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With the recent development of computational intelligence (CI), data-driven models have gained growing
interest to be applied in various scientific disciplines. This paper aims at proposing a hybrid Cl-based
data-driven framework as a complement for the physics-based models used in climatological prediction.
The proposed framework, called FB-STEP, is based on a combination of fuzzy Bayesian strategy and mul-
tifractal analysis technique. The focus is to address three major research challenges in multivariate clima-
tological prediction: (1) modeling complex spatio-temporal dependency among climatological variables,
(2) dealing with non-linear, chaotic dynamics in climatic time series, and (3) reducing epistemic uncer-
tainty in the data-driven prediction process. The present work not only explores Fuzzy-Bayesian model-
ing of spatio-temporal processes, but also presents an elegant approach of dealing with intrinsic chaos
in time series, through a synergism between multifractal analysis and Bayesian inference mechanism.
Similar concepts may also be successfully employed in developing expert or intelligent systems for wide
range of applications, including reservoir-water dynamics modeling, flood monitoring, traffic flow model-
ing, chemical-mechanical process monitoring, and so on. Thus, the present research work carries a signif-
icant value not merely in the field of climate research, but also in the domains of Al and machine intel-
ligence. The experimentation has been carried out to spatio-temporally extrapolate the climatic conditions
of five different locations in India, with the help of historical data on temperature, humidity, precipitation
rate, and soil moisture. A comparative study with popular linear and non-linear methods has validated the
efficacy of the proposed data-driven approach for climatological prediction.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Climatological prediction, defined as forecasting of environmen-
tal variables, like temperature, precipitation rate, wind speed, hu-
midity etc. in a given geographic location, is challenging as well as
important for adopting appropriate future mitigation and adapta-
tion measures. In general, several climate models like, Community
Atmosphere Model (CAM), Community Climate System Model (CCSM),
Hadley Centre Coupled Model (HadCM3) etc. (Kirtman et al., 2012)
are popularly used for monitoring and studying the climatologi-
cal processes. However, these global/regional climate models are
based on the physics-based approaches involving several differen-
tial equations on various physical processes, and suffer from two
major limitations: (1) the models assume that all the physical sys-
tems are well understood, which may not be true in reality; (2) the
models need to solve a number of differential equations, and thus,
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are computationally expensive (NIPCC, 2014). Therefore, in addition
to these climate models, various linear and non-linear data-driven
approaches have recently been emerged as the new paradigms,
which mainly aim to extensively analyze the historical climate data
for generating insights, and then utilize those in further studies.
The linear approaches are mostly based on the auto regressive in-
tegrated moving average (ARIMA), whereas the non-linear meth-
ods are mainly based on artificial neural network (ANN), standard
Bayesian network (BN), support vector machines (SVM) etc. com-
putational intelligence (CI) techniques.

Now, the key challenges in climatological prediction with such
data-driven approaches mainly arise due to the inherent chaotic
nature of the climate data and the complex, non-linear dynamics of
the climate system itself. Since the parameters underlying the non-
linear and deterministic climate system dynamics are sometimes
unknown, the system properties cannot be determined by proper
analysis and simulations of the associated equations (Drignei, For-
est, Nychka et al., 2008). So, given the historical data on climatic
time series, there is a need to define a mechanism for capturing
the rhythm in climate system dynamics to understand the clima-
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tological processes in a better way. Moreover, the climatological
data is a kind of spatio-temporal data, thus, unlike the classical
data, these are embedded in continuous space and show long range
spatio-temporal dependency with high autocorrelation (Faghmous &
Kumar, 2014). These dependencies can be local in nature, involving
spatial and temporal spans in a neighborhood, or there may be
long-range tele-connections and long memory time series effects. All
these dependencies in climate data cannot be effectively captured
by conventional approaches which are often used to model local
dependencies in various domains such as image, speech, video, and
signal analysis etc. Therefore, another key challenge in data-driven
climatological prediction is to define a model for studying the
complex spatio-temporal inter-relationships among different climate
variables to gain a better understanding of the climate system
behavior. Because of this strongly non-linear, highly uncertain, and
time-varying characteristics of the climate system, none of the lin-
ear data-driven methods (Box, Jenkins, & Reinsel, 2008; Chatfield,
2013; Holt, 2004; Riahy & Abedi, 2008) can be considered as a sin-
gle superior model. These traditional linear statistical approaches
are not only too simple to model complex climatological processes,
but also suffer from backward looking problem, and therefore,
often result in poor prediction performance by generating the
same value as the output for the entire predicted time series. In
order to overcome the shortcomings of linear models, a number
of non-linear data-driven prediction models, especially based on
Bayesian analysis and Artificial Neural Network or ANN, have
been proposed in recent days. Although the existing ANN-based
prediction models (Abhishek, Kumar, Ranjan, & Kumar, 2012;
Nayak, Patheja, & Waoo, 2012; Nourani, Mogaddam, & Nadiri,
2008; Venkadesh, Hoogenboom, Potter, & McClendon, 2013) are
fairly tractable and well-performing for time series prediction,
these require large training time and also are not able to directly
utilize spatial features for spatial/spatio-temporal dependency
modeling for climatological data. Moreover, the ANN models are
less explored to the uncertainty management issues and do not
have any mechanism to explicitly handle the intrinsic chaos in cli-
matological data. On the other side, though the Bayesian network
based models (Aguilera, Fernandez, Fernandez, Rumi, & Salmerén,
2011; Cofino, Cano, Sordo, & Gutierrez, 2002; Das & Ghosh, 2014a;
Madadgar & Moradkhani, 2013; Nandar, 2009) are inherently
capable of modeling uncertainty, these approaches suffer from ex-
ponential time and space requirement, and also lack natural-chaos
handling property. Similar problem is also faced in the fuzzy-
rule-based prediction system proposed by Awan and Awais (2011).
Contrarily, though the time series prediction approach proposed
by Das and Ghosh (2014b) attempts to model chaotic nature of
the data, the approach is unable to handle spatial dependencies,
and consequently, lacks spatial extrapolation capability.

The primary focus of the present paper is illustrated in
Fig. 1. The objective is to exploit the innate potential of the
computational intelligence (CI) techniques for developing an im-
proved data-driven framework which attempts to address the three
above-discussed challenges in climatological prediction, namely,
(i) epistemic uncertainty; (ii) long range spatio-temporal de-
pendency; and (iii) non-linear, chaotic nature of climate data.
In our proposed framework (termed as FB-STEP), a new fuzzy
Bayesian network based analysis mechanism has been introduced
to address the first two issues. The mechanism also helps to
reuse information, and assists in managing large dataset. Ad-
ditionally, another module, performing multifractal analysis of
the climatic time series data, has been incorporated to capture
the intrinsic regularity which handles the third issue discussed
above.

The novelty in this work lies in incorporating spatial informa-
tion in fuzzy Bayesian network, and refining the network-inferred
values of climatological variables by a data tuning process based
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Fig. 1. Conceptualization of the research problem addressed in the paper.

on multifractal analysis. The empirical study in comparison with
other data-driven methods proves the superiority of our proposed
FB-STEP in climatological prediction. Incidentally, FB-STEP is appli-
cable not only for climatological data, but also for other kinds of
spatial time series, especially those having such inherent chaotic
nature.

