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a b s t r a c t 

With the recent development of computational intelligence (CI), data-driven models have gained growing 

interest to be applied in various scientific disciplines. This paper aims at proposing a hybrid CI-based 

data-driven framework as a complement for the physics-based models used in climatological prediction. 

The proposed framework, called FB-STEP , is based on a combination of fuzzy Bayesian strategy and mul- 

tifractal analysis technique . The focus is to address three major research challenges in multivariate clima- 

tological prediction: (1) modeling complex spatio-temporal dependency among climatological variables, 

(2) dealing with non-linear, chaotic dynamics in climatic time series, and (3) reducing epistemic uncer- 

tainty in the data-driven prediction process. The present work not only explores Fuzzy-Bayesian model- 

ing of spatio-temporal processes, but also presents an elegant approach of dealing with intrinsic chaos 

in time series, through a synergism between multifractal analysis and Bayesian inference mechanism. 

Similar concepts may also be successfully employed in developing expert or intelligent systems for wide 

range of applications, including reservoir-water dynamics modeling, flood monitoring, traffic flow model- 

ing, chemical-mechanical process monitoring, and so on. Thus, the present research work carries a signif- 

icant value not merely in the field of climate research, but also in the domains of AI and machine intel- 

ligence. The experimentation has been carried out to spatio-temporally extrapolate the climatic conditions 

of five different locations in India , with the help of historical data on temperature, humidity, precipitation 

rate , and soil moisture . A comparative study with popular linear and non-linear methods has validated the 

efficacy of the proposed data-driven approach for climatological prediction. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Climatological prediction, defined as forecasting of environmen-

al variables, like temperature, precipitation rate, wind speed, hu-

idity etc. in a given geographic location, is challenging as well as

mportant for adopting appropriate future mitigation and adapta-

ion measures. In general, several climate models like, Community

tmosphere Model (CAM), Community Climate System Model (CCSM),

adley Centre Coupled Model (HadCM3) etc. ( Kirtman et al., 2012 )

re popularly used for monitoring and studying the climatologi-

al processes. However, these global/regional climate models are

ased on the physics-based approaches involving several differen-

ial equations on various physical processes, and suffer from two

ajor limitations: (1) the models assume that all the physical sys-

ems are well understood, which may not be true in reality; (2) the

odels need to solve a number of differential equations, and thus,
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re computationally expensive ( NIPCC, 2014 ). Therefore, in addition

o these climate models, various linear and non-linear data-driven

pproaches have recently been emerged as the new paradigms,

hich mainly aim to extensively analyze the historical climate data

or generating insights, and then utilize those in further studies.

he linear approaches are mostly based on the auto regressive in-

egrated moving average (ARIMA), whereas the non-linear meth-

ds are mainly based on artificial neural network (ANN), standard

ayesian network (BN), support vector machines (SVM) etc. com-

utational intelligence (CI) techniques. 

Now, the key challenges in climatological prediction with such

ata-driven approaches mainly arise due to the inherent chaotic

ature of the climate data and the complex, non-linear dynamics of

he climate system itself. Since the parameters underlying the non-

inear and deterministic climate system dynamics are sometimes

nknown , the system properties cannot be determined by proper

nalysis and simulations of the associated equations ( Drignei, For-

st, Nychka et al., 2008 ). So, given the historical data on climatic

ime series, there is a need to define a mechanism for capturing

he rhythm in climate system dynamics to understand the clima-

https://doi.org/10.1016/j.eswa.2018.08.057
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Fig. 1. Conceptualization of the research problem addressed in the paper. 
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tological processes in a better way. Moreover, the climatological

data is a kind of spatio-temporal data , thus, unlike the classical

data, these are embedded in continuous space and show long range

spatio-temporal dependency with high autocorrelation ( Faghmous &

Kumar, 2014 ). These dependencies can be local in nature, involving

spatial and temporal spans in a neighborhood, or there may be

long-range tele-connections and long memory time series effects . All

these dependencies in climate data cannot be effectively captured

by conventional approaches which are often used to model local

dependencies in various domains such as image, speech, video, and

signal analysis etc. Therefore, another key challenge in data-driven

climatological prediction is to define a model for studying the

complex spatio-temporal inter-relationships among different climate

variables to gain a better understanding of the climate system

behavior. Because of this strongly non-linear, highly uncertain, and

time-varying characteristics of the climate system, none of the lin-

ear data-driven methods ( Box, Jenkins, & Reinsel, 2008; Chatfield,

2013; Holt, 2004; Riahy & Abedi, 2008 ) can be considered as a sin-

gle superior model. These traditional linear statistical approaches

are not only too simple to model complex climatological processes,

but also suffer from backward looking problem, and therefore,

often result in poor prediction performance by generating the

same value as the output for the entire predicted time series. In

order to overcome the shortcomings of linear models, a number

of non-linear data-driven prediction models, especially based on

Bayesian analysis and Artificial Neural Network or ANN, have

been proposed in recent days. Although the existing ANN-based

prediction models ( Abhishek, Kumar, Ranjan, & Kumar, 2012;

Nayak, Patheja, & Waoo, 2012; Nourani, Mogaddam, & Nadiri,

2008; Venkadesh, Hoogenboom, Potter, & McClendon, 2013 ) are

fairly tractable and well-performing for time series prediction,

these require large training time and also are not able to directly

utilize spatial features for spatial/spatio-temporal dependency

modeling for climatological data. Moreover, the ANN models are

less explored to the uncertainty management issues and do not

have any mechanism to explicitly handle the intrinsic chaos in cli-

matological data. On the other side, though the Bayesian network

based models ( Aguilera, Fernández, Fernández, Rumí, & Salmerón,

2011; Cofıno, Cano, Sordo, & Gutierrez, 2002; Das & Ghosh, 2014a;

Madadgar & Moradkhani, 2013; Nandar, 2009 ) are inherently

capable of modeling uncertainty, these approaches suffer from ex-

ponential time and space requirement, and also lack natural-chaos

handling property. Similar problem is also faced in the fuzzy-

rule-based prediction system proposed by Awan and Awais (2011) .

Contrarily, though the time series prediction approach proposed

by Das and Ghosh (2014b) attempts to model chaotic nature of

the data, the approach is unable to handle spatial dependencies,

and consequently, lacks spatial extrapolation capability. 

The primary focus of the present paper is illustrated in

Fig. 1 . The objective is to exploit the innate potential of the

computational intelligence (CI) techniques for developing an im-

proved data-driven framework which attempts to address the three

above-discussed challenges in climatological prediction, namely,

(i) epistemic uncertainty; (ii) long range spatio-temporal de-

pendency; and (iii) non-linear, chaotic nature of climate data.

In our proposed framework (termed as FB-STEP), a new fuzzy

Bayesian network based analysis mechanism has been introduced

to address the first two issues. The mechanism also helps to

reuse information, and assists in managing large dataset. Ad-

ditionally, another module, performing multifractal analysis of

the climatic time series data, has been incorporated to capture

the intrinsic regularity which handles the third issue discussed

above. 

The novelty in this work lies in incorporating spatial informa-

tion in fuzzy Bayesian network , and refining the network-inferred

values of climatological variables by a data tuning process based
n multifractal analysis . The empirical study in comparison with

ther data-driven methods proves the superiority of our proposed

B-STEP in climatological prediction. Incidentally, FB-STEP is appli-

able not only for climatological data, but also for other kinds of

patial time series, especially those having such inherent chaotic

ature. 

