapper tasks will take few hours to achieve the same.
That is, the proposed approach is very much effective for
high/very high resolution imagery, and the improvement
is not always merely in few seconds. The effectiveness
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Fig. 8. Tendency of increasing execution time in Moran’s I calculation.

is more evident as the size of data (number of pixels)
increases.

B. Case Study 2: Characterizing the Urban Sprawl Pattern by
Analyzing Large-Scale Remote Sensing Imagery

1) Dataset and Study Area: Case Study 2 has been per-
formed to characterize the urban sprawling pattern in two large
spatial zones in and around the city of Kolkata, India (refer
to Fig. 9). The experimentation has been carried out with the
normalized difference built-up index (NDBI) time-series raster
data, captured at a gap of four years during the period 2001-
2013. The primary source of these raster data is the Landsat-7
ETM+ satellite imagery from USGS [19]. Later, the ERDAS
IMAGINE tool® has been used to generate the NDBI raster
from the raw satellite imagery using the following equation:

(SWIR — NIR)
(SWIR + NIR)

where SWIR and NIR are the top-of-the-atmosphere reflectance
measurements, captured in the short-wave infrared (Band 5) and
near-infrared (Band 4) spectral regions, respectively. Now, be-
cause of a high level of urbanization, study zone 1, which is near
the Kolkata International Airport, has seen a continuous land-
cover change in the overall region, especially during the period
from 2005 to 2013. On the other side, study zone 2 is a quite
larger zone, compared to zone 1. Therefore, the urban growth
pattern in zone 2 is a bit scattered with respect to the whole
region. The details of zones 1 and 2 have been summarized in
Table II. The histogram plots of the distribution of NDBI in
both the study zones have been depicted in Fig. 10. The plots
have been generated with respect to discretized NDBI, which
has been further normalized in the range: 0-255.

2) Results and Discussion: As per the proposed approach,
the Moran’s I values have been estimated considering the time
series of NDBI imagery of the years 2001, 2005, 2009, and 2013
for both the study zones. The estimated Moran’s I and the corre-
sponding z-scores, with respect to the rook case and the queen
case of spatial contiguity, have been presented in Tables III
and IV, respectively, along with the details of computation time.

NDBI = (10)

3http://www.hexagongeospatial.com/products/remote-sensing/erdas-
imagine/overview
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Fig. 9.  Study area for Case Study 2: Kolkata, India.
TABLE II
DETAILS OF STUDY ZONES IN CASE STUDY 2
Zones Bounding box details
No. of pixels Top-Left Bottom-Right
Zone 1 22201 22.63°N, 88.45°E 22.59°N, 88.50°E
Zone 2 160 000 22.69°N, 88.37°E 22.58°N, 88.49°E
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Fig. 10. Histogram plots of NDBI distribution (discretized and further nor-
malized in the range 0-255) in Zone 1 and Zone 2.

In order to analyze the pattern of the urban sprawl in the study
zone, the estimated Moran’s indices have also been plotted in
Fig. 11. On analyzing the tabulated values and the graphical
plots, the following inferences can be drawn.

TABLE III
ESTIMATED MORAN’S I CONSIDERING THE ROOK CASE
OF SPATIAL CONTIGUITY

2001 2005 2009 2013 Time (in seconds)
Zone 1 Moran’s 1 0.8754 0.875 0.8726 0.8688 31ls
Z -Score 259.95 259.83 259.12 257.99
Zone2  Moran’sI  0.8516  0.8382 0.8482  0.8264 32s
Z -Score 680.41 669.71 677.70 660.28
TABLE IV
ESTIMATED MORAN’S I CONSIDERING THE QUEEN CASE
OF SPATIAL CONTIGUITY
2001 2005 2009 2013 Time (in seconds)
Zone 1 Moran’sT  0.8412 0.8410 0.836 0.8336 32s
Z -Score 352.72 352.64 350.54 349.54
Zone2  Moran’sI  0.8105 0.7944 0.8069  0.7787 33s
Z -Score 915.21 897.03 911.14 879.30
Qee BZone-1 MZone-2 LD mZone-1 mZone-2
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Fig. 11. Change in Moran’s I during 2001-2013 in study Zone 1 and study
Zone 2.
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TABLE V
LAND-COVER CHANGE PATTERN AS GENERATED BY STATE-OF-THE-ART TECHNIQUES [8], [15]

