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Abstract With the advancement of telecommunications, sensor networks, crowd sourcing, and remote sensing technology

in present days, there has been a tremendous growth in the volume of data having both spatial and temporal references. This

huge volume of available spatio-temporal (ST) data along with the recent development of machine learning and computational

intelligence techniques has incited the current research concerns in developing various data-driven models for extracting useful

and interesting patterns, relationships, and knowledge embedded in such large ST datasets. In this survey, we provide a

structured and systematic overview of the research on data-driven approaches for spatio-temporal data analysis. The focus is

on outlining various state-of-the-art spatio-temporal data mining techniques, and their applications in various domains. We

start with a brief overview of spatio-temporal data and various challenges in analyzing such data, and conclude by listing

the current trends and future scopes of research in this multi-disciplinary area. Compared with other relevant surveys,

this paper provides a comprehensive coverage of the techniques from both computational/methodological and application

perspectives. We anticipate that the present survey will help in better understanding various directions in which research

has been conducted to explore data-driven modeling for analyzing spatio-temporal data.

Keywords data-driven modeling, spatio-temporal data, prediction, change pattern detection, outlier detection, hotspot

detection, partitioning/summarization, (tele-)coupling, visual analytics

1 Introduction

Spatio-temporal data analysis is a recently emerg-

ing area of research, centered on the development of

advanced computational techniques for analyzing enor-

mous set of spatio-temporal data. It has a huge scope in

various domains including environmental management,

transportation, epidemiology, climatology and so on.

Weather prediction, traffic management, urban growth

modeling, disease sprawl pattern analysis, MRI (Mag-

netic Resonance Imaging) analysis, crime pattern de-

tection, flood monitoring, crowd behavior analysis, etc.

are some typical application areas of spatio-temporal

analysis. Several models, taking care of the under-

lying physics in such domain specific problems, have

been proposed till date. For example, various global

circulation models (GCMs), like CCSM, HadCM3 [1, 2],

are physics-driven models which are widely used for cli-

matological prediction. However, the two major limi-

tations in such physics-driven models are as follows:

firstly, these assume that all the physical systems are

well understood, which is not true in reality; secondly,

these models are computationally inefficient, requiring

lots of computational power. Therefore, recently, the

data-driven approaches have been emerged as a new

paradigm in this regard, with an aim to extensively an-

alyze historical data for generating insights, and utilize

those in further studies.

The data-driven models involve mathematical equa-

tions that are derived not from the explicit knowledge

of physical processes but by using empirical analysis [3].

The generic concepts and features of any data-driven

approach have been summarized in Table 1. Re-

cent developments in computational intelligence tech-

niques, such as artificial neural network, probabilistic

reasoning, fuzzy logic, genetic algorithms, chaos theory,
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have greatly expanded the capabilities of data-driven

modeling [4]. However, analyzing spatio-temporal data

using data-driven approaches is still a challenging task.

The major challenges here stem from the fact that un-

like the classical datasets, these kinds of data are em-

bedded in continuous space and also tend to show high

auto-correlation. Moreover, such data are also not inde-

pendent, and in most of the cases, these are influenced

by various co-located variables in the spatial region of

study. Further, the recent advancement in satellite and

remote sensing technology has led to a huge amount

of data availability, which is an added challenge in this

regard. Therefore, the last few decades have encoun-

tered immense effort in exploring data-driven learning

algorithms and their applications, with an objective to

tackle the above-mentioned challenges.

Table 1. Physics-Driven vs Data-Driven Approaches

Categories of
Approaches

Key Concepts and Features

Physics-driven
approach [1, 2]

• Based on underlying physical properties of
the system

• Relying on existing model of the system
dynamics

• Prone to more uncertainty in modeling the
system

Data-driven
approach [3, 4]

• Based on various statistical or machine in-
telligence techniques

• Relying on the available/historical data

• Prone to less uncertainty in modeling the
system

1.1 Spatio-Temporal Data

The spatio-temporal (ST) data involve variations

across the space as well as the time. These can be

defined as data to which labels have been assigned to

indicate where and when these were collected. On the

basis of extent of information available for spatial and

temporal aspects of the data and how these aspects over

both the dimensions are related to each other, ST data

can be classified into three major categories (refer to

Fig.1).

• Spatio-Temporal (ST) Events. These are the

events associated with a location and a corresponding

timestamp. However, these are static with respect to

both space and time. In other words, these involve

neither movement with respect to space nor any kind

of evolution with respect to time. The geo-referenced

record of an epidemic is a kind of ST event (refer to

Fig.1(b)).