.1. Problem statement and contributions 

The broad objective of the present work is climatological time

eries prediction which can be formally stated as follows: 

• Given, the historical daily time series dataset over n climate

variables in V = { v 1 , v 2 , · · · , v n } , corresponding to a set of

locations Loc = { loc 1 , loc 2 , · · · } for previous t years: { y 1 , y 2 ,

���, y t }. Also given, the spatial attribute information SA ={ 

SA 

loc 
1 , SA 

loc 
2 , · · · , SA 

loc 
p 

} 

regarding each location loc ∈ Loc . The

problem is to determine the daily climatic conditions of any lo-

cation x ∈ ( Loc ∪ Z ) for future years 
{

y (t+1) , y (t+2) , · · ·
}
, in terms

of the state/values of the variables in V , when the spatial at-

tributes of x is observed as 
{

SA 

x 
1 , SA 

x 
2 , · · · , SA 

x 
p 

}
. Here, Z is a set

of k new locations { z 1 , z 2 , . . . , z k } , such that z i �∈ Loc , for i = 1 to

k . 

The problem, as stated above, is a kind of spatio-temporal ex-

rapolation that needs to predict the future climatic condition of

ot only the set of training locations but for the other locations

utside the training set as well. In this regard, the current work

roposes a multivariate, data-driven prediction framework (FB-STEP)

ased on a new fuzzy Bayesian approach followed by multifractal

nalysis . The proposed fuzzy Bayesian approach extends our previ-

us work ( Das & Ghosh, 2014a ), by including spatial information in

he learning framework. Besides, it also overcomes the cascading

ffect of prediction error in the multifractal analysis based predic-
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ion approach proposed in our earlier work ( Das & Ghosh, 2014b ).

nlike the linear statistical ( Box et al., 2008; Chatfield, 2013; Holt,

004; Riahy & Abedi, 2008 ) and several other non-linear predic-

ion models, the FB-STEP is highly suitable for applying in com-

lex real-world scenarios. FB-STEP is generic and flexible enough

o be applied not only on the climatological data, but also on the

ime series from various other domains of applications, with lit-

le modifications in its data pre-processing step. Further, in con-

rast to the existing Bayesian models ( Aguilera et al., 2011; Das

 Ghosh, 2014a; Madadgar & Moradkhani, 2014; Nandar, 2009 ),

he proposed FB-STEP is able to capture and utilize the natu-

al regularities within time series data, and thereby, provides no-

ably better performance with low uncertainty in complex time se-

ies prediction. Moreover, since the ANN-based prediction models,

roposed by Abhishek et al. (2012) , Venkadesh et al. (2013) and

ayak et al. (2012) , etc., neither have special treatment for the

patial features nor have the capability to handle intrinsic chaos

n data, our proposed FB-STEP outperforms these models from

oth the perspectives of accuracy and uncertainty in prediction. Un-

ike the state-of-the-art space-time prediction model HBAR ( Sahu

 Bakar, 2012 ), FB-STEP also does not require special software

or its exact implementation and realization purpose. Eventually,

B-STEP may become a more economical solution for real-world

ssues, such as prediction of weather condition using data col-

ected from distributed weather-stations/sensor-network, assess- 

ent and monitoring of flood through prediction of water dynam-

cs in natural reservoirs, and so on. The present work has been

valuated with respect to prediction of daily climatic conditions

f five different locations in India during 2015–2016. The train-

ng has been performed with the historical datasets ( Microsoft-

esearch, 2015 ) of temperature, precipitation rate, humidity, and soil

oisture , corresponding to three locations (three cities in India),

amely Kolkata (22.58 °N, 88.36 °E), Raipur (21.25 °N, 81.63 °E), and

ucknow (26.85 °N, 80.91 °E); whereas the prediction has been made

or two more locations, namely Baleshwar (21.49 °N, 86.93 °E) and

haragpur (22.33 °N, 87.24 °E), as well. The accuracy of the predic-

ion demonstrates the efficacy of the proposed approach. 

Thus, the major contributions in this work can be summarized

s follows: 

1. Proposing FB-STEP, a data-driven framework for multivariate

prediction of climatological time series over space as well as

time ; 

2. Introducing fuzziness in predictive analysis to reduce the epis-

temic uncertainty in prediction process; 

3. Incorporating spatial information during temporal analysis with

fuzzy Bayesian network , to model the spatio-temporal interrela-

tionships among climate variables; 

4. Modeling intrinsic regularities within climatic time series, with

the incorporated mechanism based on multifractal analysis ; 

5. Verifying the effectiveness of the proposed framework using an

empirical study on spatio-temporal prediction of temperature,

humidity, precipitation rate , and soil moisture , for five different

locations ( Kolkata, Raipur, Lucknow, Baleshwar, and Kharagpur ) in

India. 

The remainder of the paper is organized as follows: The pro-

osed spatio-temporal prediction framework ( FB-STEP ) has been

horoughly discussed in Section 2 . A detailed description of the

xperimentation with climatological data has been provided in

ection 3 . The section starts with the details of used datasets and

tudy area, followed by an exhaustive analysis of the experimen-

al results. Finally, the concluding remarks have been presented in

ection 4 . 
. FB-STEP: a fuzzy Bayesian network driven framework for 

patio-temporal prediction 

The overall framework for the proposed prediction approach

long with the flow of entire process is shown in Fig. 2 . As shown

n the figure, the proposed prediction framework (FB-STEP) con-

ists of three key modules corresponding to: (1) Capturing spatio-

emporal inter-relationships among climate variables, (2) Measur-

ng intrinsic regularities in each considered climatic time series,

nd (3) Incorporating the natural regularities in multivariate pre-

iction. The details of each module are discussed in the following

art of this section. The meanings of the various notations used

hroughout the paper are summarized in Table 1 . 

.1. Module-1: capturing spatio-temporal inter-relationships 

Be it observed or model-simulated, the climatological data has

omplex dependencies across space as well as time. One way to

odel these relationships/dependencies is to capture various fea-

ures of these dependencies through statistical modeling, estima-

ion, testing, and inference. In this respect, we have utilized prob-

bilistic analysis with fuzzy Bayesian network . The fuzziness incor-

orated in the Bayesian network model also helps in reducing the

pistemic uncertainty arising due to lack of knowledge over the

ypical properties of the data. The process of capturing spatio-

emporal relationship consists of two major steps: (a) Data prepro-

essing, and (b) Relationship learning. It takes as input the histori-

al data of past years, and a causal dependency graph of Bayesian

etwork over considered variables. The output of this module is

 trained Bayesian network along with the incorporated spatio-

emporal relationships for the prediction year. 

.1.1. Data preprocessing 

The historical data is processed to determine the interval size

or different climatological variables for discretization purpose. The

nterval size is determined based on the maximum and minimum

alue observed in the training data of the variable. If, for any vari-

ble v i , the maximum observed value is max ( v i ) and the minimum

bserved value is min ( v i ), then the size of the interval becomes: 

 s (v i ) = 

[ max (v i ) − min (v i ) + 1] 

I 
(1) 

here, I is the total number of discretized range value of v i . The

alue of I may be predefined intuitively, or can be determined em-

irically so that it leads to optimum result with respect to pre-

iction accuracy as well as execution time. In order to empirically

etermine the optimal number of discretized ranges for a particu-

ar variable, first, a threshold value of execution time is assumed.

hen, the prediction accuracy (say in terms of root mean square

rror or RMSE) is studied with the increasing value of range count

 I ). The value of I , for which the error becomes minimum (and the

xecution time remains within the threshold), is considered to be

he optimal range count. 

The discretized ranges of values are then fuzzified to aid in ac-

urate prediction and uncertainty management issue. In our pro-

osed approach, the fuzzification has been done by assigning the

embership values in intuitive manner. The procedure is depen-

ent on the historical data and the respective domain knowledge

rom the experts. The step of fuzzification, used in our proposed

ethodology, deals with the uncertainty introduced through dis-

retization of the climatological time series data. Whenever a time

eries data is discretized, problem arises with the crisp boundary

alues ( Jun, Chung, Kim, & Kim, 2013 ) leading to introduction of

ome added impreciseness or uncertainty in the model. Following

s an example, illustrating the same. 