1.1. Problem statement and contributions

The broad objective of the present work is climatological time
series prediction which can be formally stated as follows:

e Given, the historical daily time series dataset over n climate
variables in V = {vy,v,,---,vn}, corresponding to a set of
locations Loc = {locy, locy, ---} for previous t years: {yi, y»,
.-+, ¥¢}. Also given, the spatial attribute information SA =

SAloc spke .. ,SAg’C regarding each location loceLoc. The

problem is to determine the daily climatic conditions of any lo-
cation x & (LocUZ) for future years {y,1).Y(t42). -+ }. in terms
of the state/values of the variables in V, when the spatial at-
tributes of x is observed as {SA},SA3, ---,SA}}. Here, Z is a set
of k new locations {z1,z,, ..., 2z}, such that z;¢Loc, fori=1 to
k.

The problem, as stated above, is a kind of spatio-temporal ex-
trapolation that needs to predict the future climatic condition of
not only the set of training locations but for the other locations
outside the training set as well. In this regard, the current work
proposes a multivariate, data-driven prediction framework (FB-STEP)
based on a new fuzzy Bayesian approach followed by multifractal
analysis. The proposed fuzzy Bayesian approach extends our previ-
ous work (Das & Ghosh, 2014a), by including spatial information in
the learning framework. Besides, it also overcomes the cascading
effect of prediction error in the multifractal analysis based predic-
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tion approach proposed in our earlier work (Das & Ghosh, 2014b).
Unlike the linear statistical (Box et al., 2008; Chatfield, 2013; Holt,
2004; Riahy & Abedi, 2008) and several other non-linear predic-
tion models, the FB-STEP is highly suitable for applying in com-
plex real-world scenarios. FB-STEP is generic and flexible enough
to be applied not only on the climatological data, but also on the
time series from various other domains of applications, with lit-
tle modifications in its data pre-processing step. Further, in con-
trast to the existing Bayesian models (Aguilera et al., 2011; Das
& Ghosh, 2014a; Madadgar & Moradkhani, 2014; Nandar, 2009),
the proposed FB-STEP is able to capture and utilize the natu-
ral regularities within time series data, and thereby, provides no-
tably better performance with low uncertainty in complex time se-
ries prediction. Moreover, since the ANN-based prediction models,
proposed by Abhishek et al. (2012), Venkadesh et al. (2013) and
Nayak et al. (2012), etc., neither have special treatment for the
spatial features nor have the capability to handle intrinsic chaos
in data, our proposed FB-STEP outperforms these models from
both the perspectives of accuracy and uncertainty in prediction. Un-
like the state-of-the-art space-time prediction model HBAR (Sahu
& Bakar, 2012), FB-STEP also does not require special software
for its exact implementation and realization purpose. Eventually,
FB-STEP may become a more economical solution for real-world
issues, such as prediction of weather condition using data col-
lected from distributed weather-stations/sensor-network, assess-
ment and monitoring of flood through prediction of water dynam-
ics in natural reservoirs, and so on. The present work has been
evaluated with respect to prediction of daily climatic conditions
of five different locations in India during 2015-2016. The train-
ing has been performed with the historical datasets (Microsoft-
Research, 2015) of temperature, precipitation rate, humidity, and soil
moisture, corresponding to three locations (three cities in India),
namely Kolkata (22.58°N, 88.36°E), Raipur (21.25°N, 81.63°E), and
Lucknow (26.85°N, 80.91°E); whereas the prediction has been made
for two more locations, namely Baleshwar (21.49°N, 86.93°E) and
Kharagpur (22.33°N, 87.24°E), as well. The accuracy of the predic-
tion demonstrates the efficacy of the proposed approach.

Thus, the major contributions in this work can be summarized
as follows:

1. Proposing FB-STEP, a data-driven framework for multivariate
prediction of climatological time series over space as well as
time;

2. Introducing fuzziness in predictive analysis to reduce the epis-
temic uncertainty in prediction process;

3. Incorporating spatial information during temporal analysis with
fuzzy Bayesian network, to model the spatio-temporal interrela-
tionships among climate variables;

4. Modeling intrinsic regularities within climatic time series, with
the incorporated mechanism based on multifractal analysis;

5. Verifying the effectiveness of the proposed framework using an
empirical study on spatio-temporal prediction of temperature,
humidity, precipitation rate, and soil moisture, for five different
locations (Kolkata, Raipur, Lucknow, Baleshwar, and Kharagpur) in
India.

The remainder of the paper is organized as follows: The pro-
posed spatio-temporal prediction framework (FB-STEP) has been
thoroughly discussed in Section 2. A detailed description of the
experimentation with climatological data has been provided in
Section 3. The section starts with the details of used datasets and
study area, followed by an exhaustive analysis of the experimen-
tal results. Finally, the concluding remarks have been presented in
Section 4.

2. FB-STEP: a fuzzy Bayesian network driven framework for
spatio-temporal prediction

The overall framework for the proposed prediction approach
along with the flow of entire process is shown in Fig. 2. As shown
in the figure, the proposed prediction framework (FB-STEP) con-
sists of three key modules corresponding to: (1) Capturing spatio-
temporal inter-relationships among climate variables, (2) Measur-
ing intrinsic regularities in each considered climatic time series,
and (3) Incorporating the natural regularities in multivariate pre-
diction. The details of each module are discussed in the following
part of this section. The meanings of the various notations used
throughout the paper are summarized in Table 1.

2.1. Module-1: capturing spatio-temporal inter-relationships

Be it observed or model-simulated, the climatological data has
complex dependencies across space as well as time. One way to
model these relationships/dependencies is to capture various fea-
tures of these dependencies through statistical modeling, estima-
tion, testing, and inference. In this respect, we have utilized prob-
abilistic analysis with fuzzy Bayesian network. The fuzziness incor-
porated in the Bayesian network model also helps in reducing the
epistemic uncertainty arising due to lack of knowledge over the
typical properties of the data. The process of capturing spatio-
temporal relationship consists of two major steps: (a) Data prepro-
cessing, and (b) Relationship learning. It takes as input the histori-
cal data of past years, and a causal dependency graph of Bayesian
network over considered variables. The output of this module is
a trained Bayesian network along with the incorporated spatio-
temporal relationships for the prediction year.

2.1.1. Data preprocessing

The historical data is processed to determine the interval size
for different climatological variables for discretization purpose. The
interval size is determined based on the maximum and minimum
value observed in the training data of the variable. If, for any vari-
able v;, the maximum observed value is max(v;) and the minimum
observed value is min(v;), then the size of the interval becomes:
() = [max(v;) — 1Imn(v,-) +1] (1)
where, I is the total number of discretized range value of v;. The
value of I may be predefined intuitively, or can be determined em-
pirically so that it leads to optimum result with respect to pre-
diction accuracy as well as execution time. In order to empirically
determine the optimal number of discretized ranges for a particu-
lar variable, first, a threshold value of execution time is assumed.
Then, the prediction accuracy (say in terms of root mean square
error or RMSE) is studied with the increasing value of range count
(I). The value of I, for which the error becomes minimum (and the
execution time remains within the threshold), is considered to be
the optimal range count.

