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Abstract—With the recent explosion of data navigating in mo-
tion, there is a growing research interest for analyzing streaming
data, and consequently, there are several recent works on data
stream analytics. However, exploring the potentials of traditional
recurrent neural network (RNN) in the context of streaming
data classification is still a little investigated area. In this paper,
we propose a novel variant of RNN, termed as FERNN, which
features single-pass learning capability along with self-evolution
property. The online learning capability makes FERNN fit for
working on streaming data, whereas the self-organizing property
makes the model adaptive to the rapidly changing environment.
FERNN utilizes hyperplane activation in the hidden layer, which
not only reduces the network parameters to a significant extent,
but also triggers the model to work by default as per teacher
forcing mechanism so that it automatically handles the vanish-
ing/exploding gradient issues in traditional RNN learning based
on back-propagation-through-time policy. Moreover, unlike the
majority of the existing autonomous learning models, FERNN
is free from normal distribution assumption for streaming data,
making it more flexible. The efficacy of FERNN is evaluated
in terms of classifying six publicly available data streams, under
the prequential test-then-train protocol. Experimental results show
encouraging performance of FERNN attaining state-of-the-art
classification accuracy with fairly reduced computation cost.

Index Terms—Data stream, RNN, Online learning, Classifica-
tion, Hyperplane, Teacher forcing

I. INTRODUCTION

Online classification of data stream plays a crucial role in

the present era of data explosion where massive volume of data

is continuously generated by several data intensive applications

and requires an on-the-fly treatment of the same to meet

the demand of real-time analytics. Typically, a data stream

can be defined as an unbounded (infinite length), ordered

sequence of structured or unstructured data item, that arrives

at a continuous and rapid manner and is quite susceptible

to distributional change over time [22]. Because of the high

throughput and potentially infinite size, the data streams are

often not feasible to store first and then process as per the

requirements [24]. Consequently, the traditional classification

techniques that assume the data to be static and repeatedly

accessible at any point of time are not at all fit for analysing

the streaming data. To be more specific, any standard stream

classification technique is expected to satisfy the following

constraints: i) restrictive processing time, ii) bounded mem-

ory usage, iii) single-scan of data, and iv) sequential data

access [9]. Additionally, it should have incremental learning

capability and adaptive nature towards time varying data.

Accordingly, devising adaptive and real-time classification

models to cope up with streaming data have attained significant

research interest in recent years.

A. Related Works

Of late, considerable research efforts have been made

to develop appropriate models for classifying streaming

data. The existing models can be broadly categorized into

Bayesian approach-based, decision tree-based, KNN-based,

neural network-based, support vector machine-based, and

ensemble-based classifiers. A comprehensive overview of all

these techniques can be found in [9], [10], [16]. In the present

paper, we mainly concentrate on the recently proposed in-

cremental learning-based and ensemble-based models for data

stream classification. Among the various incremental models,

the Learn++.NC [14], Learn++.NSE [7], and the DEVDAN

[19] are worth mentioning. Learn++.NC is able to learn even

new classes that may be introduced later with additional data.

However, it is not at all suitable for learning in non-stationary

environment which is common for a stream classification

scenario. Contrarily, Learn++.NSE can accommodate a wide

variety of drift scenarios and has the capability of learn-

ing in non-stationary environments. However, Learn++.NSE

suffers from high structural complexity and also requires

significantly long time for execution. DEVDAN is a recently

proposed incremental learning algorithm which features self-

organizing and single-pass working capability and overcomes

the limitation of rigid-structured denoising autoencoders in

handing data stream. However, DEVDAN is crafted on single-

layered architecture and also not free from normal distribution

assumption on data. Beside the incremental learning models,

recently ensemble-based approaches have also gained growing

research attention in the domain of data stream analytics [3].