Suppose the variable temperature ( T ) in a particular region can

ake values between 15 °C and 40 °C. So, one may discretize the
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Fig. 2. Process flow of the proposed spatio-temporal prediction framework (FB-STEP). 
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values, say in five ranges, like that shown in Table 2 . Once dis-

cretized, the problem may arise when we want to use these ranges

to qualify the data. For example, say T 1 is low temperature, T 2 
is moderately low temperature, and T 3 is average temperature.

Then, this means that 24.999 °C temperature is moderately low but

25.001 °C is average temperature. That is, the boundary tempera-

tures are treated strictly within one sub-range and not in others. In

order to overcome this problem, each range is fuzzified in intuitive

manner, based on the knowledge from the domain experts. The

idea is to represent each discretized sub-range in terms of a trape-

zoidal fuzzy number. The mid-value of the sub-range is assigned

a membership value of 1 and the other values (may be outside

the range as well) are assigned suitable memberships ( ∈ [0, 1]) de-

pending on the characteristics of the associated variable, which can

efficiently be suggested by the domain experts. Fig. 3 shows exam-

ple membership functions for the variable “temperature”. In the

similar fashion, all the other variables are fuzzified. 

Now, the prediction for a single day may not always require the

dataset of whole year for training purpose, since the concerned

variables may show short term (weekly, monthly, seasonal etc.)

variation, for which the data of corresponding time duration is

more suitable than the whole data to train with. Again, a train-

ing with previous year’s data of only that particular day may not
lways be sufficient. Hence, there always remains a need of hav-

ng an optimal training dataset. In order to achieve the same, this

tep utilizes the short term climatic variations within the histori-

al time series data, and eventually helps in handling large training

ataset through information reuse process. 

Given a variable v ∈ V and a training year y i , in order to deter-

ine the short term variation within a period of d days, the cor-

esponding daily time series ( series v ) is first divided into L d num-

er of segments, each of size d , such that L d = �| series v | /d� . Here

 series v | denotes the series length. Then, for each segment s , the

eries variance is measured as follows: 

 ar (s, d) = 

1 

d 

d ∑ 

j=1 

{ ser ies v [(s − 1) ∗ d + j] − mean (s, d) } 2 (2)

here, mean (s, d) = 

1 
d 

∑ d 
j=1 series v [(s − 1) ∗ d + j] is the series

ean for the segment s . Therefore, for the entire series ( series v ),

he overall short-term variance within d days becomes: 

hor tV ar (d) = 

1 

L d 

L d ∑ 

s =1 

v ar (s, d) (3)

If, for d = 365 the shortVar ( d ) has the minimum value and also

ends to 0, then the series is said to have yearly variation. Similarly,
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Table 1 

Symbols and notations used in the present paper. 

Notation Meaning 

μ ˜ A (x ) Fuzzy membership of the value x in the fuzzy set ˜ A 
˜ A Fuzzy set corresponding to an event A 

CA Set of observed climate variables 

D ( q ) q -order generalized multifractal dimension 

d i Temporal distance of year y i from the prediction year 

Fluct q ( l ) q -order fluctuation over series segment of length l 

h ( q ) q -order generalized Hurst exponents 

I Total number of interval or discretized range value 

I s ( v i ) Size of interval (discretized range) for a variable v i 
[ l j , u j ] j th range/discretized value (lower limit: l j and upper limit: u j ) 

L l Total count of series segments each having length l 

Loc Set of spatial locations with known historical data 

max ( v i ) Maximum observed value for the variable v i ∈ V 
mean ( s, l ) Mean or average value of a series segment s of length l 

min ( v i ) Minimum observed value for the variable v i ∈ V 
n Total number of climatological variables considered 

P ( A ) Marginal probability of occurrence of the event A 

P ( A | B ) Conditional probability of occurrence of the event A , given evidence B 

P f Probability estimate corresponding to the final year 

Poly m s m th order fitting polynomial over series segment s 

P y i Probability estimate corresponding to the year y i 
R v i 

j 
j th fuzzified range corresponding to the variable v i 

SA Set of spatial attributes (e.g. latitude, elevation etc.) 

SA x 
i 

i th spatial attribute, associated with location x , which belong to SA 

series x Time series corresponding to a variable x ∈ V 
| series x | Length of time series corresponding to variable x ∈ V 
series x Mean of the time series corresponding to variable x ∈ V 
s _ prof ile Profile of the series 

V Set of climatological variables or the representative nodes 

var ( s, l ) Variance within a series segment s of length l 

v i i th variable ∈ V 
y i i th training year 

Z Set of new spatial locations with unknown data in the historical years 

Table 2 

Discretized range of temperature ( T ). 

Ranges T 1 T 2 T 3 T 4 T 5 

Temperature 15 ≤ T < 20 20 ≤ T < 25 25 ≤ T < 30 30 ≤ T < 35 35 ≤ T ≤ 40 

( °C) 

Fig. 3. Example for fuzzification of discretized ranges of temperature variable ( T ). 
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2

 

f, for d = 30 the shortVar ( d ) is the minimum and tends to 0, then

he series is said to have monthly variation. If, for d = 7 the short-

ar ( d ) is the minimum and tends to 0, then the series is said to

ave weekly variation. Else, the series is considered to have daily

ariation. Based on detected variation, new datasets correspond-

ng to each training year are prepared in a manner as described in

lgorithm 1 . 
c  
These newly prepared datasets are used in the next step to

rain the fuzzy Bayesian network for capturing and modeling inter-

ariable spatio-temporal relationships for the corresponding train-

ng years. 

.1.2. Learning spatio-temporal relationship 

In order to learn the spatio-temporal inter-relationships among

limate variables, an extension of new fuzzy Bayesian net-
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Algorithm 1: Dataset preparation. 

/* This algorithm prepares new datasets for each training year based 
on short-term climatic variations of the variables. */ 

Input : Historical dataset H = 

{
H y 1 

, H y 2 
, · · · , H y t 

}
of pas t t years, 

Directed Acyclic Graph G of the Bayesian network, Set of 
climate variables of interest V , and Prediction day d 

Output : New dataset T D y i 
corresponding to each training year 

y i (1 ≤ i ≤ t) 

1 T D y i 
← φ

2 for each variable v ∈ V do 
3 Ch v = Set of child climate variables of v in G 
4 if v shows daily variation, or there exists c ∈ Ch v such that c shows 

daily variation then 
5 for each training year y i (1 ≤ i ≤ t) do 
6 T D y i 

← T D y i 
∪ (whole-year data from H y i 

for variable v ) 
7 end 

8 end 
9 else if v shows monthly variation, or there exists c ∈ Ch v such that c 

shows monthly variation then 
10 for each training year y i (1 ≤ i ≤ t) do 
11 T D y i 

← T D y i 
∪ (data from H y i 

corresponding to the month 

of d for variable v ) 
12 end 

13 end 
14 else if v shows weekly variation, or there exists c ∈ Ch v such that c 

shows weekly variation then 
15 for each training year y i (1 ≤ i ≤ t) do 
16 T D y i 

← T D y i 
∪ (data from H y i 

corresponding to the week of 

d for variable v ) 
17 end 

18 end 
19 else if v shows yearly variation then 
20 for each training year y i (1 ≤ i ≤ t) do 
21 T D y i 

← T D y i 
∪ (data from H y i 

corresponding to the day d 

for variable v ) 
22 end 

23 end 

24 end 
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work (NFBN) learning, as proposed in our earlier work ( Das &

Ghosh, 2014a ), has been utilized here. NFBN ( Das & Ghosh, 2014a )

is a variant of FBN ( Tang & Liu, 2007 ). However, it is more precise

and computationally more efficient than FBN ( Tang & Liu, 2007 ). 