The discretized ranges of values are then fuzzified to aid in ac-
curate prediction and uncertainty management issue. In our pro-
posed approach, the fuzzification has been done by assigning the
membership values in intuitive manner. The procedure is depen-
dent on the historical data and the respective domain knowledge
from the experts. The step of fuzzification, used in our proposed
methodology, deals with the uncertainty introduced through dis-
cretization of the climatological time series data. Whenever a time
series data is discretized, problem arises with the crisp boundary
values (Jun, Chung, Kim, & Kim, 2013) leading to introduction of
some added impreciseness or uncertainty in the model. Following
is an example, illustrating the same.

Suppose the variable temperature (T) in a particular region can
take values between 15 °C and 40 °C. So, one may discretize the
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Fig. 2. Process flow of the proposed spatio-temporal prediction framework (FB-STEP).

values, say in five ranges, like that shown in Table 2. Once dis-
cretized, the problem may arise when we want to use these ranges
to qualify the data. For example, say T; is low temperature, T,
is moderately low temperature, and T3 is average temperature.
Then, this means that 24.999 °C temperature is moderately low but
25.001 °C is average temperature. That is, the boundary tempera-
tures are treated strictly within one sub-range and not in others. In
order to overcome this problem, each range is fuzzified in intuitive
manner, based on the knowledge from the domain experts. The
idea is to represent each discretized sub-range in terms of a trape-
zoidal fuzzy number. The mid-value of the sub-range is assigned
a membership value of 1 and the other values (may be outside
the range as well) are assigned suitable memberships ( € [0, 1]) de-
pending on the characteristics of the associated variable, which can
efficiently be suggested by the domain experts. Fig. 3 shows exam-
ple membership functions for the variable “temperature”. In the
similar fashion, all the other variables are fuzzified.

Now, the prediction for a single day may not always require the
dataset of whole year for training purpose, since the concerned
variables may show short term (weekly, monthly, seasonal etc.)
variation, for which the data of corresponding time duration is
more suitable than the whole data to train with. Again, a train-
ing with previous year’s data of only that particular day may not

always be sufficient. Hence, there always remains a need of hav-
ing an optimal training dataset. In order to achieve the same, this
step utilizes the short term climatic variations within the histori-
cal time series data, and eventually helps in handling large training
dataset through information reuse process.

Given a variable veV and a training year y;, in order to deter-
mine the short term variation within a period of d days, the cor-
responding daily time series (seriesy) is first divided into L; num-
ber of segments, each of size d, such that L; = ||series,|/d]. Here
|seriesy| denotes the series length. Then, for each segment s, the
series variance is measured as follows:

d
var(s,d) = % Z {seriesy[(s — 1) = d + j] — mean(s, d)}2 (2)
j=1

where, mean(s,d) = % Z‘}’ﬂ seriesy[(s — 1) xd + j] is the series
mean for the segment s. Therefore, for the entire series (seriesy),
the overall short-term variance within d days becomes:
1
shortVar(d) = L > wvar(s, d) (3)
s=1
If, for d = 365 the shortVar(d) has the minimum value and also
tends to 0, then the series is said to have yearly variation. Similarly,
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Table 1
Symbols and notations used in the present paper.
Notation Meaning
i (x) Fuzzy membership of the value x in the fuzzy set A
A Fuzzy set corresponding to an event A
CA Set of observed climate variables
D(q) g-order generalized multifractal dimension
d; Temporal distance of year y; from the prediction year
Fluct(I) g-order fluctuation over series segment of length |
h(q) g-order generalized Hurst exponents
I Total number of interval or discretized range value
Is(v;) Size of interval (discretized range) for a variable v;
[, u] jth range/discretized value (lower limit: [; and upper limit: u;)
L Total count of series segments each having length [
Loc Set of spatial locations with known historical data
max(v;) Maximum observed value for the variable v;eV
mean(s, )  Mean or average value of a series segment s of length [
min(v;) Minimum observed value for the variable v; e V
n Total number of climatological variables considered
P(A) Marginal probability of occurrence of the event A
P(A|B) Conditional probability of occurrence of the event A, given evidence B
Pr Probability estimate corresponding to the final year
Polyi! mth order fitting polynomial over series segment s
P, Probability estimate corresponding to the year y;
R?" jth fuzzified range corresponding to the variable v;
SA Set of spatial attributes (e.g. latitude, elevation etc.)
SAY ith spatial attribute, associated with location x, which belong to SA
seriesy Time series corresponding to a variable xe V
|seriesy| Length of time series corresponding to variable xe V
seriesy Mean of the time series corresponding to variable x e V
s_profile Profile of the series
Vv Set of climatological variables or the representative nodes
var(s, 1) Variance within a series segment s of length |
v; ith variable eV
Vi ith training year
V4 Set of new spatial locations with unknown data in the historical years
Table 2
Discretized range of temperature (7).
Ranges T; T, T3 Ty Ts
Temperature 15<T<20 20<T<25 25<T<30 30<T<35 35<T<40
Q)
Ti T2 T3 T4 T5
1 0, x <19
3 x—19
= 08 5 19<x <21
= E
= uip(x) =41, 21 <x < 24
a, 26 —x
- sk / X X X x \ —— 24<x <26
w
® Lo x> 26
Y 0.4 !
) 0.2 x—24
0 T T 1 T T T 1 1 y??(x)=<;i 2651(29
—X
12 15 18 21 24 27 30 33 36 39 42 . 29<x <31
—’ 17y ©
Temperaturein°C 0, s

Fig. 3. Example for fuzzification of discretized ranges of temperature variable (T).

if, for d = 30 the shortVar(d) is the minimum and tends to 0, then
the series is said to have monthly variation. If, for d = 7 the short-
Var(d) is the minimum and tends to O, then the series is said to
have weekly variation. Else, the series is considered to have daily
variation. Based on detected variation, new datasets correspond-
ing to each training year are prepared in a manner as described in
Algorithm 1.

These newly prepared datasets are used in the next step to
train the fuzzy Bayesian network for capturing and modeling inter-
variable spatio-temporal relationships for the corresponding train-
ing years.

2.1.2. Learning spatio-temporal relationship
In order to learn the spatio-temporal inter-relationships among
climate variables, an extension of new fuzzy Bayesian net-
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Algorithm 1: Dataset preparation.

[* This algorithm prepares new datasets for each training year based
on short-term climatic variations of the variables. */
Input : Historical dataset H = {Hﬁ Hy,. oo ,Hy[} of past t years,

Directed Acyclic Graph G of the Bayesian network, Set of
climate variables of interest V, and Prediction day d
Output: New dataset TDy, corresponding to each training year

yil<i<t)
1 TDyi ¢
2 for each variable v eV do
3 Chy, = Set of child climate variables of v in G

4 if v shows daily variation, or there exists ¢ € Ch, such that ¢ shows
daily variation then

5 for each training year y;(1 <i <t) do

6 | TDy, < TDy,U (whole-year data from H,, for variable v)

7 end

8 end

9 else if v shows monthly variation, or there exists c € Ch, such that c
shows monthly variation then

10 for each training year y;(1 <i <t) do

1 ‘ TDy, < TDy,U (data from Hy, corresponding to the month

of d for variable v)

12 end

13 end

14 else if v shows weekly variation, or there exists ¢ € Ch, such that ¢

shows weekly variation then
15 for each training year y;(1 <i <t) do
TDy, < TDy,U (data from Hy, corresponding to the week of

d for variable v)

17 end

18 end

19 else if v shows yearly variation then

20 for each training year y;(1 <i<t) do

21 ‘ TDy, < TDy,U (data from Hy, corresponding to the day d
for variable v)

22 end

23 end

24 end

work (NFBN) learning, as proposed in our earlier work (Das &
Ghosh, 2014a), has been utilized here. NFBN (Das & Ghosh, 2014a)
is a variant of FBN (Tang & Liu, 2007). However, it is more precise
and computationally more efficient than FBN (Tang & Liu, 2007).