Most of the ensemble-based models, like incremental bagging

and boosting [17], are decision-tree based, and hence, cannot

be adopted for the neural networks. These are also based

on static ensemble structure which cannot adapt to the time

varying nature of data stream. Further, though there has been

a recent progress in adapting ensemble-based classifiers to the

non-stationary environment of streaming data, most of these

ensemble models [9] suffer from considerably high structural

complexity and also require input features to be selected in



Fig. 1. Learning mechanism of proposed FERNN

pre-processing steps. Recently proposed pENsemble [21] and

pENsemble+ [20] models overcome these limitations by their

intrinsic ability to dynamically handle structural complexity

and also through online feature learning capability. However,

none of these models is designed to make use of temporal

information from input sequence, and certainly, they lose

generalization power to some extent [11].

Nevertheless, in spite of the fact that the recurrent neural

network (RNN) models are inherently capable of efficiently

using temporal information, adapting RNN models for data

stream classification is still a little explored area. Though the

works of Ma et al. [12], Neverova et al. [15], Mocanu et

al. [13] etc. can be treated as some recent and pioneering

researches on RNN-based data analytics, neither of these

is adaptive to the time varying nature of data stream, and

consequently, these become unfit for analyzing streaming data.

In addition, the conventional RNNs suffer from the exploding

gradient problem and is slow because of the nature of back

propagation through time (BPTT) method.

B. Major contributions

This work is motivated by the remembrance power and

sequential learning capability of RNN, which can be effec-

tively exploited to meet the restricted processing time/memory

constraints and single-pass data scanning requirement in data

stream classification scenario. In this paper, we attempt to

propose a variant of RNN with an aim to explore inherent

potentials of traditional RNN in data stream classification, and

also to fill some of the research gaps as discussed above. Our

key contributions can be summarized in the following manner:

• We have proposed FERNN, a new variant of recurrent
neural network (RNN), capable of classifying streaming

data in a fast and cost efficient way;

• In our proposed FERNN, we have exploited the concept

of hyperplane clustering [8] in the form of a new activa-

tion on the hidden layer. The use of hyperplane activation

significantly reduces the number of network parameters
and eventually brings down the computational costs;

• We have designed FERNN in such a way that it intrinsi-

cally learns as per the teacher forcing policy, and thereby,

overcomes the expensive computation and gradient van-
ishing/exploding issues in traditional back propagation

through time (BPTT)-based RNN learning.

• The proposed FERNN features self-evolution power, ac-

cording to which the FERNN starts learning with a single

hidden unit and automatically can construct/refine the

network to cope up with the streaming data characteristic.

• Finally, the structural adaptation mechanism in FERNN

is followed from extended network significance method
dealing with Gaussian mixture model (GMM) of data

distribution. Therefore, the proposed FERNN is released

from the normal distribution assumption as adopted by

most of the existing autonomous learning models.

The effectiveness of proposed FERNN has been empirically

evaluated considering six real-world and synthetic data sets,

popularly used as benchmark in stream classification problems.

FERNN performance is compared with a number of recently

developed ensemble-based and incremental learning models.

The experimental results reveal that even a traditional RNN,

when adapted appropriately like FERNN, is able to produce

comparable accuracy while classifying streaming data.

The rest of the paper is structured as follows. Section II

presents the conceptual as well as algorithmic details of the

proposed FERNN model. Section III provides a thorough

description of the empirical study along with the details of

datasets, experimental set up, results, and major findings.

Finally, the concluding remarks are drawn in Section IV.

II. PROPOSED FERNN: A FAST AND EVOLVING RNN

In this section, we cover the architectural as well as algo-

rithmic details of the proposed FERNN, with respect to data

stream classification problem.

A. Problem Formulation

Considering a completely supervised environment, the

streaming data classification problem can be formally defined

as follows. The data points or instances in the stream appear

as a sequence of labeled examples {xt, yt} at each time stamp

t = 1, 2, · · · , T , in continuous and incremental manner, where

xt is a D-dimensional vector of attribute values, yt is the class



Fig. 2. Proposed FERNN architecture: (a) Training phase, (b) Test phase

label for the t-th sample, and T (the total number of time

stamps) is unknown, in practice. The classifier C needs to

predict the class label for each example xt, which arrives either

in ‘instance-by-instance’ or in ‘block-by-block’ mode. In case

of single instance mode, the classification algorithm needs to

process the samples one by one, whereas in case of block

processing, the classifier is updated when all the examples in

the current block are available. Usually, the data blocks, also

called ‘data chunks’, are considered to be equal-sized in this

paper but in practise may vary in practise.