New Fuzzy Bayesian Network (NFBN) 

The working principle of NFBN ( Das & Ghosh, 2014a ) is as

follows: 

Let A = { A 1 , A 2 , · · · , A m 

} and B = { B 1 , B 2 , · · · , B n } be two sets of

events corresponding to the variables x and y respectively —where,

A 1 , ���, A m 

and B 1 , ���, B n are in the form of range of values

achieved by x and y . Also let ˜ A and 

˜ B be two corresponding fuzzy

events. 

Then according to NFBN , 

P 
(

˜ B / ̃  A 

)
= 

| {m i | μ ˜ B ( y m i 
) > 0 , μ ˜ A ( x m i 

) > 0 

}| 
P 
(

˜ A 

) , (4)

where, m i ∈ { m 1 , m 2 , ���, m M 

}, a set of all the observations for the

variable x and y; M is the total number of such observations; x m i 
=

Value of the variable x in the i th observation ( m i ); y m i 
= Value of

the variable y in the i th observation ( m i ); μ ˜ A 
(x m i 

) = Membership

of the value x m i 
in the fuzzy set ˜ A ; and μ ˜ B (y m i 

) = Membership of

the value y m i 
in the fuzzy set ˜ B . 

Here, in NFBN , the fuzzy marginal probability P 
(

˜ A 

)
is defined

as: 

P 
(

˜ A 

)
= 

| {n i | μ ˜ A (x n i ) > 0 , n i ∈ { n 1 , n 2 , · · · , n N } 
}| 

(5)

N 
here, { n 1 , ���, n N } is a set of all observations for the variable x; N

s the total number of observations for x ; and μ ˜ A 
(x n i ) = Member-

hip of the value x n i in the fuzzy set ˜ A . 

The present work proposes an extension of spatio-temporal

nter-relationship learning which is based on the principle of NFBN

ith explicitly incorporated spatial information . As shown in Fig. 4 ,

he network (also called causal dependency graph) in the proposed

earning framework not only consists of the climatological vari-

bles, but also explicitly includes the spatial attributes ( SA s) for

ncorporating spatial information , like land elevation, latitude, land-

over category etc. depending on which the climatological variables

how variant behavior. The incorporation of these spatial infor-

ation in the network helps in modeling the spatio-temporal de-

endency among the climatological variables in a more exhaustive

anner rather than considering their implicit influence as used by

as and Ghosh (2014a) . Therefore, given the spatial attributes, like

atitude, land elevation, land use land cover (LULC) type etc., the

roposed framework is capable of forecasting climatological time

eries for any location outside the study/training region as well.

owever, better accuracy can be achieved by training the model

ith the historical time series data of a large set of locations with

arying spatial attribute combinations. 

Utilizing the Eqs. (4) and (5) , the network is trained with the

iven data for each training year ( y 1 , y 2 , ���, y t , t = total num-

er of available training years) separately, to learn the correspond-

ng spatio-temporal relationships among the variables, in terms of

robability estimates. In the Fig. 4 , the network, separately trained

or each training year, has been denoted by BN y 1 , BN y 2 , · · · , BN y t 

espectively. At the end of training for each year, the fuzzy prob-

bilities obtained for each considered variable are averaged to get

he corresponding fuzzy probabilities for the prediction year. The

veraging is performed in an weighted manner, with consideration

o temporal auto-correlation among the historical years ( Das et al.,

017 ). Temporal autocorrelation occurs when the course of a time

eries is influenced by its recent past. For example, the weather

ondition of a day in one year is more similar to that in its previ-

us year than that in longer past. Therefore, based on this concept,

he weighted average of the estimated probability values has been

erformed by assigning higher weights to the captured probabili-

ies corresponding to a year which is nearer to the prediction year.

or any training year y i , if d i is its temporal distance from the pre-

iction year, then the final probability P f is estimated as follows:

 f = 

t ∑ 

i =1 

(
P y i ×

1 /d i ∑ t 
j=1 1 /d j 

)
(6)

here, t is the total number of years considered for training; and

 y i is the estimated marginal/ conditional probability of any vari-

ble, for the year y i . 

.2. Module-2: measuring intrinsic regularity 

The objective of the second module (refer Module-2 in Fig. 2 )

s to model the intrinsic chaos , or in other sense, the intrinsic reg-

larity in each of the considered climatic time series. The climate

ystem is governed by a variety of physical processes and exhibits

 great deal of fluctuations especially at various temporal scales.

t has been observed by research communities that these fluctua-

ions or changes in climate system show fractal phenomenon hav-

ng asymptotic power-law scaling for several long records ( Lin &

u, 2008 ). Moreover, the recent researches indicate that only a

ingle scaling exponent is not sufficient to fully characterize the

omplex dynamics of any climatological time series. Therefore, the

ultifractal analysis , which can identify and quantify the multiple

caling exponents in the data, is more appropriate in this regard. 
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Fig. 4. Proposed spatio-temporal relationship learning framework based on new fuzzy Bayesian network (NFBN) with incorporated spatial information . 
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In our proposed framework, the Module-2, introduced for cap-

uring intrinsic regularity in climatic time series, is based on

he multifractal detrended fluctuation analysis (MF-DFA) technique

 Kantelhardt et al., 2002 ). As shown in Fig. 2 , the module takes

he data series of past years as input, and finally captures the reg-

larity information in the form of multifractal dimensions of each

eries, which are then fed to the next module for final prediction.

he whole module is comprised of two major steps: (a) Capturing

ata trend, and (b) Measuring intrinsic regularity. 

.2.1. Capturing data trend 

In this step we apply MF-DFA technique to analyze the loga-

ithmic plots of series fluctuations versus different lengths of time

cale (refer Fig. 5 (a)). The characteristics of these plots help in de-

ermining the actual trend in the data. The overall procedure is

escribed below. 

Let, the time series data be associated with a variable v ∈ V .

o, as per the principles of MF-DFA, for each particular length

f time scale ( l ), the profile of the series v is first divided into

 l = �| series v | /l� number of segments ( s ) starting from each end

eparately. Then, the q th order fluctuation in series v is estimated

s follows: 

 l uct q (l ) = 

{ 

1 

2 L l 

2 L l ∑ 

s =1 

[ F 2 (l, s )] q/ 2 

} 1 /q 

(7)

here, q � = 0, s ∈ 1, 2, 3, ���, 2 L l , and F 2 ( l, s ) is the local variance at

he segment s . In case q = 0 , the q th order fluctuation in series v , for

 particular length of time scale ( l ) is measured using logarithmic

veraging procedure in following manner: 

 l uct q (l ) = exp 

{ 

1 

4 L l 

2 L l ∑ 

s =1 

l n [ F 2 (l , s )] 

} 

(8)

ow, if Poly m 

s is the m th order fitting polynomial for a segment s ,

nd s _ prof ile is the series profile, obtained by performing cumula-

ive sum of series deviation from the series mean, then the value

f F 2 ( l, s ) is calculated as follows: 

 

2 (l , s ) = 

1 

l 

l ∑ 

i =1 

{ s _ prof il e [(s − 1) ∗ l + i ] − P oly m 

s (i ) } 2 (9)

hen s = 1 , 2 , · · · , L l and 

 

2 (l , s ) = 

1 

l 

l ∑ 

i =1 

{ s _ prof il e [ L − (s − L l ) ∗ l + i ] − P oly m 

s (i ) } 2 (10)

hen s = L + 1 , L + 2 , · · · , 2 L . 
l l l 
If the considered m is too small, then in the l og − l og plot of

luct q ( l ) vs l the Fluct 2 ( l ) shows a prominent crossover to a regime

ith larger slope for large scales l which disappears gradually with

he increasing value of m , as shown in Fig. 5 (a). Once the properly

tting polynomial degree m is finalized, the trend in original data

eries is estimated as (m − 1) . 

