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Abstract—In this paper, we propose MUSE-RNN, a multi-
layer self-evolving recurrent neural network model for real-time
classification of streaming data. Unlike the existing approaches,
MUSE-RNN offers special treatment towards capturing temporal
aspects of data stream through its novel recurrent learning
approach based on the teacher forcing policy. Novelties here
are twofold. First, in contrast to the traditional RNN models,
MUSE-RNN has intrinsic ability to self-adjust its capacity by
growing and pruning hidden nodes as well as layers, to handle
the ever-changing characteristics of data stream. Second, MUSE-
RNN adopts a unique scoring-based layer adaptation mechanism,
which makes it capable of recalling prior tasks, with minimum
exploitation of network parameters. The performance of MUSE-
RNN is evaluated in comparison with a number of state-of-the-
art techniques, using seven popular data streams and continual
learning problems under prequential test-then-train protocol.
Experimental results demonstrate the effectiveness of MUSE-
RNN in stream classification scenario.

Index Terms—Recurrent neural network, Data stream, Online
learning, Evolving network, Classification

I. INTRODUCTION

Real-time classification of data streams [1], [2], such as
phone conversations, sensor data, video surveillance, IP net-
work traffic etc., is of high importance in many of the
application areas demanding on-the-fly processing of the gen-
erated data. However, a stream classification problem is not
a trivial task as it imposes several new challenges which are
quite uncommon to the traditional classification scenario [3].
First of all, a stream classification algorithm must work on
infinite length data, but process it under restricted time and
memory bound. Accordingly, the algorithm should be able to
learn new data in a single-pass and sequential manner in the
absence of old data. Secondly, since the underlying concepts
of the data are subject to change over time, the algorithm
should possess self-evolving property and learn in incremental
fashion, without suffering from the catastrophic forgetting of
previous knowledge [4]. In consequence, stream classification
has gained growing research attention, and a number of
advanced models based on incremental and continual learning
approaches [5], [6], [7] have been proposed recently. However,
despite the significant achievements of these systems in terms
of concept drift detection and adaptation over time, we observe
the following research gaps:
• Majority of these models are based on feed-forward

computation which assume that the data is distributed

‘not identically, but still independently’ [3], and thus, do
not account for the time dependencies in data stream.
However, there are many real-world data streams, such
as ‘Electricity-pricing’, ‘Weather’, ‘Ozone’ etc. [3], [8],
that show prominent temporal dependence, which can be
observed through autocorrelation analysis of the corre-
sponding data.

• Although recurrent neural networks (RNNs) have in-
trinsic ability to account for temporal dependencies in
sequence learning, the existing works mostly focus on
improving the memorization aspects of RNNs through
variants of control structures as in LSTM (long short
term memory) [9] and GRU (gated recurrent units) [10],
which often make the model too complex to learn through
single scanning of data. Further, the rigid-structure (fixed
no. of nodes and layers) of these models often limits their
capacity, and consequently, they show deterioration in the
presence of concept drift or distributional change in data.

Motivated by these observations, in this paper we attempt
to develop MUSE-RNN, a RNN model with dynamic network
capacity achieved through self-evolving multi-layered structure
to suit stream classification scenario. The idea is to utilize
the recurrent learning power of RNN to model the temporal
aspects of the data streams, and at the same time, to make the
recurrent model adaptive to evolving characteristics of data.

A. Contribution

MUSE-RNN structure is automatically developed from
scratch by growing and pruning hidden units to fit the
characteristics of the data. MUSE-RNN is also capable of
adding hidden layers to its architecture to cope with concept
drifts in the data stream. Further, instead of using complex
control structures, the model adopts ‘hidden layer voting’ and
‘winning layer adaptation’ techniques to help recall prior tasks
with the minimum exploitation of network parameters. Even-
tually, MUSE-RNN becomes fit for sequential learning in the
restricted resource environment of streaming data processing.
Furthermore, the recurrent learning strategy of MUSE-RNN is
driven by ‘teacher forcing’ principle that resolves vanishing
and exploding gradient problems while making the model
capable of capturing temporal nature of data streams. Overall,
the proposed MUSE-RNN is well featured for classifying
data streams with optimal usage of network parameters. The
dynamically adjustable recurrent structure of the model helps



Fig. 1: Learning mechanism of the proposed MUSE-RNN. [In the training phase, the model utilizes the actual output y (see MUSE-RNN
at right) to guide the classification as per teacher forcing policy, while this is replaced by predicted output ŷ during testing phase (see left).]

it to efficiently capture the temporal dependencies in the
data without leveraging complex control structure scattering
much less network parameters than those of popular RNN
models: LSTM, GRU. As far as we concern, this is the
first teacher forcing based autonomous RNN model for data
stream processing. We show empirically that MUSE-RNN is
able to achieve average 12% improvement over the state-
of-the-art accuracy under single-pass learning scenario of
stream classification, evaluated using the standard data stream
evaluation protocol of prequential-test-then-train. Thus, our
major contributions in this work are as follows:
• We propose MUSE-RNN, a novel RNN model which is

able to dynamically construct/adjust its network structure
by growing/pruning hidden units as well as hidden layers;

• We define the feature learning and layer growing in such
a way that it maintains teacher-forcing policy and relieve
MUSE-RNN from gradient calculation for hidden-hidden
recurrent connection;

• We incorporate dynamic layer voting and winning layer
adaptation mechanism in RNN model to appropriately
recall relevant knowledge from past, with minimal usage
of network parameters;

The rest of the paper is organized as follows. Section II,
summarizes the recent and relevant works on streaming data
classification. Section III presents the architectural as well as
learning details of the proposed MUSE-RNN model. Section
IV provides a thorough description of the empirical study
along with the details of datasets, experimental set up, results,
and major findings. Finally, we conclude in Section V.