Since in the realm of streaming data the data points arrive

with absence of true class labels, the proposed FERNN-based

classifier is designed to work based on the ‘prequential test-

then-train’ mechanism. That is, first we use the data to test

the generative power of the classifier and then the data is

exploited to update the model (refer to the Fig. 1). FERNN

is constructed under the concept of hyperplane clustering [8],

applied while learning features in the hidden layers. The idea

is to learn a set of features which can classify/map each

data point into a hyperplane-shaped data class/cluster, and this

is achieved by applying a new, hyperplane-based activation

function on the hidden layer, the details of which are illustrated

in the subsequent subsection. The section ends with a detailed

description of how FERNN evolves its network structure and

remains adaptive to the time variant nature of streaming data.

B. FERNN Model architecture

The recurrent architecture and the corresponding unfolded

computational graph of the proposed FERNN is shown in the

Fig. 2(a)-2(b), considering both training and testing phase.

As shown in Fig. 2(a), for each time step t, the input is

x(t) (where x(t)� ∈ R
D, D is input feature dimension),

the hidden layer activation are H
(t)
(k) (where H

(t)
(k)

� ∈ R
ek ,

ek is no. of hidden units at layer k, where 1 ≤ k ≤ l),
un-normalized outputs are O(t) which are further updated

through softmax layer to achieve the predicted output ŷ(t),
(where ŷ(t)� ∈ R

S , S is the number of classes) and the

loss is L(t). The input-to-hidden (i.e. between x(t) and H
(t)
(1))

connections are parametrized by weight matrix U[e1×D]; the

hidden-to-hidden forward connections between layer k and

k+1 are parameterized by weight matrix V(k)[ek+1×ek]
where

(1 ≤ k < l); and the hidden-to-output connections (i.e

between H
(t)
(l) and O(t)) are parameterized by V(k)[S×ek]

,

where k = l. To be noted, ek (1 ≤ k ≤ l) is not fixed

for any k. These change dynamically along with the flow

of streaming data during training phase, depending on the

distributional change in the input data stream. Moreover, in

FERNN, there are recurrent connections between output and

hidden layers as denoted by dotted arrows in the Fig. 2.

However, these connections are maintained implicitly which

is achieved through hyperplane-based activation in the hidden

layer (details in the next subsection). That is, in FERNN,

no external weight matrix is maintained for output-to-hidden

recurrent connection. Consequently, this reduces the number

of network parameters to a great extent, especially when the

network is deep. Further, the use of output-to-hidden layer

connection eventually helps the model to learn from exact

inputs of earlier time stamps (as per teacher forcing [11]) and

also allows greater parallelization during the training phase.

C. FERNN Learning
This section provides the details of FERNN learning

through forward and backward propagation computation.

1) Forward-propagation computation: The forward prop-
agation computation in FERNN is constructed on the concept
of hyperplane, applied in the form of hidden layer activation:

H
i(t)
(k)

= e

⎛
⎜⎝−η

d
i(t)
(k)

max

(
d
i(t)
(k)

)
⎞
⎟⎠

(1)

where, i = 1, 2, · · · ek is the number of hidden units in the

k-th hidden layer H
(t)
(k) at time t, and η is a control parameter

adjusting the strength of activation. In our experiment we fixed

η to 0.05 for all the datasets. d
i(t)
(k) represents the distance

from the (t− 1)-th data point to the i-th feature in the feature
hyperplane at the k-th layer and we define it as follows:

d
i(t)
(1)

=
|y(t−1)|1 − S ·

(
bi
(1)

+ Uix
(t)

)
√

1 +
∑D

j=1 U
2
ij

(2)

where k = 1, |y|1 indicates the 1-norm of y, S is the output

dimension, and b(1)
� ∈ R

e1 is equivalent to the bias (at level

1), associated with the added dimension to the feature plane.

Similarly, for 1 < k ≤ l,

d
i(t)
(k)

=
|y(t−1)|1 − S ·

(
bi
(k)

+ V(k−1)iH
(t)
(k−1)

)
√

1 +
∑ek−1

j=1 V 2
(k−1)ij

(3)



where b(k)
� ∈ R

ek is the bias for k-th level and is associated

with the added dimension to the (k − 1)-th feature plane.