.2.2. Measuring intrinsic regularity 

In this step, we measure the intrinsic regularity in each cli-

atic time series by estimating its generalized multifractal dimen-

ions using MF-DFA technique. As mentioned earlier, MF-DFA tech-

ique primarily analyzes the log-log plots of series fluctuations ver-

us different lengths of time scale. The plots show different slopes

or different orders of fluctuation in case the series is multifractal.

ll these slopes collectively provide the generalized Hurst exponents

refer Fig. 5 (b)), which are further utilized to determine the multi-

ractal dimensions of the series. 

Once the actual data trend m is captured for a particular series,

he corresponding generalized Hurst exponents i.e. h ( q )-values are

stimated by solving the power law equation as follows: 

 l uct q (l ) ∝ l h (q ) (11)

og F l uct q (l ) = h (q ) log l + log C (12)

 (q ) = 

log F luct q (l) 

log l 
− log C 

log l 
(13) 

 (q ) = 

log F luct q (l) 

log l 
+ C ′ (14)

here, C ′ is a constant. 

The h ( q ) is now used to calculate the generalized multifractal di-

ensions , denoted by D ( q ) (refer Fig. 5 (c)), in following manner: 

 (q ) = (qh (q ) − 1) / (q − 1) (15)

The D ( q ) values basically represent the chaotic nature of the

oncerned series in the form of a set of non-integer dimensions,

nd are fed along with the estimated data trend information ( m )

o the next module to aid in final prediction. 

.3. Module-3: Incorporating natural regularities in multivariate 

rediction 

The objective of the third module ( Module-3 , refer Fig. 2 ) in

ur proposed framework is to incorporate the natural regularities

n multivariate prediction. The module basically tunes the inferred
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Fig. 5. Multifractal analysis: (a) Crossover , (b) Generalized Hurst exponents h(q) vs. q , (c) Fitted sigmoidal curve for Generalized Multifractal Dimensions D(q) vs. q . 
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value of prediction variable, as obtained using probability distri-

butions from the first module, into some value which keeps the

intrinsic regularity within the respective time series almost unal-

tered. 

The proposed data tuning process is an upgraded version of the

earlier work of Das and Ghosh (2014b) . For each prediction day,

the data tuning process in our earlier work starts by considering

the predicted value of the previous day as seed value. As a result,

the error of prediction, encountered in the previous day, cumu-

latively increases with the prediction for the next days, and this

event restricts the approach ( Das & Ghosh, 2014b ) applicable for a

short-term prediction only. In contrast, the present approach first

infers the value of the concerned variable by utilizing the spatio-

temporal inter-relationships as learnt in first module. Then this in-

ferred value is treated as the seed value and is tuned further to get

the final value of prediction, which conforms to the intrinsic regu-

larity within the observed series. Therefore, our present data tun-

ing process becomes independent of the prediction value of pre-

vious day and thereby overcomes the cumulative effect of predic-

tion error, leading to efficient performance in long-term prediction

as well. The process is accomplished by the Module-3 , illustrated

below. 

As shown in Fig. 2 , the Module-3 takes as input the probabilis-

tic information of the spatio-temporal dependency among the con-

t  
erned variables and the captured regularity present in each of the

limatic data series, as generated by the Module-1 and Module-2 ,

espectively. Finally, the module generates the forecast result in

erms of the future states/values of the considered climatological

ariables. The forecasting is performed based on following two as-

umptions: 

• The higher the inferred fuzzy probability of a particular

state/value of a variable, the more the tendency of occurrence

of that state/value for it. 
• The future series corresponding to each climatic variable must

be consistent with the regularity in the past series, expressed

through generalized multifractal dimensions. 

During the multivariate prediction in Module-3 (refer Fig. 2 ),

ach climatic variable v i is inferred from the given spatial in-

ormation, by using the fuzzy Bayesian inference technique. The

ange/discretized values corresponding to the first and second

ighest fuzzy probabilities, say pr 1 : [ l 1 , u 1 ] and pr 2 : [ l 2 , u 2 ] respec-

ively, are considered to finalize the inferred range ([ l f , u f ]) of v i in

 manner as described below: 

Let, R 
v i 
j 

be the j th fuzzified range value corresponding to the

ariable v i . SA 1 , . . . , SA p are the observed spatial attributes corre-

ponding to the prediction location, and CA is the set of observed

limate variables, i.e. CA ⊆V (as per the problem definition). Then,

he first and second highest fuzzy probabilities i.e. pr and pr are
1 2 
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Algorithm 2: Incorporating natural regularity. 

/* The algorithm incorporates natural regularity in prediction of a 
climatic variable X for future k days. The series corresponding to X is 
denoted by x (t) , and the corresponding predicted series has been 
denoted by ps (t) */ 

Input : Central values of the inferred range v i 
mid 

( 1 ≤ i ≤ k ), Degree of 

overall data trend ( m − 1 ), and the generalized multifractal 
dimensions D (q ) for the original historical data series 
x (t) = { x 1 , x 2 , · · · , x d } . 

Output : Predicted series ps (t) = { ps 1 , ps 2 , · · · , ps k } , for the next k 
days. 

1 k =Number of prediction days. 
2 d=Total number of observations in input series x (t) . 
3 f luctn =Set of g number of fluctuation values considered for 

adjustment purpose. 
4 ad d (S, v al) =A function that add/ include an observation v al at the end 

of series S. 
5 del _ f irst(S) =A function that delete the first observation from the 

beginning of series S. 
6 del _ last(S) =A function that delete the last observation from the end of 

series S. 

7 T S ← { last (d − 1) entries from x (t) } = { x 2 , x 3 , · · · , x d } ; 
8 for each prediction day i (1 ≤ i ≤ k ) do 
9 for each considered fluctuation amount f luctn j (1 ≤ j ≤ g) do 

10 cand id ate _ v al ← (v i 
mid 

+ f luctn j ) ;/* cand id ate _ v al is a 

candidate prediction value. */ 
11 T S ← ad d (T S, cand id ate _ v al) ; 
12 Apply MF-DFA m to calculate the generalized Hurst exponents 

h new (q ) for the new series T S; 
13 Calculate the multifractal dimensions 

D new (q ) ← (qh new (q ) − 1) / (q − 1) for T S; 

14 de v iation j ← 

√ 

1 
(q b −q a +1) 

∑ q b 
q = q a [ D (q ) − D new (q )] 2 ;/* [ q a , q b ] is 

the range of considered q -values for which α has a 
corresponding positive f (α) in the multifractal singularity 
spectrum f (α) vs. α.*/ 

15 T S ← del _ last(T S) ; 

16 end 
17 minDe v iation ← minimum (d e v iation 1 , · · · , d e v iation g ) ; 
18 bestIndex ← value of j (1 ≤ j ≤ g) for which de v iation j is equal to 

minDe v iation ; 
19 best _ cand id ate _ v al ← (v i 

mid 
+ f luctn bestIndex ) ; 

20 ps i ← best _ cand id ate _ v al; 
21 T S ← ad d (T S, best _ cand id ate _ v al) ; 
22 T S ← del _ f irst(T S) ; 

23 end 
24 Print ps i (1 ≤ i ≤ k ) as the predicted values of the prediction variable X 

for i th prediction day. 

t  

s  

i  

r  

C  

m  

b  

a  

B  
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p  

E  

W  

p  

i  

(  

(  

(

m  
stimated as follows: 

pr 1 = P ( [ l 1 , u 1 ] /CA, SA 1 , . . . , SA p ) (16) 

= max ︸︷︷︸ 
∀ j 

{
P (R 

v i 
j 
/CA, SA 1 , . . . , SA p ) 

}
(17) 

nd 

pr 2 = P ( [ l 2 , u 2 ] /CA, SA 1 , . . . , SA p ) (18) 

= second _ max ︸ ︷︷ ︸ 
∀ j 

{
P (R 

v i 
j 
/CA, SA 1 , . . . , SA p ) 

}
(19) 

By utilizing these fuzzy probabilities (i.e. pr 1 and pr 2 ), we cal-

ulate the final inferred range as follows: 

l f , u f 

]
= 

[
B v al −

(
I s (v i ) ∗ pr 1 
pr 1 + pr 2 

)
, B v al + 

(
I s (v i ) ∗ pr 2 
pr 1 + pr 2 

)]
(20) 

here, B val is the boundary value between [ l 1 , u 1 ] and [ l 2 , u 2 ],

 1 < l 2 . i.e. B v al = u 1 = l 2 (as the discretized intervals are non-

verlapping), and I s ( v i ) = size (or length) of interval/range for v i .

f l 1 > l 2 , then the final value of inferred range can be obtained by

xchanging pr 1 and pr 2 in Eq. (20) . 