II. RELATED WORKS

Streaming data classification is one of the hot topics in
recent years and has attracted considerable research attentions.
Most of the existing stream classification methods are based
on incremental or continual learning which ensures learning
of new information without perturbing previously acquired
knowledge [8]. Diverse approaches supporting incremental
learning can be found in the literature. For example, the
incremental learning in progressive neural network (PNN) [11]

is crafted on the creation of fresh network structure whenever a
new task arrives, whereas the dynamically expandable network
(DEN) [12] handles the situation by dynamically growing neu-
rons in the hidden layer and timestamping these. Recently, the
task-based hard attention mechanism (HAT) [13] is proposed
as continual learning model which is a masking technique to
preserve the knowledge of previous tasks without affecting the
learning of current tasks. The ‘attentional mechanism’ is also
employed by Liu et al. [14] for learning personalized classifier
weights with respect to different instances. However, all these
models are built upon fixed-layered network architecture, thus
contributing less in adjusting the network capacity compared
to dynamically changing network layer or depth structure [15].
The recent progress in incremental learning based stream ana-
lytics can also be noticed in the emergence of various ensemble
models [16]. An ensemble method has advantage over single
classifier model because it controls the bias-variance problem
better, by providing sufficient diversity of its base classifiers.
Incremental bagging and incremental boosting [17] are two
well-known ensemble learning algorithms for streaming data
prediction. Recently, Jung et al. [18] have proposed a variant
of online boosting technique, based on ensemble of decision
trees, which is fit for multiclass classification scenario. A
CNN-based prototype ensemble model has been proposed by
Wang et al. [19] for novel class detection and correction in
incremental learning scenario. Learn++.NSE [4] is another
popular ensemble-based classifier model which trains a new
classifier for each batch of data it receives, and combines these
using dynamically weighted majority voting.

Nevertheless, none of the above-discussed models is de-
signed to capture the temporal dependency from input se-
quence, and definitely, they lose generalization power to some
extent [3]. Though the internal memory of RNN is inherently
capable of handing this issue, the existing RNN models for
data stream analytics are rigid-structured, and thus, inflexible
to address drifts and shifts of data streams. Moreover, the
vanishing and exploding gradient problem, from which RNN
suffers, are addressed using various gating mechanisms [20],



[21] which, however, incur expensive network parameters, and
are hard to train in online learning situation.

III. PROPOSED MODEL: MUSE-RNN

This section covers the architectural as well as algorithmic
details of MUSE-RNN, with respect to stream classification.

A. Problem Formulation

The data stream classification problem can be defined
as the classification of continuously generated data chunks
D = [D1,D2, · · · ,DC ] where the number of chunks (C) and
the distribution of the data are not known apriori. Each chunk
may contain one or more data points/samples

[
x(1), · · ·x(T )

]
such that T ≥ 1 and x(i) ∈ RD, where D denotes the input
feature dimension. Further, the sample size may depend in a
random manner on the accumulating data [22]. This limits the
feasibility of direct train-test partitioning methods and requires
the model to be executed under prequential test-then-train pro-
tocol, where the data is first used to test the generative power
of the classifier and then is exploited to update the model.
Moreover, the streaming data is usually temporal in nature,
which is ignored by feed forward network architectures. This
salient trait is addressed here by using a teacher forcing based
recurrent network structure, featuring computationally wise
solution (low network parameters) without any compromise
of vanishing/exploding gradient problem. The fundamental
working principle of MUSE-RNN is visualized in Fig. 1. We
assume that the labels of the current samples become available
when the next data chunk arrives.

B. Architecture

Primarily, the concept of MUSE-RNN uses a combina-
tion of dynamic number of self-configurable hidden layers
(1 ≤ l ≤ K; K is the total number of hidden layers), all of
which have connections to the output layer and have the ability
to produce multi-class probability (y(l)) by following the
teacher forcing principle of a recurrent model. The recurrent
architecture and the corresponding unfolded computational
graph of the proposed MUSE-RNN at a particular timestamp t
is depicted in Fig. 2. For each time step t, the D-dimensional
input is x(t), the hidden layer activation for any layer l is
H

(t)
(l) , un-normalized output is O(t)

(l) which is further updated
through softmax layer to achieve the predicted output ŷ(t)

(l)
=

softmax
(
O

(t)
(l)

)
∈ RS , where S is the number of classes, and

the cross-entropy loss for layer l is L(t)
(l) .

Each layer (l) is either rewarded or penalized based on its
classification performance at each timestamp, and accordingly,
the layer is assigned a voting score (ψl) in a dynamic manner
(refer to Section III.E). The winning layer (lW ) in the earlier
timestamp is considered for classifying the current data and is
allowed to update its parameter to acquire the new knowledge.
Thus, the predicted output at t becomes:

ŷ(t) = softmax
(
O

(t)
(lW )

)
= softmax

(
c+ V(lW )H

(t)
(lW )

)
(1)

where c ∈ RS is the bias for the output layer, V(lW ) ∈
RS×elW is the hidden-to-output layer weight matrix, and
lW = argmax

l
(ψl) i.e. the layer corresponding to the highest

voting score which varies dynamically as per classification
performance of the layer throughout all the elapsed time
stamps till (t−1). This, in turn, helps to maintain the ‘plastic-
ity’ of the model [5]. Further, in the form of old knowledge,
MUSE-RNN keeps a record for the parameter configuration
of the layer (lM ) producing latest best ever classification
performance and utilizes the same to initialize the parameters
for the newly introduced hidden layer in the forthcoming drift
detection scenario (refer Section III.E). This helps the model
to preserve its ‘stability’ towards retaining existing knowledge.
Thus, MUSE-RNN adopts recurrent learning along with ‘layer
voting’ and ‘layer adaptation’ mechanisms to achieve an
improved recall power that can even maintain the ‘stability-
plasticity’ trade off for overcoming the catastrophic forgetting
situation [13] in a stream classification problem.