Overall, it can be noted that this new hyperplane-based

activation leads each hidden layer to be implicitly influenced

by the output from previous time stamp without involvement

of external weights or parameters, and further, this makes the

model learn by default as per the teacher forcing technique

during the training phase. Incidentally, in case of testing, the

original output y(t−1) can be replaced by the predicted output

ŷ(t−1), as indicated in Fig. 2 (b).

After hidden layer activations are obtained, the un-normalized
output at time t is determined based on eq. (1) as below:

O(t) = c+ V(k)H
(t)
(k)

(4)

where k = l, and c� ∈ R
S is the bias for the output layer.

Primarily this produces the un-normalized log probabilities
which are further normalized using softmax function [11]
to obtain the predicted output ŷ(t) as follows:

ŷ(t) = softmax(O(t)) (5)

Once the predicted output is obtained, we calculate the cross-
entropy loss in following manner:

L(y, ŷ) = −
∑
i

yi · log(ŷi) (6)

where ŷ is the predicted value and y is the observed value

at a particular time, and L is the associated loss.

2) Back-propagation through Gradient computation:
The gradient computation in FERNN is performed by simply

employing back-propagation algorithm (stochastic gradient

descent/ SGD) to the unrolled computational graph. However,

it is to be noted that since the output-to-hidden recurrent

connection in FERNN is not explicit, the back-propagation

algorithm is applied in isolation to each time stamp which

eventually diminishes the computational time and also

overcomes the problem of exploding/vanishing gradient, as

encountered in the generalized back-propagation-through-time

algorithm which is applied on RNN with hidden-to-hidden

recurrent connection. Accordingly, the gradient computation

in FERNN for each time stamp is described below:

The recursive computation starts with ∂L
∂L(t) = 1 and proceeds

for the output nodes and hidden nodes as described below.

∂L

∂O
(t)
i

=
(∇O(t)L

)
i
=

(
ŷi

(t) − y
(t)
i

)
(7)

∇
H

(t)
(k)

L = V �
(k)

(∇O(t)L
)

(8)

when k = l, and

∇
H

(t)
(k)

L =

⎛⎝∂H
(t)
(k+1)

∂H
(t)
(k)

⎞⎠� (
∇

H
(t)
(k+1)

L

)

= V �
(k)

(( η

M
·H(t)

(k+1)

)
◦
(
∇

H
(t)
(k+1)

L

))
(9)

when 1 ≤ k < l.
Here ‘◦’ denotes element-wise product and M corresponds to

the maximum of the distances from sample to the features on

the (k + 1)-th feature plane.

Once the gradients on the internal nodes are obtained, we

compute the gradients for parameter nodes as follows:

Gradient computation for bias parameters:

∇cL =

(
∂O(t)

∂c

)� (∇O(t)L
)
=

(∇O(t)L
)

(10)

∇b(k)
L =

⎛⎝∂H
(t)
(k)

∂b
(t)
(k)

⎞⎠� (
∇

H
(t)
(k)

L

)
=

( η

M
·H(t)

(k)

)
◦
(
∇

H
(t)
(k)

L

)
(11)

where 1 ≤ k ≤ l. Here M corresponds to the maximum of

the distances from sample (at a particular time stamp) to the

features on the (k)-th feature plane.

Gradient computation for weight parameters:

∇V(k)L
=

∑
i

(
∂L

∂O
(t)
i

)
∇V O

(t)
i =

(∇O(t)L

) · (H(t)
(k)

)�
(12)

when k = l, and

∇V(k)L
=

∑
i

⎛⎝ ∂L

∂H
i(t)
(k+1)

⎞⎠(
∇

V
(t)
(k)

H
i(t)
(k+1)

)

=

(( η

M
·H(t)

(k+1)

)
◦
(
∇

H
(t)
(k+1)

L

))(
H

(t)
(k)

)�
(13)

when 1 ≤ k < l. Here, ∇V (t) denotes the contribution of the

weights at time step t to the gradient.