Study Zones State-of-the-art 2001 2005 2009 2013
Techniques
Zone 1 Altieri et al. [15] No sprawl No sprawl Partial Sprawl (with Partial Sprawl (with augmented
(2014) augmented size) size)
Suetal. [8] (2011)  Several significant low—low Several significant low—low Significant high—high clusters  Significant high-high clusters of
clusters of PD clusters of PD of PD appears PD increases
Zone 2 Altieri et al. [15] No sprawl Partial sprawl (with decreased ~ Partial sprawl (with Partial sprawl (with decreased

(2014)
Su et al. [8] (2011)

size)
Several significant high—high
clusters of PD

Several significant high—high
clusters of PD

augmented size)
Several significant high—high
clusters of PD

size)
Several significant high—high
clusters of PD

PD = Patch Density (A landscape metric; an indicator for landscape fragmentation)

1) Itis evident from Tables III and IV that for both the study
zones, the values of Moran’s I are quite high with signifi-
cantly large z-scores. This indicates a cluster pattern of a
built-up index in both the zones. However, Fig. 11 shows
a decreasing trend of Moran’s I, especially in zone 1. The
reason is that, initially (especially during 2001-2005),
zone 1 was full of cultivable lands and water bodies.
Therefore, a major part of the zone had a very low built-up
index (NDBI) during this time period. Thus, the spatial
distribution of NDBI produced a cluster pattern over low
values of NDBI. The recent urbanization especially after
2005 has resulted in a rapid growth of the built-up area
in this zone, which has affected the cluster pattern, and
hence, the Moran’s I values have started to decrease. This
can also be validated from the histogram plots in Fig. 10.
Similar insights can also be drawn for zone 2. However,
since this zone is spread over a quite large region, the
Moran’s I values during 2001-2013 show a fluctuating
behavior, indicating the scattered growth of the built-up
area in this zone.

2) It can also be noted from Tables III and IV that though
zone 2 has a significantly large number of pixels (160 000)
compared to zone 1, the computation time for Moran’s I in
zone 2 is notably low, which demonstrates the effective-
ness of the proposed approach in dealing with large-scale
raster data.

In order to validate the urban sprawl pattern described by our
proposed approach, a comparative study has been made with
two state-of-the-art land-cover change analysis techniques, pro-
posed in [15] and [8] respectively. Both the works [8] and [15]
have utilized Moran’s I of spatial autocorrelation for generating
insights on the land-cover change.

In [15], Altieri et al. have proposed a scatterplot-based tech-
nique to identify and assess the urban sprawl. However, it is
not free from information loss and, therefore, cannot regenerate
the exact value of Moran’s I. In our experimentation, the tech-
nique proposed in [15] has been implemented considering the
binary data on an urban landscape pattern, generated using Ar-
cGIS tool.* In the other work [8], Su et al. have used Moran’s
statistics on various landscape metrics to characterize the degree
of spatial dependence on landscape pattern changes over time.

“http://www.esri.com/software/arcgis/arcgis-for-desktop

However, the method is not suitable for analyzing the land-cover
change from large-scale remote sensing imagery. In our experi-
mentation, the technique proposed in [8] has been implemented
considering patch density of urban landscape, generated using
FRAGSTATS software [23], for a 1.2 km x 1.2 km grid over
the considered study zones.

The insights on the land-cover change pattern as generated
by these state-of-the-art techniques have been summarized in
Table V. The combined outcomes from both the techniques
reveal that study zone 1 has encountered recent growth in the
urban area, especially after 2005, whereas the major portions of
study zone 2 belong to the urban area after 2001, and there also
exists tendency of the landscape pattern change within small
localities in zone 2. Thus, the comparative study shows that the
outcomes of the state-of-the-art techniques support the results
generated by our proposed approach.

V. CONCLUSION

The present work has proposed a cost-efficient approach for
characterizing the land-cover change pattern from large-scale
remotely sensed imagery. The approach is based on the MapRe-
duce implementation of Moran’s I, which can be effectively
used in any other large-scale spatial data analysis as well. The
proposed approach has been validated with two case studies
using Landsat ETM+ satellite imagery. The experimental re-
sults demonstrate that the proposed approach is able to generate
useful insights with 78% reduction in the computational cost,
compared to the single-machine setup. In future, the work can
be extended to efficiently predict the landscape pattern from
high-resolution remote sensing imagery.
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