C. Parameter Learning
Typically, the hidden layer activation in MUSE-RNN is

measured in terms of hyperplane activation [23], [24] as:

H
i(t)

(l) = exp

(
−η

d
i(t)
(l)

max
(
d
i(t)
(l)

)
)

where, i = 1, 2, · · · el is the

number of hidden units in the l-th hidden layer H
(t)
(l) at

time t, η is a parameter controlling the activation strength,

and di(t)(l) =
|y(t−1)|1−S·

(
bi(l)+U(l)iH

(t)

(0)

)
√

1+
∑D

j=1 U
2
(l)ij

represents the distance

from the (t− 1)-th data point to the i-th feature in the feature
hyperplane at the l-th layer. Here, |y|1 indicates the 1-norm of
y, U(l) ∈ Rel×D is the input to l-th hidden layer weight matrix,
and H

(t)
(0) ≡ x(t). It may be noted that the hyperplane-based

activation leads each hidden layer to be implicitly influenced
by the output or summarized information from previous time
stamp without involvement of external weights or parameters.
No external weight matrix is maintained for output-to-hidden
recurrent connection. Consequently, this reduces the number
of network parameters to a great extent, especially when
the network is multi-layered. Further, the use of output-to-
hidden layer connection eventually helps the model to learn
from exact inputs from earlier time stamps as per teacher
forcing policy [25]. In case of testing, the original output
y(t−1) is replaced by the predicted output ŷ(t−1) (refer to
Fig. 1), to maintain the constraint of unlabeled data. Since
the output-to-hidden recurrent connection in MUSE-RNN is
not explicit, during parameter updating, the back-propagation
algorithm is applied in isolation to each time stamp. This not
only reduces the computational time but also overcomes the
problem of exploding/vanishing gradient, as encountered in the
generalized back-propagation-through-time algorithm which is
applied on RNN with hidden-to-hidden recurrent connection.
Accordingly, the gradient computation (using stochastic gra-
dient descent or SGD) in MUSE-RNN for internal nodes at
each time stamp becomes as follows:

∂L

∂O
(t)
i

=
(
∇O(t)L

)
i
=
(
ŷi

(t) − y(t)i
)

(2)

∇
H

(t)
(l)

L = V >(l)
(
∇O(t)L

)
(3)

Once the gradients on the internal nodes are obtained, we
compute the gradients for bias parameters (b,c) and weight
parameters (V(l),U(l)) as follows:

∇cL =

(
∂O(t)

∂c

)> (
∇O(t)L

)
=
(
∇O(t)L

)
(4)

∇b(l)L =
( η

mv
·H(t)

(l)

)
◦
(
∇
H

(t)
(l)

L

)
(5)



Fig. 2: MUSE-RNN: Recurrent architecture and unfolded computational graph

TABLE I: Summary of notations used to describe MUSE-RNN
parameter learning

Notations Meaning
D Input feature dimension
S No. of class
x(i) i-th datapoint or sample in a chunk
K Total number of layers in the MUSE-RNN architecture
el Number of hidden units in the l-th hidden layer
H

(t)
(l)

Activation of l-th hidden layer for timestamp t

O
(t)
(l)

Un-normalized output

ŷ
(t)
(l)

Predicted normalized output using layer l

ŷ(t) Predicted normalized output of MUSE-RNN
y(t) Actual output
ψl Score of layer l
lW Wining layer
lM Layer producing best ever classification performance
η Activation strength controlling parameter
L Cross-entropy loss
d
i(t)
(l)

Distance from the previous data-point to the i-th feature in
the l-th feature hyperplane

b bias for the input layer
c bias for the output layer
Ul input layer to l-th hidden layer weight matrix
Vl l-th hidden layer to output layer weight matrix

∇V(l)L
=
∑
i

(
∂L

∂O
(t)
i

)
∇V O

(t)
i =

(
∇O(t)L

)
·
(
H

(t)
(l)

)>
(6)

∇U(l)L
=

(( η

mv
·H(t)

(l+1)

)
◦
(
∇
H

(t)
(l+1)

L

))(
H

(t)
(l)

)>
(7)

where mv corresponds to the maximum of the distances from
sample to the features on the l-th feature plane, at time t. Table
I summarizes the notations used in Sections III-B-III-C.

D. Self-construction of Within Layer Structure

MUSE-RNN features flexible layer structure. The number
of the nodes el per layer l (1 ≤ l ≤ K) is not fixed. It
starts from scratch with a single hidden node in a single
layer, and then, the count of hidden node is dynamically
adjusted during training phase, depending on the distributional
change in the input data stream. The hidden node growing

and pruning condition in MUSE-RNN is driven by network
significance (NS) [7] which represents the generalization
power of the network in terms of bias and variance: NS =

V ar(O) + Bias(O)2 = (E[O2] − E[O]2) + (E[O] − y)2 where,
E[O] represents the expectation of un-normalized output from
MUSE-RNN. Note that the NS method in MUSE-RNN has to
be redefined because its original form only covers the case of
sigmoid activation function. For any time instant t, the E[O]
for the MUSE-RNN network can be recursively estimated as
follows: E[O] =

∫∞
−∞(c + V · H)p(H)dH = c + V · E[H],

where E[H] =
∫∞
−∞ e

(
− d

max(d)

)
p(d)dd = e

(
− E(d)

max(E(d))

)
and

E[di]k=1 = 1
S

∑S
m=1

|y|1−(bi+Ui·µ)√
1+
∑D

j=1 Uij

, for 1 ≤ i ≤ el; µ is the

mean corresponding to the data distribution.