New Fuzzy Bayesian Network (NFBN)

The working principle of NFBN (Das & Ghosh, 2014a) is as
follows:

Let A= {A1,Ay,--- ,An} and B = {By,B,,---, By} be two sets of
events corresponding to the variables x and y respectively —where,
Aq, +++, Am and By, ---, By are in the form of range of values
achieved by x and y. Also let A and B be two corresponding fuzzy
events.

Then according to NFBN,

H{miligym) > 0, p13(Xm,) > 0}

P(A) ’
where, m; e {my, my, ---, my}, a set of all the observations for the
variable x and y; M is the total number of such observations; xp,,=
Value of the variable x in the ith observation (m;); ym,= Value of
the variable y in the ith observation (m;); uz(Xm;) = Membership
of the value xp,, in the fuzzy set A; and ug(¥Ym;) = Membership of
the value yy, in the fuzzy set B.

Here, in NFBN, the fuzzy marginal probability P(A) is defined
as:

P(B/A) = (4)

P(A): |{”i|/¢¢,§(xn,-)>07”il\}€ {”1,n2,~-',”N}}| 5)

where, {nq, ---, ny} is a set of all observations for the variable x; N
is the total number of observations for x; and t5(xn,) = Member-
ship of the value xp, in the fuzzy set A.

The present work proposes an extension of spatio-temporal
inter-relationship learning which is based on the principle of NFBN
with explicitly incorporated spatial information. As shown in Fig. 4,
the network (also called causal dependency graph) in the proposed
learning framework not only consists of the climatological vari-
ables, but also explicitly includes the spatial attributes (SAs) for
incorporating spatial information, like land elevation, latitude, land-
cover category etc. depending on which the climatological variables
show variant behavior. The incorporation of these spatial infor-
mation in the network helps in modeling the spatio-temporal de-
pendency among the climatological variables in a more exhaustive
manner rather than considering their implicit influence as used by
Das and Ghosh (2014a). Therefore, given the spatial attributes, like
latitude, land elevation, land use land cover (LULC) type etc., the
proposed framework is capable of forecasting climatological time
series for any location outside the study/training region as well.
However, better accuracy can be achieved by training the model
with the historical time series data of a large set of locations with
varying spatial attribute combinations.

Utilizing the Egs. (4) and (5), the network is trained with the
given data for each training year (yq, y2, ---, Y& t= total num-
ber of available training years) separately, to learn the correspond-
ing spatio-temporal relationships among the variables, in terms of
probability estimates. In the Fig. 4, the network, separately trained
for each training year, has been denoted by BNy, BNy,,---, BNy,
respectively. At the end of training for each year, the fuzzy prob-
abilities obtained for each considered variable are averaged to get
the corresponding fuzzy probabilities for the prediction year. The
averaging is performed in an weighted manner, with consideration
to temporal auto-correlation among the historical years (Das et al.,
2017). Temporal autocorrelation occurs when the course of a time
series is influenced by its recent past. For example, the weather
condition of a day in one year is more similar to that in its previ-
ous year than that in longer past. Therefore, based on this concept,
the weighted average of the estimated probability values has been
performed by assigning higher weights to the captured probabili-
ties corresponding to a year which is nearer to the prediction year.
For any training year y;, if d; is its temporal distance from the pre-
diction year, then the final probability Py is estimated as follows:

i 1/d;
Pr=> "R x = 6
’ (”Xz;ﬂm) ©

i=1

where, t is the total number of years considered for training; and
Py, is the estimated marginal/ conditional probability of any vari-
able, for the year y;.

2.2. Module-2: measuring intrinsic regularity

The objective of the second module (refer Module-2 in Fig. 2)
is to model the intrinsic chaos, or in other sense, the intrinsic reg-
ularity in each of the considered climatic time series. The climate
system is governed by a variety of physical processes and exhibits
a great deal of fluctuations especially at various temporal scales.
It has been observed by research communities that these fluctua-
tions or changes in climate system show fractal phenomenon hav-
ing asymptotic power-law scaling for several long records (Lin &
Fu, 2008). Moreover, the recent researches indicate that only a
single scaling exponent is not sufficient to fully characterize the
complex dynamics of any climatological time series. Therefore, the
multifractal analysis, which can identify and quantify the multiple
scaling exponents in the data, is more appropriate in this regard.



M. Das, S.K. Ghosh/Expert Systems With Applications 117 (2019) 211-227 217

Spatial information Spatial information

Spatial information

Spatial information

S

Iy

SAZ "

g
Vi
""\‘ s 1Al iy
@3@

N
5 {l
i

} i“i’i o ‘9
OWINO
G g+

, ls:@;rgza
DWIND
oM

Final trained

Spatio-temporal

network dependency for

e 2
r
ey

| v1, v2,v3,v4, v5 and v6 are the climatevariables of interest. SA; = Spatial Attributes

A 4 prediction year
verage of

probabilities

Fig. 4. Proposed spatio-temporal relationship learning framework based on new fuzzy Bayesian network (NFBN) with incorporated spatial information.

In our proposed framework, the Module-2, introduced for cap-
turing intrinsic regularity in climatic time series, is based on
the multifractal detrended fluctuation analysis (MF-DFA) technique
(Kantelhardt et al., 2002). As shown in Fig. 2, the module takes
the data series of past years as input, and finally captures the reg-
ularity information in the form of multifractal dimensions of each
series, which are then fed to the next module for final prediction.
The whole module is comprised of two major steps: (a) Capturing
data trend, and (b) Measuring intrinsic regularity.

2.2.1. Capturing data trend

In this step we apply MF-DFA technique to analyze the loga-
rithmic plots of series fluctuations versus different lengths of time
scale (refer Fig. 5(a)). The characteristics of these plots help in de-
termining the actual trend in the data. The overall procedure is
described below.

Let, the time series data be associated with a variable veV.
So, as per the principles of MF-DFA, for each particular length
of time scale (I), the profile of the series, is first divided into
L; = ||seriesy|/l] number of segments (s) starting from each end
separately. Then, the gth order fluctuation in series, is estimated
as follows:

; 21 1/q
-] __ 2 q/2
Flucty(l) = {2L, ;j[F (1,9)] } (7)
where, ¢#£0, se1, 2, 3, ---, 2L;, and F%(l, s) is the local variance at

the segment s. In case g = 0, the gth order fluctuation in series,, for
a particular length of time scale (I) is measured using logarithmic
averaging procedure in following manner:

2L
Flucty () = exp {41L > In[F2(, 5)]} (8)
! s=1

Now, if Poly! is the mth order fitting polynomial for a segment s,
and s_profile is the series profile, obtained by performing cumula-
tive sum of series deviation from the series mean, then the value
of F2(l, s) is calculated as follows:

1
F2(l,s) = % > {s_profile[(s — 1) x I +i] — Poly™ (i) }* (9)
i=1
whens=1,2,...,L; and
1
F2(l,s) = % 3" {s_profile[L — (s — L;) x [ +i] — Poly™ (i)}~ (10)
i=1

whens=L;+1,L;+2,---,2L,.