Now, to incorporate the natural regularity as captured for each

rediction variable, the central value of the inferred range is taken

s the seed value, and various amounts of fluctuation is added to

his seed value to generate a set of candidate prediction values.

hen, each of these candidate values is separately appended at the

nd of the already obtained series and the newly formed series is

hecked for conformity with the original series, in terms of devia-

ion from multifractal dimensions, using Eq. (21) . 

e v iation = 

√ 

1 

(q b − q a + 1) 

q b ∑ 

q = q a 
[(D (q ) − D new 

(q )] 2 (21) 

here, D new 

( q ) are the multifractal dimensions for the new series

ncluding the candidate value of prediction; D ( q ) are the multifrac-

al dimensions for the original series; [ q a , q b ] is the sub-range of

onsidered q -values (refer to the step of Data trend capture ). 

Now, the fluctuation amount fluctn bestIndex , for which the ad-

usted forecast-value gives the least deviation from the original

ultifractal dimensions, is considered finally, and the final pre-

icted value of v i becomes: 

est _ cand id ate _ v al = 

{
(l f + u f ) 

2 

+ f luctn bestIndex 

}
(22)

The various steps of incorporating the natural regularity in pre-

iction process have been presented through Algorithm 2 . 

. Experimentation 

This section describes the dataset, experimental set up, and the

arious outcomes of our experimentation. The overall results are

ound to be encouraging. 

.1. Data 

The experimentation has been carried out with a collection

f sixteen-year (2001–2016) data, corresponding to three different

raining locations in India , namely Kolkata [22.58 °N, 88.36 °E], Luc-

now [26.85 °N, 80.91 °E], and Raipur [21.25 °N, 81.63 °E] (refer Fig. 6 ).

he location Kolkata is in eastern India and belongs to tropical cli-

ate zone, whereas the locations Raipur , and Lucknow belong to
he temperate climate zone in central India and north India re-

pectively. The experimental data are over four major climatolog-

cal variables, namely, Temperature, Relative humidity, Precipitation

ate, and Soil moisture , which have been collected from the Fetch-

limate Explorer ( Microsoft-Research, 2015 ). Once the proposed

odel is trained, the testing on spatio-temporal extrapolation has

een made for all the locations in the training set ( Kolkata, Raipur,

nd Lucknow ), and two more locations outside the set, namely,

aleshwar, India (21.49 °N, 86.93 °E ), and Kharagpur, India (22.33 °N,

7.24 °E ) as well. 

.2. Experimental results 

The performance of prediction using FB-STEP has been ex-

ressed in terms of prediction error (RMSE: Root Mean Square

rror and MAE: Mean Absolute Error Wang, Xu, Tang, Yuan, &

ang, 2017 ) for two test years: 2015 and 2016, along with com-

arison to other existing methods, including exponential smooth-

ng with Holt-Winters Approach ( Holt, 2004 ), Automated ARIMA

R-Tool 3.1.1), Vector Auto-Regressive Moving Average or VARMA

 De Gooijer & Hyndman, 2006; Tsay, 2013 ), Neural Network

NNTool, MATLAB R2011a), Hierarchical Bayesian Auto-Regressive 

odel or HBAR ( Sahu & Bakar, 2012 ), standard BN, and FBN
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Fig. 6. Study area containing three training locations: Kolkata, Raipur, and Lucknow . 
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( Mrad, Delcroix, Maalej, Piechowiak, & Abid, 2012; Ryhajlo,

Sturlaugson, & Sheppard, 2013; Tang & Liu, 2007 ). In order to make

prediction for the year 2015, the datasets of 2001–2014 have been

used as training dataset, whereas, the prediction for 2016 has been

made based on the training datasets of 2001–2015. 

Fig. 7 (a)–(d) present the comparative results of predicting

climatic condition in Kolkata, Lucknow, Raipur, Baleshwar, and

Kharagpur, for the target year 2015, in terms of Temperature, Rel-

ative humidity, Precipitation rate and Soil moisture respectively. Sim-

ilarly, Fig. 8 (a)–(d) present the same for the prediction year 2016.

The results of prediction for Baleshwar and Kharagpur, as depicted

in Figs. 7 and 8 , have been compared only with HBAR, BN and

FBN. It is because the other models for comparison do not explic-

itly considers the spatial properties of test locations, and therefore

are not fit for spatio-temporal extrapolation for any location out-

side the training set . Both for BN and FBN, the same causal depen-

dency graph, as used in our approach, has been used for incorpo-

rating spatial information. 

Moreover, in order to provide the quantification for uncertainty

in prediction for each variable, we have determined the Dawid-

Sebastiani score ( Gneiting & Katzfuss, 2014 ) corresponding to our

proposed FB-STEP approach and that for the other forecasting tech-

niques as well. The score ( DSS ) is measured as follows: 

DSS(F , y ) = 

(
y − μF 

σF 

)
2 + 2 log σF (23)

where, y is the observed value, F is the forecast time series, μF 

is the mean forecast value, and σ 2 
F is the variance of the forecast

time series. 

The DSS for prediction of Temperature, Humidity, Precipitation

and Soil moisture have been tabulated in Table 3 to Table 6 respec-

tively. Since the Holt-Winters Approach, ARIMA, VARMA, and the

considered Neural Network model cannot extrapolate the time se-

ries for the location Kharagpur and Baleshwar, the tables shows the

DSS values for three locations (Kolkata, Raipur, and Lucknow) only.

3.2.1. Discussion 

From the experimental results (refer Figs. 7 and 8 , and

Tables 3–6 ) the following inferences can be drawn: 
• As depicted in Figs. 7 (a)–(d) and 8 (a)–(d), the result of pre-

diction using the proposed FB-STEP is far better than that of

the other approaches with respect to both RMSE and MAE. It

not only proves the worth of considering natural regularity (ob-

tained using multifractal analysis ) during prediction, but also es-

tablishes the effectiveness of our extended NFBN-based learning

that considers the spatial information in an explicit manner. 
• It is also evident from the Figs. 7 and 8 that with the increase

in training data, the prediction error decreases, i.e. the predic-

tion accuracy improves. This ensures the consistency of FB-STEP

in multivariate prediction. 
• Moreover, the proposed approach also shows the best perfor-

mance in accomplishing spatio-temporal extrapolation, as de-

picted in the Figs. 7 (a)–(d) and 8 (a)–(d), corresponding to the

two new locations, i.e. Baleshwar and Kharagpur respectively. 
• It is evident from the Table 3 –6 that the Dawid-Sebastiani

scores for the proposed FB-STEP-based predictions are signifi-

cantly less in most of the cases of prediction. The scores for

FB-STEP are also very close to the ideal scenario , in which the

predicted time series is same as that of the observed time se-

ries. This ensures that the prediction uncertainty in case of FB-

STEP is also lesser than that of the other forecasting models,

used in the comparative study. 