Hidden node growing policy: A hidden node is added
to the winning layer (lW ) when the model goes into
underfitting zone, identified by high bias condition:
µtBias + σtBias ≥ µminBias + πσminBias, where µtBias, σ

t
Bias

are respectively the mean and the standard deviation of bias
at the t-th time instant, and µminBias, σ

min
Bias correspond to the

same for the minimum bias till the time instant t. The value
of π is selected as 1.3 exp(−bias2) + 0.7, leading to attain
confidence level in between 50% and 95.2%. The underfitting
situation is resolved by increasing complexity of the network
structure, by introducing more units in the hidden layer.
Once a new hidden node is added to the layer, the associated
parameters (b, U , V ) are randomly sampled from the scope
of [-1,1] so that it increases the interestingness (G) of the
layer feature, i.e. G(Ĥ(lW )) > G(H(lW )), where Ĥ(lW ) and
H(lW ) denote the activations for the winning layer lW after
and before the node growth, respectively. The interestingness
G is estimated in terms of Gini index [26]. To be noted, the
estimation of Gini index here is solely based on the current
activation of the winning layer, considering its hidden state
before and after the growing of hidden node. Therefore, this
index value is not at all required to be computed in online
fashion. Further, since the number of hidden units in the



Fig. 3: A typical scenario of hidden layer adjustment in MUSE-RNN

layer at the given time stamp is not considerably high, the
computation of the Gini index takes negligible time.

Hidden node pruning policy: The goal of pruning hidden unit
is to reduce the network complexity to deal with overfitting
situation which can be identified through high variance condi-
tion: µtV ar + σtV ar ≥ µminV ar + 2χσminV ar , where µtV ar, σ

t
V ar are

respectively the mean and standard deviation of the variance
at the t-th time instant, and µminV ar , σminV ar correspond to the
minimum variance till the time instant t, respectively. The
χ, estimated as 1.3 exp(−V ar) + 0.7, is a dynamic constant
controlling the confidence level of the sigma rule. Once high
variance is detected, the hidden unit associated with the least
ever average activation value in the winning layer lW is chosen
for pruning. In other words, the pruning candidate is the k-th

unit in lW such that k = argmin
i

(
limT→∞

∑T
t=1

H
i(t)
lW

T

)
.

Fig. 2 depicts a typical instance of unfolded MUSE-RNN
structure along with hidden unit growing and pruning scenario.

E. Layer Adjustment to Adapt to Concept Drift

A drift situation indicates the inadequacy of acquired
knowledge to describe the new data distribution. In order to
maintain sequential learning, this issue needs to be resolved
without sacrificing the already acquired knowledge over the
observed data distribution. MUSE-RNN handles this situation
by adding more layers in the network and only allowing the
currently best performing layer to adapt with the new data.
Other layers are kept unchanged to retain the old knowledge.

Hidden layer growing policy: The drift scenario is detected
by means of Hoeffding’s error bound technique [27].
When the drift status is signaled (see Algorithm 2), a
new layer lnew is added in the network with direct feed
forward connection from and to the input and output layer,
respectively. Further, the new layer activations are computed
in terms of hyperplane activation function which leads to
implicit recurrent connection of lnew to the summarized
information from the output of previous time stamp. This

ensures multi-layer MUSE-RNN learning based on teacher
forcing mechanism. The newly created layer parameters are
initialized with the parameter configuration of the layer (lM )
producing best ever classification accuracy during the elapsed
time period, i.e. Vl(new)

← Vl(M)
and Ul(new)

← Ul(M)
. This

helps in immediate recovery from drift situation if the drift
is recurrent. Else, this triggers the model to go back to the
stable situation and learn the new knowledge afresh, without
affecting the present knowledge, since the other layers are
kept frozen. To be noted, the best ever classification accuracy
may not always be the one with the best parameters for
a given specific recurring concept. However, our method
still works desirably because of the following reason. If
the best ever classification accuracy corresponds to the
current recurring concept, definitely the reuse of parameter
configuration helps retaining the performance. Otherwise,
even if the best ever classification accuracy does not
correspond to the current recurring concept, the reuse of its
parameter configuration helps the model achieving divergence
from the latest parameter configuration, and subsequently
provides opportunity to search the solution space in a
different direction, through the parameter updating process in
the next step. MUSE-RNN layer growing policy is pictorially
explained in Fig. 3. Incidentally, MUSE-RNN does not
offer any layer pruning facility, since removal of a hidden
layer may lead to catastrophic forgetting situation by sudden
loss of significant amount of knowledge relevant to an old task.

Dynamic adjustment of layer score: The key objective of
layer scoring is to properly recall the knowledge acquired from
data. This is achieved in two ways: firstly, by assigning the
highest score value to the layer producing best classification
performance over the current data stream, and secondly, by
allowing only this winning layer to back propagate the error
derivative and accordingly update its associated parameters
to learn the new knowledge while keeping the other layers
unchanged to retain the old knowledge. This mechanism also
helps MUSE-RNN to achieve diversity and ensures that each
layer is assigned its own zone of influence. For each layer l,
the score value ψl ∈ [0, 1] is initialized with its classification
rate when it appears first, and then, the value is dynamically



updated either by rewarding (as per eq. 8) or by penalizing
the layer (as per eq. 9), to reflect its current performance.

ψl = min(1, ψl + ε) (8)

ψl = max(0, ψl − ε) (9)

where ε ∈ [0, 1] is the score adjustment factor which indicates
the significance of reward or penalty. The eq. 8 and 9 ensure
that the score for each layer remains in between 0 and 1.
This scoring-based layer adaptation helps in recalling most-
relevant knowledge without any gating mechanism, and thus,
achieves improved memorization power with less exploitation
of network parameter. The overall learning process of pro-
posed MUSE-RNN is presented through Algorithm 1.