• Spatial Time Series Data. In this case, the space

is fixed; however, the measurement value changes over a

series of time (refer to Fig.1(a)). These are also termed

as geo-referenced time series. Time series of precipi-

tation data collected over various locations in a space,

earth surface temperature data, etc. are some examples

in this regard. The recent advancements in satellite re-

mote sensing and spatially enabled sensors technology

are the primary source of this kind of data.
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Fig.1. Three major categories of spatio-temporal data. (a) Spa-
tial time series data. (b) ST events. (c) Moving object data.

• Moving Objects Data. In this case, the space is

not fixed. Area of interest changes with the moving

object. GPS track of a vehicle (trajectory data) is an

appropriate example of such data. The development of

wireless communication, mobile computing, and loca-

tion sensing technologies has been the primary reason

of a huge availability of these data in recent days.

It is to be noted that spatio-temporal data analysis

is not a simple task because of the complex structure of

the ST data which first needs appropriate representa-

tion, and indexing in the database. Depending on the

characteristics of ST data, spatio-temporal database

models can be classified into different categories among

which event-oriented database (EOD) model, object-

oriented database (OOD) model, and moving object

database (MOD) model are most widely used in the
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realm of ST data analysis. In case of EOD models,

each event, associated with changes that occurred since

the last update of the event vector, is recorded se-

quentially in an increasing order of time. An EOD

model supports neither the ST range queries nor the ST

behavior-related queries. In the other case, the OOD

models are built upon the concept of ST object, where

the object has both spatial and temporal extents and

represents the whole history of an entity. However,

the OOD model does not support queries regarding

the spatio-temporal behavior of the object. Contrar-

ily, an MOD model supports both range and behavior-

oriented queries. These are primarily designed to effi-

ciently manage large volumes of trajectories and real-

time GPS streams [5]. MODs can be either Euclidean-

based or network-based, where the later offers more pre-

cision and efficiency in terms of location representation,

storage, update, and indexing [6]. The existing MODs

are mostly centralized, where the location update and

the query processing are done at a single database

server, which significantly affect the performance when

the number of moving objects increases. Therefore, the

recent research trend shows interest in designing para-

llel distributed network-constrainedMOD [7], which can

support location tracking as well as query processing in

distributed and parallel fashion to achieve performance

improvements over the centralized counterparts.

1.2 Spatio-Temporal Data Analysis

From the perspective of data mining, the spatio-

temporal data analysis can be described as a process of

identifying non-trivial, interesting and meaningful pat-

terns from massive spatial/spatio-temporal databases.

Based on the underlying objective and the output pat-

tern of the process, spatio-temporal data analysis can

be classified into six broad families [8] (refer to Fig.2 and

Fig.3), as briefly described below.

1) Spatio-Temporal (ST) Prediction. Given spatio-

temporal data items along with explanatory variables

and a dependent (target) variable, the ST prediction

is the process of learning a model, capable of predict-

ing the dependent variable based on the explanatory

variables [8].

2) Spatio-Temporal (ST) Change Detection. It ba-

sically refers to the ST change footprint discovery.

Given a change definition and a dataset over a ST

phenomenon, ST change detection aims to identify the

location and/or time of such changes from the ST

dataset [9].

3) Spatio-Temporal (ST) Outlier Detection. ST out-

lier detection is the process of identifying anomalous

patterns from a given set of ST observations.

4) Spatio-Temporal (ST) Hotspots Detection. ST

hotspots are the regions together with time intervals

where object count is unexpectedly high. ST hotspot

detection has huge application in epidemiology (find-

ing disease hotspots) and criminology (finding crime

hotspot).

5) Spatio-Temporal Partitioning and Summariza-

tion. ST partitioning is the process of grouping similar

ST data items so as to partition the underlying space

and time; whereas ST summarization is the process of

generating a compact representation of ST data [10].

6) Spatio-Temporal (ST) Coupling and Tele-

Coupling. ST coupling pattern represents the

classes/types of spatio-temporal objects which often oc-

cur in close spatial and temporal proximity, whereas ST

tele-coupling pattern indicates considerably high tem-

poral correlation between time series data at long spa-

tial distance [11].

Fig.3 exemplifies these major families of ST data

analysis in terms of respective objectives and output

patterns. The detailed statistical foundations for each

of these ST data analysis families can be found in [8].