If the considered m is too small, then in the log — log plot of
Fluctg(l) vs | the Fluct,(I) shows a prominent crossover to a regime
with larger slope for large scales | which disappears gradually with
the increasing value of m, as shown in Fig. 5(a). Once the properly
fitting polynomial degree m is finalized, the trend in original data
series is estimated as (m —1).

2.2.2. Measuring intrinsic regularity

In this step, we measure the intrinsic regularity in each cli-
matic time series by estimating its generalized multifractal dimen-
sions using MF-DFA technique. As mentioned earlier, MF-DFA tech-
nique primarily analyzes the log-log plots of series fluctuations ver-
sus different lengths of time scale. The plots show different slopes
for different orders of fluctuation in case the series is multifractal.
All these slopes collectively provide the generalized Hurst exponents
(refer Fig. 5(b)), which are further utilized to determine the multi-
fractal dimensions of the series.

Once the actual data trend m is captured for a particular series,
the corresponding generalized Hurst exponents i.e. h(q)-values are
estimated by solving the power law equation as follows:

Flucty(l) o ["@ (11)

log Flucty(l) = h(q) log! + logC (12)
_logFlucty(I) logC

h(g) = logl ~ Tlogl (13)

log Fluctq (1)
h(g) = —=——=+C 14
@="10gr * (14)
where, C’ is a constant.
The h(q) is now used to calculate the generalized multifractal di-
mensions, denoted by D(q) (refer Fig. 5(c)), in following manner:

D(q) = (gh(q) -1)/(q—-1) (15)

The D(q) values basically represent the chaotic nature of the
concerned series in the form of a set of non-integer dimensions,
and are fed along with the estimated data trend information (m)
to the next module to aid in final prediction.

2.3. Module-3: Incorporating natural regularities in multivariate
prediction

The objective of the third module (Module-3, refer Fig. 2) in
our proposed framework is to incorporate the natural regularities
in multivariate prediction. The module basically tunes the inferred
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value of prediction variable, as obtained using probability distri-
butions from the first module, into some value which keeps the
intrinsic regularity within the respective time series almost unal-
tered.

The proposed data tuning process is an upgraded version of the
earlier work of Das and Ghosh (2014b). For each prediction day,
the data tuning process in our earlier work starts by considering
the predicted value of the previous day as seed value. As a result,
the error of prediction, encountered in the previous day, cumu-
latively increases with the prediction for the next days, and this
event restricts the approach (Das & Ghosh, 2014b) applicable for a
short-term prediction only. In contrast, the present approach first
infers the value of the concerned variable by utilizing the spatio-
temporal inter-relationships as learnt in first module. Then this in-
ferred value is treated as the seed value and is tuned further to get
the final value of prediction, which conforms to the intrinsic regu-
larity within the observed series. Therefore, our present data tun-
ing process becomes independent of the prediction value of pre-
vious day and thereby overcomes the cumulative effect of predic-
tion error, leading to efficient performance in long-term prediction
as well. The process is accomplished by the Module-3, illustrated
below.

As shown in Fig. 2, the Module-3 takes as input the probabilis-
tic information of the spatio-temporal dependency among the con-

cerned variables and the captured regularity present in each of the
climatic data series, as generated by the Module-1 and Module-2,
respectively. Finally, the module generates the forecast result in
terms of the future states/values of the considered climatological
variables. The forecasting is performed based on following two as-
sumptions:

e The higher the inferred fuzzy probability of a particular
state/value of a variable, the more the tendency of occurrence
of that state/value for it.

o The future series corresponding to each climatic variable must
be consistent with the regularity in the past series, expressed
through generalized multifractal dimensions.

During the multivariate prediction in Module-3 (refer Fig. 2),
each climatic variable v; is inferred from the given spatial in-
formation, by using the fuzzy Bayesian inference technique. The
range/discretized values corresponding to the first and second
highest fuzzy probabilities, say pry: [y, uy] and pry: [, uy] respec-
tively, are considered to finalize the inferred range ([l uy]) of v; in
a manner as described below:

Let, R;f" be the jth fuzzified range value corresponding to the
variable v;. SAq,...,SAp are the observed spatial attributes corre-
sponding to the prediction location, and CA is the set of observed
climate variables, i.e. CACV (as per the problem definition). Then,
the first and second highest fuzzy probabilities i.e. pr; and pr, are
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estimated as follows:

pr1 = P([l1, u1]/CA, SAy, ..., SAp) (16)

= max {P(R] /CA, SAy,....SAp)} (17)
vj

and

pry = P([L, uy]/CA, SAy, ..., SAp) (18)

— second_max {P(R'Jf"/CA,SAL ....SAp)} (19)

Vi

By utilizing these fuzzy probabilities (i.e. pr; and pry), we cal-
culate the final inferred range as follows:

[lf, uf] - [Bva’ _ (IS(U')*prl)Bm’ + (IS(Ul)*prz>i| (20)
pri + pra pr1 + pr2

where, B,, is the boundary value between [l;, u{] and [b, uy],

Iy <l. ie. Byy =u; =1, (as the discretized intervals are non-

overlapping), and Is(v;)= size (or length) of interval/range for v;.

If I > I, then the final value of inferred range can be obtained by

exchanging pry; and pry in Eq. (20).

Now, to incorporate the natural regularity as captured for each
prediction variable, the central value of the inferred range is taken
as the seed value, and various amounts of fluctuation is added to
this seed value to generate a set of candidate prediction values.
Then, each of these candidate values is separately appended at the
end of the already obtained series and the newly formed series is
checked for conformity with the original series, in terms of devia-
tion from multifractal dimensions, using Eq. (21).

deviation =

1 a» )
mglm(‘ﬂ — Drew(q)] (21)

where, Dpew(q) are the multifractal dimensions for the new series
including the candidate value of prediction; D(q) are the multifrac-
tal dimensions for the original series; [qq, ] is the sub-range of
considered g-values (refer to the step of Data trend capture).

Now, the fluctuation amount fluctnpegngex, for which the ad-
justed forecast-value gives the least deviation from the original
multifractal dimensions, is considered finally, and the final pre-
dicted value of v; becomes:

(I +uy)
% + fIUCtnbestlndex} (22)

best_candidate_val = {
The various steps of incorporating the natural regularity in pre-
diction process have been presented through Algorithm 2 .

3. Experimentation

This section describes the dataset, experimental set up, and the
various outcomes of our experimentation. The overall results are
found to be encouraging.

3.1. Data

The experimentation has been carried out with a collection
of sixteen-year (2001-2016) data, corresponding to three different
training locations in India, namely Kolkata [22.58°N, 88.36°E], Luc-
know [26.85°N, 80.91°E], and Raipur [21.25°N, 81.63°E] (refer Fig. 6).
The location Kolkata is in eastern India and belongs to tropical cli-
mate zone, whereas the locations Raipur, and Lucknow belong to

Algorithm 2: Incorporating natural regularity.