Algorithm 1: MUSE-RNN Learning Model
Required: x = [x1, x2, ·, xD]>, Input to process
Required: y = [y1, y2, ·, yS ]>, Target output /*

{
x(t), y(t)

}
,

t = 1, 2, · · · , T is the data stream

1 /* Variable definition and Initialization */
2 ψl: Score for the l-th layer
3 lW : Winning hidden layer, or the layer with highest score; lW = 1;
4 lM : Hidden layer with best ever classification performance; lM = 1;

5 /* Processing */
6 for DC = 1 to the no.of data chunk in the stream do
7 for t = 1 to the no.of training data in the chunk DC do
8 Testing Phase:
9 Execute forward propagation computation for all l (1 ≤ l ≤ K)(refer

Section III.C);
10 Generate the output class label as ŷ(t) = ŷ

(t)
lW

(refer Section III.B);

11 /* Dynamic updating of layer score */
12 if (DC==1 and t==1) then
13 for l = 1 to K do
14 ψl ← classification-rate of l;
15 end
16 end
17 else
18 ψl ← Update score for l as per eqs. 8 and 9
19 end
20 Training Phase:
21 /* Drift Detection */
22 Perform drift detection based on the Hoeffding’s error bound

technique. (see Algorithm 2)
23 drift-status=Drift-detection(y,ŷ);
24 if (drift-status==DRIFT) then
25 /* Hidden layer growing */
26 create layer lnew with feed forward connection from and to

input layer and output layer;
27 Vlnew ← VlM

;
28 Ulnew ← UlM

;
29 classification-rate of lnew ←classification-rate of lM ;
30 ψlnew ← ψlM

;
31 K←K+1;
32 end
33 if t > 1 then
34 lM ← layer l (1 ≤ l ≤ K − 1) performing the best till time

t− 1;
35 end

36 lW ← argmax
l

(ψl)

37 Update lW as per hidden unit growing and pruning policy (refer
Section III.D)

38 Calculate loss function and execute gradient computation as described
in Section III.B-III.C;

39 Update weights and biases (refer Section III.C);
40 end
41 end

IV. EXPERIMENTAL EVALUATION

The details of experimental evaluation for MUSE-RNN are
thoroughly described in the subsequent subsections.

Algorithm 2: Drift-detection(y,ŷ)
Required: y ∈ RS , Actual class labels
Required: ŷ ∈ RS , Predicted class labels

1 /* Initialization */
2 cut : cutting point=data point position (initialized as 1) in the current chunk;
3 /* Determine switching point (Cutting point) */
4 for t = 1 to T do
5 Estimate accuracy matrices F ∈ RT×S and G ∈ Rcut×S such that these

records 1 if corresponding y 6= ŷ, else 0;
6 F̂ ← mean(F );
7 Ĝ← mean(G);
8 Calculate Hoeffding error bound errorbF̂ and errorbĜ
9 if (F̂ + errorbF̂ ≤ Ĝ+ errorbĜ) then

10 cut← t;
11 Estimate accuracy matrices H ∈ R(T−cut)×S such that it records 1

if corresponding y 6= ŷ, else 0;
12 Ĥ ← mean(H);
13 break;
14 end
15 end
16 if |Ĥ − Ĝ| > errordrift then
17 driftStatus← DRIFT /* errordrift is predefined
18 end
19 else if errorW < |Ĥ − Ĝ| < errorD then
20 driftStatus← WARNING /* errorW and errorD are predefined
21 Create data in buffer;
22 end
23 else
24 driftStatus← STABLE
25 Remove data from buffer;
26 end
27 return driftStatus

TABLE II: Specifications for the datasets used in experimentation

Datasets Specifications
#Instance #Attr. #Target #Task Characteristics

SUSY 5000000 18 2 5000 Synthetic, stationary
ELECT. 45312 8 2 45 Real, non-stationary with

covariate drifts
HYPER. 120000 4 2 120 Synthetic, non-stationary

with gradual drifts
SEA 100000 3 2 100 Synthetic, non-stationary

with recurring drifts
WEATHER 18000 8 2 18 Real, non-stationary with

recurring concept drifts
R-MNIST 65000 784 10 65 Synthetic, non-stationary

with abrupt concept drifts
P-MNIST 70000 784 10 70 Synthetic, non-stationary

with recurrent drifts

A. Datasets

We evaluate MUSE-RNN with respect to seven datasets: i)
Susy [28], ii) Electricity-pricing [4], iii) Hyperplane [29], iv)
Sea [30], v) Weather [4], vi) Rotated-MNIST [31], and vii)
Permuted-MNIST [31]. Susy is widely used as data stream for
big data problem, whereas Electricity-pricing, Hyperplance,
and Sea are well-used in literature as examples of data streams
with variants of concept drifts (refer Table II). The Electricity-
pricing and Weather data are real-world data showing promi-
nent temporal aspects. As clearly stated in literature [3], if
the electricity price goes up now, “it is more likely than by
chance to go up again, and vice versa”. This data is highly
autocorrelated with “very clear cyclical peaks at every 24
hours, due to electricity consumption habits”. On the other
sides, the Weather data not only shows cyclical seasonal
changes, but also has long-term climate change effect. Though
the dataset Sea is artificial/synthetic, it is prepared along with
induced recurring environment [4], and consequently, this also
shows temporal dependence. We use Permuted (P)-MNIST and



Rotated (R)-MNIST as two variants of MNIST dataset where
each task contains digits transformed by permutation of pixels
or rotation by fixed angle ∈[0◦,180◦], respectively. These two
problems are popular continual learning problems and are put
forward to evaluate against a high input dimension. The details
of all these datasets are summarized in Table II.

B. Baselines

We compare MUSE-RNN with eight recent baselines. All
these algorithms deal with one or more of the various issues
in concept drift scenario, including one-pass learning, learning
of new knowledge and preserving the previous knowledge (i.e.
handling the issue of catastrophic forgetting) and so on. Thus,
these are appropriate as baselines for streaming data analysis.
• PNN [11]: Continual learning algorithm; uses the pro-

gressive network for each new task, and augments it with
adapters and nonlinear lateral connections to keep the
useful knowledge from previous tasks.