Spatio-Temporal
Data Analysis

Spatio-Temporal
Prediction[24,40]

Spatio-Temporal Outlier
Detection and Analysis[60,62]

Spatio-Temporal Partitioning
and Summarization[73,79]

Spatio-Temporal Change Pattern
Detection and Analysis[50,58]

Spatio-Temporal Hotspot
Detection and Analysis[69,70]

Spatio-Temporal Coupling
and Tele-Coupling[82,85]

Fig.2. Spatio-temporal data analysis families.
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Given daily solar
exposure data of a
spatial region for
previous t time 
stamps, determine 
the solar exposure for
the time stamp t+1

Given spatial
distribution of mean
temperature of a
region for previous t
time stamps, find the
temperature change
footprint of the region

Given trajectory data
of vehicle movement
in a particular spatial
region, determine
anomalous pattern/
trajectory (if any)

Given dengue
outbreak data of a
spatial region for
previous t years, can
you find the most
vulnerable areas?

Given trajectory data
of vehicle movement
in a spatial region, can
you identify typical
service area for the
different vehicles?

Given sea level
pressure time series
of different spatial
regions for earlier t
years, can you find
regions with
tele-connection?

Example Scenario

Objective Input Data Output Pattern

05-Mar-2019

1998 2008

2009 2010 2011

Tr5

2018

06-Mar-2019 07-Mar-2019 08-Mar-2019

Spatial Raster Data of Solar Exposure over Tasmania, Australia

Spatial Data of Annual Mean Temperature of Queensland, Australia

Disease
(Dengue)
Outbreak
Data in
Thailand

Typical sample⋯ ⋯ ⋯ 
63,2008-02-02 13:35:43,116.49413,40.16258
63,2008-02-02 13:35:43,116.49413,40.16258
63,2008-02-02 13:40:43,116.49276,40.1291
63,2008-02-02 13:45:43,116.48051,40.09327
63,2008-02-02 13:50:43,116.44466,40.08093
63,2008-02-02 13:52:35,116.43915,40.07978
⋯ ⋯ ⋯

Taxi
Trajectory
Data from
Beijing

Tahiti

Darwin, Australia

Southern Oscillation

Sea Level Pressure Data
Tele-Connection Between
Australia and Tahiti

Taxi-1 Taxi-2 Taxi-3

Mean
Temperature
Change
Footprint

Predicted Raster

39 MJ/m2
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Fig.3. Example scenarios over major families of spatio-temporal data analysis.

1.3 Recent Surveys on Spatio-Temporal Data

Analysis

Spatio-temporal data analysis is a recently emerg-

ing research field in computer science. However, within

this short period of time, it has become a hot topic for a

number of surveys, review articles, and books. Shekhar

et al. provided an extensive survey of spatio-temporal

data mining techniques, especially those with pure sta-

tistical backgrounds [8]. The authors of [8] mainly con-

centrated on the statistical foundations of these tech-

niques with consideration to six major output pattern
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families. A broad review of spatio-temporal clustering,

prediction, and visualization techniques, considering

statistical as well as machine learning approaches has

been presented by Cheng et al. in [12]. In [13], the au-

thor presented an extensive review of spatio-temporal

outlier detection especially considering the trajectory

data, weather data, and PET/MRI scans data. A com-

prehensive study of spatio-temporal clustering has been

made by Kisilevich et al. in [10]. Substantial amount of

research on spatio-temporal clustering over several ap-

plication areas has been reported in their work. An ex-

tensive survey of spatio-temporal change pattern min-

ing techniques from multi-disciplinary perspective has

been conducted in [9]. Various ST data mining families

and application areas, covered by our present survey

and the other relevant survey articles, are summarized

in Table 2.

1.4 Our Contributions

In this survey, we intend to provide a structured and

wide-ranging overview of extensive research on data-

driven approaches for analyzing spatio-temporal (ST)

data, spanning multiple disciplines and application ar-

eas. Most of the existing surveys either focus on a sin-

gle ST data analysis family along with extensive ex-

ploration of its domains of applications, or focus on

statistical foundations of techniques under multiple ST

data analysis family without much exploration of rele-

vant application domains. The articles by Aggarwal [13],

Kisilevich et al. [10], Zhou et al. [9], etc. are of the first

category, whereas the survey work by Shekher et al. [8]

is of the second category. On the contrary, our sur-

vey focuses on the state-of-the-art techniques from the

perspectives of both ST data analysis family and appli-

cation domain. Moreover, the present article covers tra-

ditional statistical, geo-statistical, computational intel-

ligence based as well as deep learning based techniques,

which is missing in a majority of the existing survey

papers, even in those published recently [14].