D. Online Adaptation of Hidden Layers
In this section we formalize the self-evolution strategy of

FERNN, as followed from the network significance (NS)
method [19]. Primarily, NS is derived from the expectation of
mean squared error (MSE) in prediction and mathematically
expressed in terms of bias and variance formula as follows:

NS = V ar(O) +Bias(O)2 (14)

Unlike the standard system error index, NS is capable

of measuring the quality of the predictive model by direct

inspection of its possible underfitting or overfitting condition.

Further, NS can also capture the reliability of the model across

the entire data space, given a particular data distribution. A

large value of NS specifies either a high variance problem,

indicating overfitting of the model, or a high bias problem,

indicating the underfitting of the model.
In case of FERNN, the bias-variance formula can be derived

from eq. 14 as follows:

NS = (E[O2]− E[O]2) + (E[O]− y)2 (15)

where, E[O] represents the expectation of un-normalized
output from FERNN. For any time instant t, the E[O] for the
FERNN network can be recursively estimated as follows.

E[O] =

∫ ∞

−∞
(c+ V ·H)p(H)dH = c+ V · E[H] (16)

where,

E[H] =

∫ ∞

−∞
e

(
− d

max(d)

)
p(d)dd = e

(
− E(d)

max(E(d))

)
(17)



Now, E[d] =
(
E[d1], E[d2], E[d3], · · · , E[dek ]

)�
, where

E[di]k=1 =

∫ ∞

−∞

|y|1 −
(
bi
(1)

+ Ui · x
)

√
1 +

∑D
j=1 Uij

p(x)dx (18)

Majority of the existing literature assume normal distribution
of the data stream and accordingly the p(x) is considered

as N(x|μ,Σ) = 1
(2π)D/2

1
|Σ|1/2 e

{− 1
2 (x−μ)�Σ−1(x−μ)}, when x

is a D-dimensional vector. However, the data streams (e.g.
weather data [5]) are more likely to have mixture of distribu-
tions rather than following an unique density model. Therefore,
in order to release our proposed FERNN from this rigid
assumption of normal distribution, we define p(x) in terms of

Gaussian mixture model as p(x) =
∑K

i=1 N(x|μi,Σi), where
K is the number of component, πi are the mixing coefficients

such that 0 ≤ πi ≤ 1 and
∑K

i=1 πi = 1. In our work, we
consider K = S i. e. the number of classes corresponding to
the data stream. The πi values and the other parameters (mean
and variance) are estimated and tuned on sample by sample
basis by exploiting expectation maximization (EM) algorithm.
Accordingly, the eq. (18) can be re-written as:

E[di]k=1 =
1

S

S∑
m=1

|y|1 − (
bi + Ui · μm

)√
1 +

∑D
j=1 Uij

(19)

where, μ ≡ [μ1, μ2, · · · , μS ], and μ�
m(m=1,···S) ∈ R

D.

On the other side, when the hidden layer level k > 1:

E[di]k>1 =

∫ ∞

−∞

|y|1 −
(
bi
(k)

+ V(k−1)i ·H(k−1)

)
√

1 +
∑D

j=1 V(k−1)ij

p(H)dH

=
|y|1 −

(
bi
(k)

+ V(k−1)i · E[H(k−1)]
)

√
1 +

∑D
j=1 V(k−1)ij

(20)

=

|y|1 −
⎛⎝bi

(k)
+ V(k−1)i · e

− E[dk−1]

max(E[dk−1])

⎞⎠
√

1 +
∑D

j=1 V(k−1)ij

(21)

Once NS is calculated as per the eq. 14, it is utilized to

update the structural configuration of hidden layer in FERNN,

as thoroughly described in the subsequent subsections.

1) Hidden units growing strategy: The objective of grow-
ing hidden unit is to tackle the high bias problem. A high value
of bias signifies underfitting situation which can be resolved by
increasing the complexity of the network structure, or in other
words, by introducing more units in the hidden layer. A new
hidden unit is added if the following condition is satisfied:

μt
Bias + σt

Bias ≥ μmin
Bias + πσmin

Bias (22)

where μt
Bias, σt

Bias are respectively the mean and standard

deviation of bias at the t-th time instant and μmin
Bias, σmin

Bias

are the minimum bias till the time instant t, respectively. The

value of π is selected as 1.3 exp(−bias2) + 0.7 which leads

to attain confidence level in between 68.2% and 95.2%. Once

a new hidden node is appended, the associated parameters

(b and V ) can be randomly sampled from the scope of

[-1,1]. However, since the scope [-1, 1] may not always

ensure the convergence of the model, one may also select

the parameters using adaptive scope selection mechanism [25].