• DEN [12]: Extension of PNN; puts forward selective
retraining, splitting and duplicating methods.

• HAT [13]: Continual learning algorithm; based on the
task embedding, maintaining the previous task’s infor-
mation without involving the current task.

• pENsemble+ [32]: Built on the concept of evolving
fuzzy parsimonious classifier; Equipped with online ac-
tive learning and ensemble merging scenarios, which re-
duces operator annotation effort with reduced complexity.

• Incremental Bagging [17]: Online version of ‘Bagging’,
an well-known ensemble learning model, working with
low overhead. However, it requires large execution time.

• Learn++.NSE [4]: Appropriate for dealing with variants
of drift scenarios; Capable of learning in non-stationary
environments. However, it suffers from high structural
complexity and considerably long execution time.

• Online Multiclass (OMC) Boosting [18]: A variant of
online boosting algorithm. Based on ensemble learning;
Uses optimal no. of classifier in the ensemble to achieve
desired accuracy with reduced computational cost.

• RNN tanh: Conventional RNN model [25] with single
layer using tanh activation and learning based on back
propagation through time (BPTT).

While comparing with the baselines we tried our best to
ensure fair comparison. We initially started with the same
parameter settings as mentioned in their respective source files
or manuscripts. If their result is surprisingly poor, we tuned
the parameters empirically to achieve the best performance in
every case. However, to be noted, our proposed model (MUSE-
RNN) is not driven by any ad-hoc choice of parameters.

C. Experimental Settings

Our proposed MUSE-RNN and all the above mentioned
benchmark models are executed under ‘prequential test-then-
train’ environment in the same platform of 3.20 GHz Intel(R)
Xeon(R) CPU E5-1650 processor and 16 GB RAM. The
learning rate, control parameter (η), and layer score adjustment
factor (ε) for MUSE-RNN are always fixed at 0.001, 0.05, and

TABLE III: Comparative performance study of MUSE-RNN

Data Models Metrics
CR HL PC ET (sec.)

Su
sy

PNN 68.94 ± 4.08 3 424 345K
DEN 63.15 ± 10.06 1 212 8K
HAT 73.85 ± 3.18 2 342 16K

pENsemble+ 76.99 ± 4.6 19 3249 35K
OMC-Boosting 77.13 ± 1.43 NA NA 14K
Learn++.NSE — NA NA —

I-Bagging 72.8 ± 3.1 NA NA 73K
RNN tanh 64.31± 1.5 1 312 289K

MUSE-RNN 78.14 ± 1.6 10 1800 21K

E
le

ct
ri

ci
ty

PNN 57.84 ± 4.52 3 1868 51.345
DEN 56.54 ± 7.66 1 178 72.54
HAT 56.63 ± 8.04 2 242 145.57

pENsemble+ 72.60± 12.1 1 243 170
OMC-Boosting 77.27 ± 4.57 NA NA 56.8
Learn++.NSE 77.18 ± 9.3 NA NA 169.88

I-Bagging 72.8 ± 10.88 NA NA 5K
RNN tanh 65.12± 7.21 1 104 2.5K

MUSE-RNN 78.10 ± 7.6 4 184 117.06

H
yp

er
pl

an
e

PNN 85.07 ± 7.12 3 560 190.196
DEN 91.83 ± 4.17 1 58 202.57
HAT 77.9 ± 10.76 2 98 370.8

pENsemble+ 87.60± 6.2 5 75 120
OMC-Boosting 86.18 ± 3.73 NA NA 111.74
Learn++.NSE 90.35 ± 2.48 NA NA 374

I-Bagging 81.39 ± 2.2 NA NA 1.7K
RNN tanh 76.55 ± 2.82 1 80 6.7K

MUSE-RNN 92.64 ± 2.15 3 48 250.39

Se
a

PNN 84.87 ± 6.52 3 353 152.46
DEN 79.95 ± 19.28 1 38 169.72
HAT 74.65 ± 10.1 2 72 327

pENsemble+ 92.00± 6 5 32 230
OMC-Boosting 86.78 ± 3.85 NA NA 77.44
Learn++.NSE 90.17 ± 5.96 NA NA 268

I-Bagging 84.6 ± 13 NA NA 1.5K
RNN tanh 75.17 ± 2.94 1 42 5.7K

MUSE-RNN 92.37 ± 6.11 2 28 116.24

W
ea

th
er

PNN 68.576 ± 1.05 3 1074 17.72
DEN 68.6 ± 4.105 1 112 31.19
HAT 68.54 ± 3.99 2 242 54.74

pENsemble+ 78.78± 4 2 81 28.0
OMC-Boosting 65.32 ± 1.98 NA NA 46.86
Learn++.NSE 76.2 ± 3.82 NA NA 26.64

I-Bagging 75.49 ± 3.44 NA NA 1.8K
RNN tanh 69.14 ± 4.04 1 64 20.15

MUSE-RNN 76.96 ± 6.92 1 21 17.46

R
-M

N
IS

T

PNN 56.19 ± 10.94 3 170K 128.91
DEN 61.48 ± 21.75 2 290K 371.07
HAT 64.52 ± 11.33 2 24.9K 190.59

pENsemble+ NA NA NA NA
OMC-Boosting 26.07 ± 5.8 NA NA 5K
Learn++.NSE NA NA NA NA

I-Bagging NA NA NA NA
RNN tanh 63.23 ± 7.54 1 198K 94K

MUSE-RNN 76.27 ± 4.9 2 125K 190.01

P-
M

N
IS

T

PNN 64.42 ± 8.77 3 170K 152.95
DEN 52.08 ± 22.6 2 290K 399.83
HAT 59.64 ± 18.88 2 24.9K 207.04

pENsemble+ NA NA NA NA
OMC-Boosting 35.58 ± 20.51 NA NA 5K
Learn++.NSE NA NA NA NA

I-Bagging NA NA NA NA
RNN tanh 69.62 ± 11.36 1 198K 101K

MUSE-RNN 83.87 ± 13.42 4 200K 416.10

0.1 for every dataset. The learning performance is evaluated
on four criteria: classification rate (CR), used parameter count
(PC), no. of hidden layers (HL), and execution time (ET).
All the results are recorded as average of five random seeds.
Additionally, we also confirm our model performance through
Wilcoxon statistical tests, considering significance level of 5%.