Thus, the key contributions in our survey article can

be summarized as follows.

• The present survey of data-driven approaches for

ST data analysis focuses on the state-of-the-art tech-

Table 2. Comparison of Present Survey with Other Relevant Survey Articles

Survey Perspective Covered Area 1 2 3 4 5 6 7

Spatio-temporal (ST) ST prediction
√ √ √ √

data mining families ST change pattern mining
√ √ √ √

ST outlier detection
√ √ √ √

ST hotspot detection/clustering
√ √ √ √ √

ST partitioning and summarization
√ √

ST coupling and tele-coupling
√ √

Methodology Pure/geo-statistical techniques
√ √ √ √ √ √ √

Computational intelligence
√ √ √

Deep learning
√

Application area Climatology/meteorology
√ √ √ √ √ √

Hydrology
√

Environment and ecology
√ √ √ √ √ √

Medical science and public health
√ √ √ √ √

Transport system
√ √ √ √ √ √

Urban planning and development
√ √

Finance and economy
√ √ √ √

Bio-informatics
√ √

Molecular biology
√

Location-based services
√ √ √

Mobility analysis
√ √ √ √

Online and social network
√ √ √

Homeland security
√ √ √ √

Note: 1: our survey; 2: Atluri et al. (2018) [14]; 3: Shekhar et al. (2015) [8]; 4: Aggarwal (2015) [13]; 5: Cheng et al. (2014) [12]; 6:
Zhou et al. (2014) [9]; 7: Kisilevich et al. (2009) [10].
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niques from both analysis family and application do-

main perspectives. The survey covers six generic ST

data analysis families and 13 application areas involv-

ing spatio-temporal aspects.

• For each of the six data analysis families, we have

categorized the existing techniques into variants of ba-

sic techniques. This hierarchical structure provides a

more crisp and comprehensible representation of vari-

ous state-of-the-art techniques under each data analysis

family.

• While the majority of the relevant surveys only

mention the application areas of various data analysis

techniques, we attempt to provide an exhaustive dis-

cussion of the domains where these approaches are ap-

plied. For each domain we have illustrated the nature of

spatio-temporal data, several challenges faced in data

analysis, and the set of techniques that have been em-

ployed.

• The existing surveys mostly discuss on the pure

statistical/geo-statistical techniques for ST data ana-

lysis. However, our article provides an extensive cover-

age of computational intelligence based and deep learn-

ing based techniques as well.

• Further, it is evident from the survey statistics

as depicted in Fig.4 that, unlike the considered survey

papers ( [8–10, 12–14]), we concentrate more on the re-

search made in the current years than the work done in

the last decades.
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Fig.4. Survey statistics in terms of research articles considered
from last two decades.

1.5 Organization

The remainder of this survey is structured as fol-

lows. Section 2 provides a discussion on the promises as

well as major challenges in spatio-temporal data ana-

lysis. Section 3 surveys the state-of-the-arts in con-

ventional data-driven approaches for spatio-temporal

data analysis. Section 4 summarizes the state-of-the-art

deep learning techniques applied for analyzing spatio-

temporal data. Section 5 presents the ST data analysis

approaches from the perspectives of their application

areas. Section 6 identifies the recent trends and future

scopes of research. Finally we conclude in Section 7. A

schematic representation for the overall organization of

the present survey paper is depicted in Fig.5.

2 Promises and Challenges of Spatio-Temporal

Data Analysis

The spatio-temporal data are rich sources of know-

ledge and information, waiting to be discovered or ex-

tracted. An appropriate analysis of spatio-temporal

data may provide several useful application-specific in-

sights. For example, an accurate spatio-temporal pre-

diction of climatological/meteorological data can de-

tect extreme events like flood, drought, hurricane, and

thereby can help in disaster planning; an unusual

spatio-temporal pattern in medical data (ECG time se-

ries, MRI scans, PET scans, etc.) can reflect the dis-

ease conditions and thus can aid in diagnosis; the ana-

lysis of trajectory data collected from mobile devices

or other sensors can reveal the category or motive of

a person; the spatio-temporal analysis of phone calls

made by people in a city can provide insights on ur-

ban activities; spatio-temporal data on crime events

can be analyzed to locate crime generators in a city

and thereby can help police department to take effec-

tive measures; spatio-temporal summarization process

on traffic/road-network data can identify the accident

prone routes and thus ensures the public safety. Many

such examples with respect to the real-life events can

be listed in this regard.