Additionally, in the Figs. 9 and 10 , we have plotted the pre-

icted values of the considered climatological variables over two

ample locations, namely Raipur and Baleshwar , for nine randomly

elected days in the year 2015 and 2016 respectively. Raipur has

een chosen as a representative of our training locations and

aleshwar has been chosen as a representative of the locations out-

ide the training set. For each representative location, the predic-

ion days have been randomly selected from three major observ-

ble seasons in the associated region: pre-monsoon, monsoon , and

ost-monsoon . It is apparent from the figures that the predictions

ade by proposed FB-STEP are more towards the actual ones, com-

ared to the others. 

Overall, the proposed FB-STEP produces least prediction er-

or in most of the cases and delivers superior prediction perfor-

ance. Since our proposed approach pre-processes the training

ata to capture the short-term climatic variation as described in
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Fig. 7. Comparative study of proposed approach (FB-STEP) with existing prediction techniques considering various climatic variables for the prediction year 2015: (a) Tem- 

perature, (b) Humidity, (c) Precipitation rate (d) Soil Moisture. 
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ection 2.1.1 (refer Algorithm 1 ), the fuzzy Bayesian network based

raining in case of the proposed approach becomes more effec-

ive than that in case of the other benchmark and state-of-the-

rt forecasting techniques considered. The fuzzification of the dis-

retized data also helps to reduce the uncertainty in prediction.

he other reason behind superior performance of FB-STEP is the

efinement of the inferred value of the prediction variable by us-

ng the multifractal analysis. The multifractal analysis, as described
n the Section 2.2 , measures the intrinsic regularity in each of the

ime series under consideration and finally utilizes this inherent

roperty to tune the value inferred by the trained fuzzy Bayesian

etwork. 

The Fig. 11 shows the maximum percentage improvement in pre-

iction with incorporated regularity information. The improvement

as been averaged over all the prediction locations. 
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Fig. 8. Comparative study of proposed approach (FB-STEP) with existing prediction techniques considering various climatic variables for the prediction year 2016: (a) Tem- 

perature, (b) Humidity, (c) Precipitation rate (d) Soil Moisture. 
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The gain of this extra step of capturing and incorporating in-

trinsic regularity has also been quantified in terms of 99% confi-

dence intervals of absolute prediction error , as shown in Table 7 . The

upper and lower bounds of confidence intervals have been deter-

mined considering all the prediction locations used in the exper-

imentation. It is evident from the tabulated values that the ex-

tra step of capturing and incorporating intrinsic regularity leads to

improved performance with reduced prediction error. Considering

p  
raining set and prediction locations from the same climate zone

ay yield even better performance. 

.2.1.1. Major implications. The overall experimental study clearly

hows the utility of incorporating spatial information in climato-

ogical time series prediction. The study reveals that the climatic

nformation from the neighboring locations with similar spatial

roperties can effectively help to determine the climatic condition
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Table 3 

Dawid-Sebastiani score ( DSS ) in prediction of temperature. 

Forecasting techniques Prediction year 

2015 2016 

Kolkata Raipur Lucknow Kolkata Raipur Lucknow 

Holt-Winters method 4.268 5.575 7.216 4.268 5.575 7.215 

Automated ARIMA 5.130 4.402 4.715 3.863 4.423 4.752 

VARMA 4.502 6.890 8.325 3.923 7.294 7.207 

ANN 4.301 3.716 3.311 4.975 5.129 3.290 

HBAR 4.037 3.751 4.323 3.998 3.490 4.345 

Standard BN 3.372 3.351 3.346 3.372 3.351 3.346 

FBN 3.372 3.353 3.336 3.355 3.350 3.332 

Proposed FB-STEP 3.347 3.348 3.342 3.346 3.349 3.331 

Ideal scenario 3.308 3.307 3.269 3.308 3.307 3.269 

Table 4 

Dawid-Sebastiani score ( DSS ) in prediction of humidity. 

Forecasting techniques Prediction year 

2015 2016 

Kolkata Raipur Lucknow Kolkata Raipur Lucknow 

Holt-Winters method 5.409 10.231 8.348 5.409 10.231 8.348 

Automated ARIMA 5.188 6.851 8.111 5.188 10.323 8.110 

VARMA 7.704 17.988 14.256 5.754 18.856 13.118 

ANN 4.623 7.205 6.008 4.624 7.211 6.837 

HBAR 5.043 21.824 6.184 5.113 19.541 6.170 

Standard BN 5.800 7.103 5.763 5.800 7.103 5.763 

FBN 4.521 7.103 5.763 5.800 7.103 5.763 

Proposed FB-STEP 4.521 4.162 4.521 4.521 4.161 4.520 

Ideal scenario 4.254 3.972 4.027 4.254 3.972 4.027 

Table 5 

Dawid-Sebastiani score ( DSS ) in prediction of precipitation. 

Forecasting techniques Prediction year 

2015 2016 

Kolkata Raipur Lucknow Kolkata Raipur Lucknow 

Holt-Winters method 3.3e + 08 2.9e + 08 2.7e + 08 3.3e + 08 2.9e + 08 4.0e + 08 

Automated ARIMA 339.642 437.363 233.484 339.603 434.852 236.796 

VARMA 507.254 570.512 375.89 411.633 587.186 401.004 

ANN 3.2e + 05 5.1e + 05 7.2e + 04 2.5e + 05 3.4e + 05 6.3e + 05 

HBAR 167.559 331.713 97.163 167.924 328.53 96.817 

Standard BN 1323.648 949.661 109.699 1323.188 841.313 109.699 

FBN 871.513 764.385 93.264 760.776 760.154 143.248 

Proposed FB-STEP 587.771 220.128 65.001 723.606 220.472 65.029 

Ideal scenario −0.996 −2.267 −3.443 −0.996 −2.267 −3.443 

Table 6 

Dawid-Sebastiani score ( DSS ) in prediction of soil moisture. 

Forecasting techniques Prediction year 

2015 2016 

Kolkata Raipur Lucknow Kolkata Raipur Lucknow 

Holt-Winters method 27.365 46.395 25.105 27.365 46.395 25.105 

Automated ARIMA 23.108 46.395 25.105 23.227 46.395 25.105 

VARMA 35.798 84.882 39.357 28.959 88.571 35.437 

ANN 16.52 29.116 11.083 16.029 28.954 24.148 

HBAR 14.204 16.069 12.312 14.204 16.306 11.63 

Standard BN 7.196 8.522 9.383 7.427 8.522 9.383 

FBN 7.196 8.022 9.383 7.196 8.022 9.383 

Proposed FB-STEP 6.168 8.035 6.600 6.120 7.798 6.658 

Ideal scenario 5.402 5.295 5.166 5.402 5.295 5.166 

o  

p  

s  

s  

i  

v  

d  

t  

c

 

t  

n  
f a very new spatial location for which no observed data from

ast years is available. The experimental outcomes also demon-

trate the effectiveness of modeling intrinsic chaos within the as-

ociated time series, in a climatological prediction framework. Sim-

lar approach may be successfully employed for the prediction of

arious other natural as well as artificial time series, including hy-
rological and atmospheric time series, human heartbeat, respira-

ory excursions, and financial time series etc., which are inherently

haotic in nature. 

Nonetheless, the proposed FB-STEP framework has its own limi-

ations as well. First of all, the framework, being based on Bayesian

etwork model, may require exponential time and space during
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Fig. 9. Comparative study of prediction for the year 2015 in two sample locations ( Raipur and Baleshwar ): (a) Temperature, (b) Humidity, (c) Precipitation rate, (d) Soil 

moisture. 

Table 7 

99% confidence interval of absolute error in prediction for 2015 and 2016. 