2) Hidden units pruning strategy: The underlying goal of
pruning hidden unit is to deal with the high variance problem.
A high value of variance signifies overfitting situation which
can be resolved by decreasing the complexity of the network
structure, or in other words, by reducing the number of units
in the hidden layer. A high variance situation is detected when
the following condition is satisfied:

μt
V ar + σt

V ar ≥ μmin
V ar + 2χσmin

V ar (23)

where μt
V ar, σt

V ar are respectively the mean and standard

deviation of the variance at the t-th time instant and μmin
V ar ,

σmin
V ar are the minimum variance till the time instant t, respec-

tively. The χ, estimated as 1.3 exp(−V ar)+0.7, is a dynamic

constant controlling the confidence level of the sigma rule.
Now, once the high variance is detected, the algorithm

searches for the appropriate hidden unit in the top-most layer
(l) for the purpose of pruning. The hidden unit associated
with least significance value is chosen as the candidate. The
significance (HSi) of the i-th hidden unit in the layer is
measured in terms of average activation degree for all possible
data samples as follows:

HSi = lim
T→∞

T∑
t=1

H
i(t)
l

T
(24)

Thus, the pruning process of the hidden units from the top-
most (l-th) hidden layer can be represented as follows:

Pruning −→ min
i=1,··· ,el

HSi (25)

III. EXPERIMENTATION

The details of experimental evaluation for FERNN is thor-

oughly described in the subsequent subsections. The code of

FERNN has been shared online1.

A. Datasets
FERNN is evaluated with respect to both synthetic and real-

world datasets as described below:

• Occupancy [4] (A real-world multi-variate time series

on room occupancy (binary) as per the environmental

condition of the room): The data set contains 20560

instances and 7 attributes. Ground-truth occupancy was

derived from time stamped pictures taken every minute.

• Susy [1] (An well-used dataset for big data problems):

The dataset contains 5M instances, having 18 attributes.

• Electricity-pricing [6] (A real-world, non-stationary

dataset): This is commonly used in literature under con-

cept drift scenario of data stream analytics. It contains

45312 instances, each having 8 features.

• Weather [6] (A real-world dataset): It contains 18159 in-

stances and 8 attributes. The dataset shows non-stationary

property with recurring drift phenomena.

• Hyperplane [2] (A synthetic dataset widely used in

data stream classification problems): The dataset contains

120000 instances (each instance having 4 attributes) and

is created based on a moving hyperplane with an aim to

incorporate gradual drifting concept.

• Sea [23] (A Synthetic dataset): It is comprised of 5

million records and 3 attributes. The dataset is well-used

in stream classification problem.

1http://dx.doi.org/10.13140/RG.2.2.33768.72965



TABLE I
COMPARATIVE PERFORMANCE ANALYSIS OF FERNN-BASED DATA STREAM CLASSIFICATION

Data sets Performance Metric RNN tanh pEnsemble+ Learn++
Incremental

DEVDAN
FERNN

Bagging (proposed)

Occupancy
Classification rate 74.24± 24.96 89.33± 23.64 95.49±8.43 84.15±27.39 85.73± 19.77 93.71± 10.11
No. of Hidden node/Features 4 2 36 100 4 3

Susy
Classification rate 64.31± 1.53 76.99± 4.6 N/A 74.22±2.11 77.53± 3.22 77.78± 1.96
No. of Hidden node/Features 9 9 N/A 100 21 9

Electricity- Classification rate 65.12± 7.21 72.60± 12.1 75.61±9 72.8±10.88 69.4± 8.74 78.03± 5.62
pricing No. of Hidden node/Features 4 1 180 100 11 4