D. Results and Discussion

The performance of MUSE-RNN, in comparison with
PNN, DEN, HAT, incremental bagging, OMC-boosting,



Fig. 4: Typical instance of hidden layer evolution in MUSE-RNN

Fig. 5: Typical instance of hidden unit adjustment in MUSE-RNN

pENsemble+, Learn++.NSE, and traditional RNN tanh is
summarized in Table III. For I-bagging, OMC boosting, and
Learn++.NSE, PC=NA and HL=NA, since these are based
on decision tree model. Further, the I-bagging, pENsemble+,
and Learn++.NSE models could not be executed on MNIST
variants, because of the very high dimensionality of the data.
In Figs. 4-5, we additionally show how the number of required
hidden layer and hidden unit in proposed MUSE-RNN model
are prudently adjusted with the ever changing flow of data
stream. We also have performed ablation study considering
MUSE-RNN without hidden unit growing/pruning and
recurrent learning features (refer Table V). On analyzing the
tables and the figures, we can infer the following.

Comparison on classification rate (CR): It is evident that
even with the constraint of single-pass data scanning, the
proposed MUSE-RNN is able to achieve state-of-the-art
classification accuracy for each dataset. From Table III, it can
be noted that the average percentage improvement of MUSE-
RNN over state-of-the-art techniques in classifying Susy,
Electricity-pricing, Hyperplane, Sea, Rotated (R)-MNIST,
and Permuted (P)-MNIST, are more than 7%, 10%, 8%,
8%, 30%, and 23% respectively. The modelling of temporal
dependencies through the dynamically adaptive recurrent
architecture of MUSE-RNN leads the model to attain this
encouraging performance. The ‘dynamic layer voting’ and
‘winning layer adjustment’ further assists MUSE-RNN
to appropriately recall relevant knowledge. Although the

classification rates of pENsemble+, OMC-boosting, and
Learn++.NSE are sometimes very near to that of the MUSE-
RNN for some datasets, these techniques either become
intractable or produce substantially poor performance while
dealing with high dimensional data or high volume of data.
For example, though the performance of pENsemble+ in
case of Weather dataset is slightly higher than MUSE-RNN,
pENsemble+ performs considerably poor in case of other
datasets, such as Electricity pricing, Hyperplane, P-MNIST,
R-MNIST etc. To be noted, pENsemble+ outperforms in case
of weather data primarily because of its intrinsic fuzziness for
handling data-uncertainty. Hence, overall, the performance
of MUSE-RNN is comparatively more consistent over all
the datasets. Further, the average percentage improvement of
MUSE-RNN over fixed structured RNN (using BPTT) model
is more than 13%, and also, it is achieved with notably less
execution time (refer Table III). This demonstrates the worth
of dynamically evolving recurrent architecture of MUSE-RNN
along with implicit teacher-forcing-based learning policy.

Comparison on parameter count (PC) and hidden layer
(HL) requirement: As shown in Table III, though the number
of parameters and layer count for MUSE-RNN are sometimes
found to be higher, the beauty lies in the fact that these hidden
layers and parameter requirements are not prefixed from the
beginning. As depicted in Figs. 4 and 5, the execution of the
proposed MUSE-RNN always starts with only one unit in
a single hidden layer, and then, gradually the hidden layers



Fig. 6: Comparative study of parameter requirement in multilayer
architecture: Traditional deep RNN architecture vs. MUSE-RNN

TABLE IV: MUSE-RNN performance validation using statistical test

Datasets
Models

PNN DEN HAT Incr- pENs OMC Learn RNN
Bagg emble+ -Boost ++ NSE tanh

SUSY X X X X X X — X
ELECT. X X X X X X X X
HYPER. X X X X X X X X
SEA X X X X X X X X
WEATHER X X X X X X X X
RMNIST X X X X — — — X
P-MNIST X X X X — — — X

X: Reject the null hypothesis that a model performs better than MUSE-RNN
—: Main experimentation could not be conducted

are increased and the hidden units are added or removed
from the winning layer so as to cope with the time varying
distribution and conceptual drift of the streaming data. This
gradual and on-the-fly structural adjustment helps MUSE-
RNN in achieving desired accuracy with optimal number of
parameters in the classifier model.

For example, in order to use same number of hidden
layers (as finally adjusted by MUSE-RNN for each dataset)
a traditional RNN (with full forward as well as recurrent
connections) needs to deal with substantially larger number
of parameters, whereas MUSE-RNN is able to judiciously
choose subset of these parameters to successfully accomplish
the task (see Fig. 6).

Comparison on Execution Time (ET): From the results
presented in Table III, it may also be noted that even with the
dynamic layer adaptation overhead, MUSE-RNN is able to
achieve acceptable accuracy within reasonable time. Though
OMC-boosting needs comparatively less time to produce
almost similar accuracy in case of Susy and Electricity
datasets, the accuracy of OMC-boosting is considerably poor
compared to MUSE-RNN for the other datasets, especially
for those with high input feature dimension.

Results of statistical tests: The performance of MUSE-RNN
is also validated using Wilcoxon statistical test, as summarized
in Table IV. The results validate that, in every case, the
proposed MUSE-RNN performs statistically better or similar
classification compared to the other considered models with a
significance level of 5%.