Prediction Cases 2015 2016 

variable Lower bound Upper bound Lower bound Upper bound 

Temperature Case-1 00.791 00.996 00.816 01.025 

( °C) Case-2 00.782 00.988 00.761 00.960 

Humidity Case-1 06.895 07.908 08.587 09.913 

(%) Case-2 02.913 03.617 02.912 03.615 

Precipitation Case-1 42.177 68.086 39.623 64.877 

(mm) Case-2 38.118 63.723 36.897 61.767 

Soil Moisture Case-1 16.034 18.653 17.516 20.188 

(mm/m) Case-2 10.312 13.507 09.530 12.731 

Case-1: Without considering extra step of capturing and incorporating intrinsic regularity; 

Case-2: Considering extra step of capturing and incorporating intrinsic regularity; 
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Fig. 10. Comparative study of prediction for the year 2016 in two sample locations ( Raipur and Baleshwar ): (a) Temperature, (b) Humidity, (c) Precipitation rate, (d) Soil 

moisture. 

Fig. 11. Percentage improvement in prediction with consideration to the step of 

capturing and incorporating intrinsic regularity. 
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patial dependency modeling. Secondly, since FB-STEP uses mul-

ifractal analysis, it becomes necessary to supply sufficiently long

ime series so that the intrinsic regularity within the time se-
ies is properly captured. Therefore, the framework is not very

uitable when the length of training time series is considerably

ow. Further, like almost all the above-discussed prediction ap-

roaches, the FB-STEP framework is also not able to capture vari-

bility at varying spatial and temporal scales. Finally, the frame-

ork largely depends on the domain expertise, to determine the

tructure of the causal dependency graph and also to set the ap-

ropriate membership function for fuzzification. Consequently, this

iminishes the tractability of the proposed framework. A summary

f the strengths and the weaknesses of the proposed FB-STEP is

resented through Fig. 12 , in comparison with the other consid-

red data-driven techniques. 

. Conclusions 

Climatological events are typically non-linear and chaotic in na-

ure, and thus it is extremely difficult to predict them accurately

ven with the help of state-of-the-art data-driven approaches.

he present work proposes FB-STEP, a hybrid CI-based improved

patio-temporal analysis framework for multivariate prediction of

limatological time series data. The primary objective is to ex-
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Fig. 12. Study of proposed FB-STEP in comparison with the other data-driven prediction models. 
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ploit the power of computational intelligence (CI) for dealing with

the various challenges in climatological prediction and thereby to

enhance the potentials of data-driven approaches as the comple-

ments for the physics-driven forecast models. 

FB-STEP is based on the principles of a fuzzy Bayesian net-

work (FBN ), and multifractal detrended fluctuation analysis (MF-DFA) .

The fuzzy Bayesian network helps in capturing the spatio-temporal

inter-relationships among the climatological variables and also re-

duces the epistemic uncertainty in prediction process, whereas,

the MF-DFA technique captures the natural regularities present

in climatic time series, and incorporates these during the spatio-

temporal prediction. A comparative study has been carried out

with the traditional statistical methods, vector process-based mod-

els, classical space-time models, and other non-linear approaches

to forecast climatic conditions of five major cities in India ( Kolkata,

Raipur, Lucknow, Kharagpur and Baleshwar ), using the historic data

on temperature, humidity, precipitation rate , and soil moisture . From

the predicted results, it is observed that the proposed FB-STEP out-

performs the other state-of-the-art and benchmark techniques by

producing the minimum error and least uncertainty in prediction

for each considered variable. 

4.1. Future research directions 

In future, the work can be extended to incorporate the spatio-

temporal climate change pattern ( Das & Ghosh, 2015 ) in the pro-

posed framework to improve the prediction accuracy. Incorpora-

tion of the spatial semantics ( Das & Ghosh, 2017 ) in the proposed

spatio-temporal prediction technique may also be explored. More-

over, the presently proposed FB-STEP is a generic prediction frame-

work which is applicable not only for climatological time series but

also for spatio-temporal data from diverse domains of application.

For example, let us consider the real estate price or housing price
rom the domain of finance and economy. It can be noted that

he real estate price is significantly affected by the recent selling

rices of the nearby real estates/houses, and therefore, prominently

hows spatio-temporal dependencies among such prices. The fi-

ancial time series is also proved to show multifractal character-

stics ( Thompson & Wilson, 2016 ). Therefore, the FB-STEP frame-

ork may successfully be applied for predicting such data. Sim-

larly, huge scopes also remain in exploring the FB-STEP frame-

ork to predict spatio-temporal data from other application do-

ains, including atmospheric research, hydrology, medicine, and so

n. In the subsequent part of this section, we discuss a few more

pen problems (enumerated below) for future research, which are

ainly centered around the limitations of our proposed framework

nd can be envisaged as important directions to explore in the

eneric field of spatio-temporal prediction through data-driven ap-

roaches. 

i) Extending the proposed framework with continuous BN anal-

ysis: In our research we have made an attempt to extend

discrete Bayesian analysis for the spatio-temporal relationship

learning purpose. Consequently, ample scope remains in refin-

ing the proposed prediction framework in terms of using con-

tinuous BN analysis in the module-1. This will eventually make

the prediction model more flexible for application in diverse

domains where the relevant time series are by nature contin-

uous and it often becomes difficult to acquire appropriate do-

main knowledge to decide the discretized range boundaries. 

ii) Employing hierarchical extensions of BN model: Not only the

climatic time series, but also the majority of the spatio-

temporal data often contain variability at several spatial and

temporal scales. The space-time variability is further compli-

cated due to different spatial behaviors at different time in-

stants and vice-versa. So, defining a more flexible version for
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the proposed ST prediction framework is necessary. Employ-

ing space-time dynamic hierarchical extensions of the proposed

fuzzy BN modeling may be an effective solution in this respect.

ii) Dealing with unknown structure of the causal dependency

graph: In this research, we have assumed that the network

structure (causal dependency graph) of the BN model is expert-

determined or known a-priory. The extension has been made in

terms of incorporating fuzziness and spatial information during

parameter learning and inference generation mechanism . There-

fore, huge scope remains in dealing with unknown structures of

the causal dependency graphs, by developing appropriate struc-

ture learning algorithms. 

v) Increasing scalability of the proposed framework: Since our

proposed FB-STEP framework uses multifractal analysis to cap-

ture the intrinsic regularity in the time series, it needs histori-

cal dataset over long duration in past. Prediction with time se-

ries of a very short duration may not reflect the expected per-

formance. Hence, the future scope also remains in increasing

the scalability of the proposed prediction model. 

v) Extending the proposed framework to deal with external im-

pacts: While employing the multifractal analysis, our proposed

FB-STEP framework assumes that the fluctuations within the

concerned time series are natural. It does not take into account

the external effects, like those arise due to anthropogenic ac-

tivities. Therefore, in future, the framework can be upgraded to

deal with the impacts from artificial factors as well. 

i) Developing software tool/package for FB-STEP: Huge scope also

remains in developing software tool for our proposed FB-STEP

framework and commercially deploying the same, for easy ac-

cess to wide range of users. Separate package may also be built

for FB-STEP, so that it can be integrated with existing mathe-

matical computing software, like MATLAB, R-tool etc. 

ii) Synergism between BN and deep learning architecture: Though

the BN models are intrinsically capable of reasoning under un-

certainty, these may not work efficiently when the input data

is very large and complex. On the other hand, though the

deep learning frameworks can model complex processes by

exploiting their hierarchical representation power, these are,

in general, not able to understand and model their uncer-

tainty. Hence, there remains ample scope of further enhancing

the proposed FB-STEP framework by employing Bayesian deep

learning for ST relationship modeling purpose. 

ii) Combining data-driven and physics-driven approaches for im-

proved prediction: Finally, employing only data-driven analysis

and ignoring the basic physical laws underneath a system can-

not be a complete approach to extract all the insights. Hence,

efficiently combining both the physical and the data-driven ap-

proaches, for developing theory-guided data-driven models for

climatological and other spatio-temporal prediction, can be an

interesting as well as useful research topic in future. 
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