Weather
Classification rate 69.14± 4.04 78.80± 4 76.51±4.13 75.49±3.44 74.04± 5.68 76.23± 2.91
No. of Hidden node/Features 4 1 72 100 14 4

Hyperplane
Classification rate 76.55± 2.82 87.60± 6.2 90.87±2.67 81.39±2.2 92.12± 3.47 92.59± 4.25
No. of Hidden node/Features 4 3 480 100 4 2

Sea
Classification rate 75.17± 2.94 92.00± 6 88.00±5.56 87.27±10.19 92.29± 6.48 90.02± 6.67
No. of Hidden node/Features 4 3 400 100 18 2

Fig. 3. Evolution of hidden layer units in FERNN for various datasets: (a) Weather, (b) Electricity pricing, (c) Hyperplane

B. Experimental Set-up

We compare FERNN against a number of state-of-the-art

classifiers falling into three basic categories: traditional model,

ensemble-based model, and incremental learning model. The

properties of the underlying algorithms are summarized below:

1) RNN tanh: As a representative of RNN we consider the

original model [11] with tanh activation and learning

based on back propagation through time (BPTT) tech-

nique. This comparison is necessary to illustrate how the

proposed FERNN, following teacher forcing policy with

hyperplane activation, outperforms the classical BPTT-

based RNN learning.

2) pENsemble+: The pENsemble+ [20] is an upgraded

version of pENsemble, which, unlike pENsemble, is

equipped with the online active learning and ensemble

merging scenarios and further reduces operators annota-

tion effort with reduced complexity.

3) Learn++: The Learn++ [18] is the mother/base al-

gorithm of a number of incremental models (e.g.

Learn++.NC [14], Learn++.NSE [7] etc.) for training

ensemble of classifiers. It was primarily designed for

incremental training of neural network-based classifiers,

each trained using a different distribution of training

samples. Though Learn++ has unique capability of re-

membering previous and relevant knowledge, it depends

on quite a large number of parameters, high structural

complexity, and considerably longer time for execution.

4) Incremental bagging: Incremental bagging [17] is the

online version of ‘Bagging’, an well-known ensemble

learning model. Even with low overhead it is capable

of showing comparable result with respect to its batch

counterparts. However, its performance substantially de-

pends on the behaviour of the base learning algorithm.

5) DEVDAN: DEVDAN [19] is an incremental learning

model constructed on denoising auto-encoder. It can

operate in single-pass mode in both generative and dis-

criminative phase. Moreover, it is able to automatically

adapt its structure on demand and on-the-fly fashion.

Additionally, we have compared our proposed FERNN with

pENsemble [21], Learn++.NSE [7], and incremental boosting

[17] algorithms. However, due to page limitation, we could

not include these in the main manuscript. An overview of all



Fig. 4. Comparative study on parameter requirement of the models for various datasets: (a) Occupancy, (b) Susy, (c) Electricity pricing, (d) Weather, (e)
Hyperplane, (f) Sea. [Incremental bagging is not considered here, since it is based on decision tree. In case of ‘Susy’, Learn++ could not finish execution.]

Fig. 5. Comparative study on execution time over various datasets: (a) Occupancy, (b) Susy, (c) Electricity pricing, (d) Weather, (e) Hyperplane, (f) Sea

the results can be found in our supplementary document2.

In our overall experimentation, we have considered FERNN

architecture to be composed of single layer of hidden units.

The learning rate for FERNN is set as 0.001 and the value of

control parameter η is fixed to be 0.05, for all the considered

datasets. FERNN and all the above mentioned benchmark

models are executed in the same platform of MATLAB

environment with 3.20 GHz Intel(R) Xeon(R) CPU E5-1650

processor and 16 GB RAM. The learning performance has

been evaluated based on four criteria, namely, classification

rate, no. of used parameters, no. of hidden units (extracted

features), and execution time. For all the models and all

the performance metrics, we record the average estimation

obtained by executing each model five times.