[* The algorithm incorporates natural regularity in prediction of a
climatic variable X for future k days. The series corresponding to X is
denoted by x(t), and the corresponding predicted series has been
denoted by ps(t)*/

Input : Central values of the inferred range vﬁm.d (1 <i<k), Degree of

overall data trend (m — 1), and the generalized multifractal
dimensions D(q) for the original historical data series

x(6) = {x1,%2, -+ . Xq}.
Output: Predicted series ps(t) = {psi, ps2,--- , pSx}, for the next k
days.

-

k=Number of prediction days.

d=Total number of observations in input series x(t).

fluctn=Set of g number of fluctuation values considered for
adjustment purpose.

add (S, val)=A function that add/ include an observation val at the end
of series S.

del_first(S)=A function that delete the first observation from the
beginning of series S.

del_last (S)=A function that delete the last observation from the end of
series S.

TS < { last (d — 1) entries from x(t)} = {X3,X3,---,X4};

w N

N

w

@

N

8 for each prediction day i(1 <i < k) do
9 for each considered fluctuation amount fluctn;(1 < j < g) do

10 candidate_val < (V! ., + fluctnj);/* candidate_val is a
candidate prediction value. */

1 TS <« add(TS, candidate_val);

12 Apply MF-DFA,, to calculate the generalized Hurst exponents
hnew(q) for the new series TS;

13 Calculate the multifractal dimensions
Drew(q) < (qhnew(q) —1)/(q — 1) for TS;

14 deviation; « \/7(%7;[1“) 08 0 [D(@) = Drew (@12 i/*1da. g5 ] i
the range of considered g-values for which « has a
corresponding positive f(o) in the multifractal singularity
spectrum f(a) vs. o.”/

15 TS <« del_last(TS);

16 end

17 minDeviation < minimum(deviationy, - - - , deviationg);

18 bestIndex < value of j (1 < j < g) for which deviation; is equal to

minDeviation; )

19 best_candidate_val < (v}, + fluctNpegingex )

20 ps; < best_candidate_val;

21 TS <« add(TS, best_candidate_val);

22 TS <« del_first(TS);

23 end

4 Print ps;(1 <i < k) as the predicted values of the prediction variable X
for ith prediction day.

N

the temperate climate zone in central India and north India re-
spectively. The experimental data are over four major climatolog-
ical variables, namely, Temperature, Relative humidity, Precipitation
rate, and Soil moisture, which have been collected from the Fetch-
Climate Explorer (Microsoft-Research, 2015). Once the proposed
model is trained, the testing on spatio-temporal extrapolation has
been made for all the locations in the training set (Kolkata, Raipur,
and Lucknow), and two more locations outside the set, namely,
Baleshwar, India (21.49°N, 86.93°E), and Kharagpur, India (22.33°N,
87.24°E) as well.

3.2. Experimental results

The performance of prediction using FB-STEP has been ex-
pressed in terms of prediction error (RMSE: Root Mean Square
Error and MAE: Mean Absolute Error Wang, Xu, Tang, Yuan, &
Wang, 2017) for two test years: 2015 and 2016, along with com-
parison to other existing methods, including exponential smooth-
ing with Holt-Winters Approach (Holt, 2004), Automated ARIMA
(R-Tool 3.1.1), Vector Auto-Regressive Moving Average or VARMA
(De Gooijer & Hyndman, 2006; Tsay, 2013), Neural Network
(NNTool, MATLAB R2011a), Hierarchical Bayesian Auto-Regressive
model or HBAR (Sahu & Bakar, 2012), standard BN, and FBN



220 M. Das, S.K. Ghosh/Expert Systems With Applications 117 (2019) 211-227

[ ] Tropical Climate
[ Temperate Climate

Fig. 6. Study area containing three training locations: Kolkata, Raipur, and Lucknow.

(Mrad, Delcroix, Maalej, Piechowiak, & Abid, 2012; Ryhajlo,
Sturlaugson, & Sheppard, 2013; Tang & Liu, 2007). In order to make
prediction for the year 2015, the datasets of 2001-2014 have been
used as training dataset, whereas, the prediction for 2016 has been
made based on the training datasets of 2001-2015.

Fig. 7(a)-(d) present the comparative results of predicting
climatic condition in Kolkata, Lucknow, Raipur, Baleshwar, and
Kharagpur, for the target year 2015, in terms of Temperature, Rel-
ative humidity, Precipitation rate and Soil moisture respectively. Sim-
ilarly, Fig. 8(a)-(d) present the same for the prediction year 2016.
The results of prediction for Baleshwar and Kharagpur, as depicted
in Figs. 7 and 8, have been compared only with HBAR, BN and
FBN. It is because the other models for comparison do not explic-
itly considers the spatial properties of test locations, and therefore
are not fit for spatio-temporal extrapolation for any location out-
side the training set. Both for BN and FBN, the same causal depen-
dency graph, as used in our approach, has been used for incorpo-
rating spatial information.

Moreover, in order to provide the quantification for uncertainty
in prediction for each variable, we have determined the Dawid-
Sebastiani score (Gneiting & Katzfuss, 2014) corresponding to our
proposed FB-STEP approach and that for the other forecasting tech-
niques as well. The score (DSS) is measured as follows:

DSS(F. y) = (3’%:“)2 +2 log o (23)

where, y is the observed value, F is the forecast time series, ur
is the mean forecast value, and UF2 is the variance of the forecast
time series.

The DSS for prediction of Temperature, Humidity, Precipitation
and Soil moisture have been tabulated in Table 3 to Table 6 respec-
tively. Since the Holt-Winters Approach, ARIMA, VARMA, and the
considered Neural Network model cannot extrapolate the time se-
ries for the location Kharagpur and Baleshwar, the tables shows the
DSS values for three locations (Kolkata, Raipur, and Lucknow) only.

3.2.1. Discussion
From the experimental results (refer Figs. 7 and 8, and
Tables 3-6) the following inferences can be drawn:

e As depicted in Figs. 7(a)-(d) and 8(a)-(d), the result of pre-
diction using the proposed FB-STEP is far better than that of
the other approaches with respect to both RMSE and MAE. It
not only proves the worth of considering natural regularity (ob-
tained using multifractal analysis) during prediction, but also es-
tablishes the effectiveness of our extended NFBN-based learning
that considers the spatial information in an explicit manner.

It is also evident from the Figs. 7 and 8 that with the increase

in training data, the prediction error decreases, i.e. the predic-

tion accuracy improves. This ensures the consistency of FB-STEP
in multivariate prediction.

Moreover, the proposed approach also shows the best perfor-

mance in accomplishing spatio-temporal extrapolation, as de-

picted in the Figs. 7(a)-(d) and 8(a)-(d), corresponding to the
two new locations, i.e. Baleshwar and Kharagpur respectively.

e It is evident from the Table 3-6 that the Dawid-Sebastiani
scores for the proposed FB-STEP-based predictions are signifi-
cantly less in most of the cases of prediction. The scores for
FB-STEP are also very close to the ideal scenario, in which the
predicted time series is same as that of the observed time se-
ries. This ensures that the prediction uncertainty in case of FB-
STEP is also lesser than that of the other forecasting models,
used in the comparative study.

Additionally, in the Figs. 9 and 10, we have plotted the pre-
dicted values of the considered climatological variables over two
sample locations, namely Raipur and Baleshwar, for nine randomly
selected days in the year 2015 and 2016 respectively. Raipur has
been chosen as a representative of our training locations and
Baleshwar has been chosen as a representative of the locations out-
side the training set. For each representative location, the predic-
tion days have been randomly selected from three major observ-
able seasons in the associated region: pre-monsoon, monsoon, and
post-monsoon. It is apparent from the figures that the predictions
made by proposed FB-STEP are more towards the actual ones, com-
pared to the others.