Results of ablation study: The results of ablation study for
our proposed MUSE-RNN model is summarized in the Table

TABLE V: Summary of the ablation study for MUSE-RNN

Ablation Datasets Metrics
Scheme CR HL PC ET (sec.)

Pr
op

os
ed

M
od

el
W

IT
H

O
U

T
hi

dd
en

un
it

pr
un

in
g

fe
at

ur
e Susy 76.56 ±1.93 9 3.1K 22K

Electricity 72.58 ± 10.84 2 20 70.15
Hyperplane 91.73 ± 2.36 3 70 261.92

Sea 87.39 ± 7.28 2 32 117.50
Weather 74.45 ± 4.56 2 90 17.82

R-MNIST 71.09 ± 3.10 3 220K 2.1K
P-MNIST 82.72 ± 13.29 4 240K 1.9K

Pr
op

os
ed

M
od

el
W

IT
H

O
U

T
hi

dd
en

un
it

gr
ow

in
g

fe
at

ur
e Susy 76.11 ± 1.35 10 40 20K

Electricity 73.63 ± 7.16 4 18 132.11
Hyperplane 88.46 ± 2.2 3 18 242.19

Sea 84.40 ± 7.56 2 10 115.94
Weather 74.18 ± 6.21 1 13 15.83

R-MNIST 19.64 ± 1.85 3 809 151.4
P-MNIST 18.81 ± 1.77 4 817 161.93

Pr
op

os
ed

M
od

el
W

IT
H

O
U

T
re

cu
rr

en
t

le
ar

ni
ng

fe
at

ur
e Susy 78.04 ± 2.82 9 10.6K 15K

Electricity 63.45 ± 8.82 3 304 28.74
Hyperplane 90.62 ± 3.61 1 30 50.81

Sea 89.08 ± 7.67 1 74 43.20
Weather 71.10 ± 6.10 1 35 7.57

R-MNIST 74.37 ± 8.56 2 200K 632.64
P-MNIST 80.16± 14.27 3 220K 564.05

V. It can be noted from the table that, in case the hidden layer
pruning feature is removed from MUSE-RNN, the number
of parameter requirements, and hence the execution time is
increased substantially. However, the classification rate of the
model shows no improvement, and rather, it is deteriorated
to some extent because of the over-fitting issue. On the other
side, if the hidden unit growing feature is removed from the
proposed MUSE-RNN, then the number of parameter require-
ment, and hence, the computational time is reduced to certain
extent. However, this leads to a considerable deterioration of
the model performance because of the insufficient usage of the
parameters and the under-fitting issue. Thus, the ablation study
further demonstrates the effectiveness of the fully autonomous
and self-evolving property of the proposed MUSE-RNN.

In order to assess the effectiveness of recurrent learning
for modeling temporal aspects of the data streams, we use
another ablation scheme, where the recurrent learning feature
of the model is removed. The recurrent learning capability of
MUSE-RNN is primarily originated by default due to the use
of hyperplane activation in the hidden layer. Hence, in this
scheme, we simply replace the hyperplane activation with the
standard sigmoid activation. Interestingly, it can be noted from
the Table V that without recurrent learning feature, though
the execution time is certainly reduced, the classification per-
formance of the model is significantly deteriorated especially
for those data streams that show high degree of temporal
dependency, such as Electricity pricing, Weather, and Sea.

Overall, the empirical study reveals that the dynamically
evolving recurrent network model, as adopted in our proposed
MUSE-RNN, have enough potentials to perform desirably
under the data stream classification scenario. Whether the
improved classification performance of MUSE-RNN is due
to its ability to do deal with concept drift or due to its ability
to capture temporal dependencies can be decided based on
the property of the considered dataset as well as the other
algorithm with which we are comparing. For example, the
DEN algorithm is primarily proposed to deal with online
learning and catastrophic forgetting issues of concept drift han-



dling. Thus, the better performance of MUSE-RNN compared
to DEN over the Electricity dataset seems due to temporal
dependence modeling ability of MUSE-RNN. Contrarily, the
better performance of MUSE-RNN compared to DEN over the
R-MNIST dataset (showing no temporal dependence) seems
due to better concept drift handling ability of MUSE-RNN.

V. CONCLUSIONS

This paper proposes a novel recurrent network model,
called MUSE-RNN, for real-time classification of streaming
data with a special treatment towards capturing the temporal
aspects of the data as well. The proposed MUSE-RNN learns
under teacher forcing environment in single-pass manner and
features automatic layer construction as well as adjustment
capability. Further, MUSE-RNN has an unique property of
recalling prior tasks with minimum exploitation of network
parameters. Comparative studies with recently proposed in-
cremental and continual learning techniques show that MUSE-
RNN is able to produce comparable or even better accuracy
in stream classification scenario. Ample scopes remain in
future to further extend MUSE-RNN with added convolution
mechanism to deal with complex image streams. In order
to support reproducible research initiative, source code of
MUSE-RNN along with sample datasets has been shared1.
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Bueno, A. Ortiz-Dı́az, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, 2015.

[28] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in
high-energy physics with deep learning,” Nature communications, vol. 5,
p. 4308, 2014.

[29] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” Journal of Machine Learning Research, vol. 11, no. May, pp.
1601–1604, 2010.

[30] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea)
for large-scale classification,” in seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2001, pp.
377–382.

[31] D. Lopez-Paz et al., “Gradient episodic memory for continual learning,”
in Advances in Neural Information Processing Systems (NIPS), 2017, pp.
6467–6476.

[32] M. Pratama, E. Dimla, T. Tjahjowidodo, W. Pedrycz, and E. Lughofer,
“Online tool condition monitoring based on parsimonious ensemble+,”
IEEE Transactions on Cybernetics, 2018.