C. Results and Discussions

The comparative performance of FERNN, with respect to

classification rate and hidden node requirement is summarized

in Table I. We also show in Fig. 3, how the number of required

hidden unit in proposed FERNN is evolved with the ever

changing flow of data stream. The left part of the figure shows

evolution (of hidden units) per data-chunk, whereas the right

part of the figure shows evolution per data sample within a

specific chunk of data. Moreover, the comparative study on

model execution time and parameter count are depicted in the

Fig. 5 and Fig. 4, respectively. On analysing the table and the

figures, the following inferences can be drawn:

• It is evident that even with a minimum number of

hidden units, the proposed FERNN produces the highest

classification accuracy in most of the cases (refer Table I).

2Supplementary document: http://dx.doi.org/10.13140/RG.2.2.26428.69766

Though in case of ‘Weather’ dataset, FERNN cannot out-

perform ‘pENsemble+’, the classification rate of FERNN

is quite comparable and is achieved with appreciably

low execution time (refer Fig. 5). Similarly, for ‘Sea’

dataset, though ‘DEVDAN’ outperforms FERNN, the

highest accuracy of DEVDAN is obtained only by using

considerably large number of parameters (refer Fig. 4).

Likewise, in case of ‘Occupancy’ dataset though FERNN

can not outperform ‘Learn++’ and ‘Learn++.NSE’ mod-

els (refer supplementary document2), it achieves over

93% accuracy by using quite a lesser no. of features and

also with the least execution time.

• Further, though the incremental bagging algorithm (based

on decision tree) is found to have advantage over param-

eter count, it suffers from high structural complexity and

large computation time which is not suitable for stream-

ing data (refer to Fig. 5). On the other side, though the

incremental boosting algorithm (refer to supplementary

document2) requires overall least time for execution, the

classification accuracy of the model is significantly low

compared to FERNN and the others, for each dataset.

• Moreover, it can be noted that in all the cases, the

proposed FERNN produces substantially higher classifi-

cation accuracy than that of traditional BPTT-based RNN

model, and that is also by exploiting lesser parameters

and minimum computation time. This proves the worth

of applying hyperplane-based activation which not only

helps the model to extract the essential features with

reduced parameter but also leads the model to follow

the teacher forcing policy and ultimately overcomes the

gradient vanishing/exploding issues.

• Finally, as depicted in the Fig. 3, the execution of



the proposed FERNN starts with only one unit in the

hidden layer (below the output layer), and then, gradually

adds/grows or removes/prunes hidden units to cope up

with the time varying distribution of streaming data. This

also aids FERNN in achieving the desired accuracy with

optimal number of parameters in the classifier model.

Overall, FERNN demonstrates encouraging performance

which is typically suitable for stream classification scenario.

The study reveals that even a traditional RNN (i.e. not the

special architecture like LSTM, GRU etc.) also holds enough

potential to effectively perform in streaming data classification

when adapted appropriately, like our proposed FERNN.

IV. CONCLUSIONS

This paper proposes FERNN, a fast and self-evolving model

of recurrent neural network for online classification of stream-

ing data. The novelties in this work are threefold:

1) First of all, FERNN uses a new kind of hidden layer

activation, derived from the concept of hyperplane clus-

tering which contributes to considerable reduction in the

number of network parameters, and eventually, brings

down the execution time. The use of hyperplane acti-

vation also persuades the model to learn in accordance

with the teacher forcing principle and thereby ensures

gradient computation in isolated fashion and reduces

the chance of gradients exploding/vanishing problem as

encountered in RNN learning with BPTT mechanism;

2) Secondly, FERNN possesses self-organizing prop-

erty which makes it capable of on-demand con-

structing/discarding features through automatic grow-

ing/pruning of hidden layer units;

3) Finally, unlike many of the existing stream classifi-

cation approaches, FERNN is not rigidly based on

the unique and normal distribution assumption of data,

which makes FERNN more flexible towards diverse

categories of data streams.

Experimentation using real-world and artificial data stream

classification problem demonstrates the effectiveness of

FERNN in delivering state-of-the-art accuracy with compar-

atively less computational costs.

Nevertheless, the proposed FERNN model is crafted under

the assumption of fixed number of layers in the architecture.

Thus, ample scopes remain in further extending the present

model with on-the-fly layer adaptation mechanism, which may

be explored in future. We also plan to extend the proposed

model with skipped recurrent connection for better modeling

of the temporal dependencies in data stream.
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