Overall, the proposed FB-STEP produces least prediction er-
ror in most of the cases and delivers superior prediction perfor-
mance. Since our proposed approach pre-processes the training
data to capture the short-term climatic variation as described in
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Fig. 7. Comparative study of proposed approach (FB-STEP) with existing prediction techniques considering various climatic variables for the prediction year 2015: (a) Tem-

perature, (b) Humidity, (c) Precipitation rate (d) Soil Moisture.

Section 2.1.1(refer Algorithm 1), the fuzzy Bayesian network based
training in case of the proposed approach becomes more effec-
tive than that in case of the other benchmark and state-of-the-
art forecasting techniques considered. The fuzzification of the dis-
cretized data also helps to reduce the uncertainty in prediction.
The other reason behind superior performance of FB-STEP is the
refinement of the inferred value of the prediction variable by us-
ing the multifractal analysis. The multifractal analysis, as described

in the Section 2.2, measures the intrinsic regularity in each of the
time series under consideration and finally utilizes this inherent
property to tune the value inferred by the trained fuzzy Bayesian
network.

The Fig. 11 shows the maximum percentage improvement in pre-
diction with incorporated regularity information. The improvement
has been averaged over all the prediction locations.
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Fig. 8. Comparative study of proposed approach (FB-STEP) with existing prediction techniques considering various climatic variables for the prediction year 2016: (a) Tem-

perature, (b) Humidity, (c) Precipitation rate (d) Soil Moisture.

The gain of this extra step of capturing and incorporating in-
trinsic regularity has also been quantified in terms of 99% confi-
dence intervals of absolute prediction error, as shown in Table 7. The
upper and lower bounds of confidence intervals have been deter-
mined considering all the prediction locations used in the exper-
imentation. It is evident from the tabulated values that the ex-
tra step of capturing and incorporating intrinsic regularity leads to
improved performance with reduced prediction error. Considering

training set and prediction locations from the same climate zone
may yield even better performance.

3.2.1.1. Major implications. The overall experimental study clearly
shows the utility of incorporating spatial information in climato-
logical time series prediction. The study reveals that the climatic
information from the neighboring locations with similar spatial
properties can effectively help to determine the climatic condition
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Table 3

223

Dawid-Sebastiani score (DSS) in prediction of temperature.

Forecasting techniques  Prediction year

2015 2016
Kolkata Raipur Lucknow Kolkata Raipur Lucknow
Holt-Winters method 4.268 5.575 7.216 4.268 5.575 7.215
Automated ARIMA 5.130 4.402 4.715 3.863 4423 4.752
VARMA 4.502 6.890 8.325 3.923 7.294 7.207
ANN 4301 3.716 3.311 4.975 5129 3.290
HBAR 4,037 3.751 4323 3.998 3.490 4.345
Standard BN 3.372 3.351 3.346 3.372 3.351 3.346
FBN 3.372 3.353 3.336 3.355 3.350 3.332
Proposed FB-STEP 3.347 3.348 3.342 3.346 3.349 3.331
Ideal scenario 3.308 3.307 3.269 3.308 3.307 3.269
Table 4
Dawid-Sebastiani score (DSS) in prediction of humidity.
Forecasting techniques  Prediction year
2015 2016
Kolkata  Raipur  Lucknow  Kolkata  Raipur  Lucknow
Holt-Winters method 5.409 10.231 8.348 5.409 10.231 8.348
Automated ARIMA 5.188 6.851 8.111 5.188 10323  8.110
VARMA 7.704 17.988 14.256 5.754 18.856  13.118
ANN 4.623 7.205 6.008 4.624 7.211 6.837
HBAR 5.043 21.824 6.184 5113 19.541 6.170
Standard BN 5.800 7103 5.763 5.800 7103 5.763
FBN 4.521 7.103 5.763 5.800 7.103 5.763
Proposed FB-STEP 4.521 4.162 4.521 4.521 4.161 4.520
Ideal scenario 4.254 3.972 4,027 4.254 3.972 4,027
Table 5
Dawid-Sebastiani score (DSS) in prediction of precipitation.
Forecasting techniques  Prediction year
2015 2016
Kolkata Raipur Lucknow Kolkata Raipur Lucknow
Holt-Winters method 33e+08 29e+08 27e+08 33e+ 08 29e+ 08 4.0e + 08
Automated ARIMA 339.642 437.363 233.484 339.603 434.852 236.796
VARMA 507.254 570.512 375.89 411.633 587.186 401.004
ANN 32e+05 51e+05 72e+04 25e+05 34e+05 63e+ 05
HBAR 167.559 331.713 97.163 167.924 328.53 96.817
Standard BN 1323.648 949.661 109.699 1323.188 841.313 109.699
FBN 871.513 764.385 93.264 760.776 760.154 143.248
Proposed FB-STEP 587.771 220.128 65.001 723.606 220.472 65.029
Ideal scenario —0.996 —2.267 —3.443 —0.996 —2.267 —3.443
Table 6
Dawid-Sebastiani score (DSS) in prediction of soil moisture.
Forecasting techniques  Prediction year
2015 2016
Kolkata  Raipur  Lucknow  Kolkata  Raipur  Lucknow
Holt-Winters method 27.365 46395  25.105 27.365 46395  25.105
Automated ARIMA 23.108 46395  25.105 23.227 46395  25.105
VARMA 35.798 84.882  39.357 28.959 88.571 35.437
ANN 16.52 29.116 11.083 16.029 28954 24148
HBAR 14.204 16.069  12.312 14.204 16.306  11.63
Standard BN 7.196 8.522 9.383 7.427 8.522 9.383
FBN 7.196 8.022 9.383 7.196 8.022 9.383
Proposed FB-STEP 6.168 8.035 6.600 6.120 7.798 6.658
Ideal scenario 5.402 5.295 5.166 5.402 5.295 5.166

of a very new spatial location for which no observed data from
past years is available. The experimental outcomes also demon-
strate the effectiveness of modeling intrinsic chaos within the as-
sociated time series, in a climatological prediction framework. Sim-
ilar approach may be successfully employed for the prediction of
various other natural as well as artificial time series, including hy-

drological and atmospheric time series, human heartbeat, respira-
tory excursions, and financial time series etc., which are inherently
chaotic in nature.

Nonetheless, the proposed FB-STEP framework has its own limi-
tations as well. First of all, the framework, being based on Bayesian
network model, may require exponential time and space during
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Fig. 9. Comparative study of prediction for the year 2015 in two sample locations (Raipur and Baleshwar): (a) Temperature, (b) Humidity, (c) Precipitation rate, (d) Soil

moisture.

Table 7

99% confidence interval of absolute error in prediction for 2015 and 2016.
Prediction Cases 2015 2016
variable Lower bound  Upper bound  Lower bound  Upper bound
Temperature Case-1 00.791 00.996 00.816 01.025
(°C) Case-2  00.782 00.988 00.761 00.960
Humidity Case-1  06.895 07.908 08.587 09.913
(%) Case-2 02913 03.617 02.912 03.615
Precipitation Case-1 42177 68.086 39.623 64.877
(mm) Case-2 38118 63.723 36.897 61.767
Soil Moisture  Case-1 16.034 18.653 17.516 20.188
(mm/m) Case-2  10.312 13.507 09.530 12.731

Case-1: Without considering extra step of capturing and incorporating intrinsic regularity;
Case-2: Considering extra step of capturing and incorporating intrinsic regularity;
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Fig. 11. Percentage improvement in prediction with consideration to the step of
capturing and incorporating intrinsic regularity.

spatial dependency modeling. Secondly, since FB-STEP uses mul-
tifractal analysis, it becomes necessary to supply sufficiently long
time series so that the intrinsic regularity within the time se-

ries is properly captured. Therefore, the framework is not very
suitable when the length of training time series is considerably
low. Further, like almost all the above-discussed prediction ap-
proaches, the FB-STEP framework is also not able to capture vari-
ability at varying spatial and temporal scales. Finally, the frame-
work largely depends on the domain expertise, to determine the
structure of the causal dependency graph and also to set the ap-
propriate membership function for fuzzification. Consequently, this
diminishes the tractability of the proposed framework. A summary
of the strengths and the weaknesses of the proposed FB-STEP is
presented through Fig. 12, in comparison with the other consid-
ered data-driven techniques.

4. Conclusions

Climatological events are typically non-linear and chaotic in na-
ture, and thus it is extremely difficult to predict them accurately
even with the help of state-of-the-art data-driven approaches.
The present work proposes FB-STEP, a hybrid Cl-based improved
spatio-temporal analysis framework for multivariate prediction of
climatological time series data. The primary objective is to ex-
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Fig. 12. Study of proposed FB-STEP in comparison with the other data-driven prediction models.

ploit the power of computational intelligence (CI) for dealing with
the various challenges in climatological prediction and thereby to
enhance the potentials of data-driven approaches as the comple-
ments for the physics-driven forecast models.

FB-STEP is based on the principles of a fuzzy Bayesian net-
work (FBN), and multifractal detrended fluctuation analysis (MF-DFA).
The fuzzy Bayesian network helps in capturing the spatio-temporal
inter-relationships among the climatological variables and also re-
duces the epistemic uncertainty in prediction process, whereas,
the MF-DFA technique captures the natural regularities present
in climatic time series, and incorporates these during the spatio-
temporal prediction. A comparative study has been carried out
with the traditional statistical methods, vector process-based mod-
els, classical space-time models, and other non-linear approaches
to forecast climatic conditions of five major cities in India (Kolkata,
Raipur, Lucknow, Kharagpur and Baleshwar), using the historic data
on temperature, humidity, precipitation rate, and soil moisture. From
the predicted results, it is observed that the proposed FB-STEP out-
performs the other state-of-the-art and benchmark techniques by
producing the minimum error and least uncertainty in prediction
for each considered variable.

4.1. Future research directions

In future, the work can be extended to incorporate the spatio-
temporal climate change pattern (Das & Ghosh, 2015) in the pro-
posed framework to improve the prediction accuracy. Incorpora-
tion of the spatial semantics (Das & Ghosh, 2017) in the proposed
spatio-temporal prediction technique may also be explored. More-
over, the presently proposed FB-STEP is a generic prediction frame-
work which is applicable not only for climatological time series but
also for spatio-temporal data from diverse domains of application.
For example, let us consider the real estate price or housing price

from the domain of finance and economy. It can be noted that
the real estate price is significantly affected by the recent selling
prices of the nearby real estates/houses, and therefore, prominently
shows spatio-temporal dependencies among such prices. The fi-
nancial time series is also proved to show multifractal character-
istics (Thompson & Wilson, 2016). Therefore, the FB-STEP frame-
work may successfully be applied for predicting such data. Sim-
ilarly, huge scopes also remain in exploring the FB-STEP frame-
work to predict spatio-temporal data from other application do-
mains, including atmospheric research, hydrology, medicine, and so
on. In the subsequent part of this section, we discuss a few more
open problems (enumerated below) for future research, which are
mainly centered around the limitations of our proposed framework
and can be envisaged as important directions to explore in the
generic field of spatio-temporal prediction through data-driven ap-
proaches.

i) Extending the proposed framework with continuous BN anal-
ysis: In our research we have made an attempt to extend
discrete Bayesian analysis for the spatio-temporal relationship
learning purpose. Consequently, ample scope remains in refin-
ing the proposed prediction framework in terms of using con-
tinuous BN analysis in the module-1. This will eventually make
the prediction model more flexible for application in diverse
domains where the relevant time series are by nature contin-
uous and it often becomes difficult to acquire appropriate do-
main knowledge to decide the discretized range boundaries.

Employing hierarchical extensions of BN model: Not only the
climatic time series, but also the majority of the spatio-
temporal data often contain variability at several spatial and
temporal scales. The space-time variability is further compli-
cated due to different spatial behaviors at different time in-
stants and vice-versa. So, defining a more flexible version for

ii

—
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the proposed ST prediction framework is necessary. Employ-
ing space-time dynamic hierarchical extensions of the proposed
fuzzy BN modeling may be an effective solution in this respect.
Dealing with unknown structure of the causal dependency
graph: In this research, we have assumed that the network
structure (causal dependency graph) of the BN model is expert-
determined or known a-priory. The extension has been made in
terms of incorporating fuzziness and spatial information during
parameter learning and inference generation mechanism. There-
fore, huge scope remains in dealing with unknown structures of
the causal dependency graphs, by developing appropriate struc-
ture learning algorithms.

Increasing scalability of the proposed framework: Since our
proposed FB-STEP framework uses multifractal analysis to cap-
ture the intrinsic regularity in the time series, it needs histori-
cal dataset over long duration in past. Prediction with time se-
ries of a very short duration may not reflect the expected per-
formance. Hence, the future scope also remains in increasing
the scalability of the proposed prediction model.

Extending the proposed framework to deal with external im-
pacts: While employing the multifractal analysis, our proposed
FB-STEP framework assumes that the fluctuations within the
concerned time series are natural. It does not take into account
the external effects, like those arise due to anthropogenic ac-
tivities. Therefore, in future, the framework can be upgraded to
deal with the impacts from artificial factors as well.
Developing software tool/package for FB-STEP: Huge scope also
remains in developing software tool for our proposed FB-STEP
framework and commercially deploying the same, for easy ac-
cess to wide range of users. Separate package may also be built
for FB-STEP, so that it can be integrated with existing mathe-
matical computing software, like MATLAB, R-tool etc.
Synergism between BN and deep learning architecture: Though
the BN models are intrinsically capable of reasoning under un-
certainty, these may not work efficiently when the input data
is very large and complex. On the other hand, though the
deep learning frameworks can model complex processes by
exploiting their hierarchical representation power, these are,
in general, not able to understand and model their uncer-
tainty. Hence, there remains ample scope of further enhancing
the proposed FB-STEP framework by employing Bayesian deep
learning for ST relationship modeling purpose.

Combining data-driven and physics-driven approaches for im-
proved prediction: Finally, employing only data-driven analysis
and ignoring the basic physical laws underneath a system can-
not be a complete approach to extract all the insights. Hence,
efficiently combining both the physical and the data-driven ap-
proaches, for developing theory-guided data-driven models for
climatological and other spatio-temporal prediction, can be an
interesting as well as useful research topic in future.
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