However, both the temporal and the spatial aspects

add significantly high complexity to spatio-temporal

data analysis/mining techniques. Various challenges in

ST data mining are discussed in the subsequent part of

this section.

2.1 Challenges

The major challenges in spatio-temporal data min-

ing arise mainly because of the nature/characteristics

of the ST data itself.

• First of all, unlike the traditional data, the spatio-

temporal data follow the first law of geography, i.e., the

data that are in more spatio-temporal proximity are

more likely to be similar. For example, the weather

of a day is more similar to that of the previous day.

Likewise, the land surface temperature of one location

is more likely to be the same as that of its nearby

locations. This is primarily termed as autocorrelation
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Section 1: Introduction

Data-Driven Approach

Spatio-Temporal (ST) Data

ST Data Analysis Families
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Challenges 

Promises of ST Data

Analysis

Challenges in ST Data

Analysis

Section 3: State of the Arts

in Conventional Methods

for ST Data Analysis

Pure Statistical Methods

Computational

Intelligence (CI)-Based

Techniques

Prediction

Change

Pattern

Analysis

Coupling/

Tele-

Coupling

Outlier

Detection

Partitioning/
Summari-

zation

Hotspot
Detection

Our Survey

Section 4: State-of-the-Art
Deep Learning Approaches

for ST Data Analysis

Deep Learning Techniques

Based on CNN, DNN, RNN

(LSTM), SAE, DSN, 

Deep-STEP, etc.

Section 7: Conclusions

Summary 

Impact on ST Research 

Section 6: Recent Trend and

Future Scopes

Visual Analytics

Hierarchical Modeling

Participatory Sensing

Theory Guided Data Science

Section 5: Application Areas of

ST Data Analysis

Climatology/Meteorology
Hydrology
Environment and Ecology
Medical Science and Public Health
Transport System
Urban Planning and Development
Finance and Economy
Bio-Informatics and Molecular Biology
Location-Based Services
Mobility Analysis
Online and Social Network
Homeland Security

Fig.5. Overall organization of our survey paper.

property [15], and it indicates that spatio-temporal data

should not be assumed as statistically independent data

during the analysis or modeling process.

• Secondly, the spatio-temporal phenomena are not

“concrete objects” [16]. These are continuous patterns

that evolve over space and time, and can be well cap-

tured by existing physics-driven approaches using dif-

ferential equations. However, solving differential equa-

tion is expensive and also suffers from several well-

known limitations. Hence, providing an alternative

means of modeling ST phenomena becomes a challeng-

ing task.

• Thirdly, the spatial/spatio-temporal data some-

times show inter-dependency with the co-located vari-

ables. Therefore, instead of only dealing with the

target variable, considering the effects of other influ-

encing variables may improve the results of spatio-

temporal data mining. A proper modeling of such

spatio-temporal interrelationships among the variables

is also a critical issue.

• Apart from the above-mentioned common prop-

erties, a particular kind of spatio-temporal data may

also have its own special properties. For example, in

the case of climatological data, there are certain cen-

tral processes that affect the climate system in such a

complicated manner that the data become inherently

chaotic in nature. Besides, it may happen that a simi-

lar pattern, that used to take place in distant past, may

again be repeated in recent days. Therefore, the clima-

tological data may sometimes show long memory time

series effect. All these inherent as well as special prop-

erties of spatio-temporal data make the analysis process

a complicated task.

• Besides, in most of the cases, the spatio-temporal

data are relatively abundant in either space, or time,

but not in both [17]. For example, the satellite remote

sensing imagery is significantly profuse in space, pro-

viding a detailed view of large areas. However, these

are relatively scarce with respect to time. On the other

hand, the data from fixed sensors are plentifully availa-

ble over time. However, these provide relatively little

detail in space, because of limitation in the number of

spatially distributed sensors.

• Further, the recent advancement in satellite and

remote sensing technology has led to explosive growth

in spatial and spatio-temporal data. This avalanche of

data is also an added challenge in the present context.

In the next two sections we discuss the state-of-the-

art data-driven approaches, extensively applied for an-

alyzing spatio-temporal (ST) data. Various techniques
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in this regard are broadly classified into conventional

and deep learning based techniques, and these are pre-

sented in Section 3 and Section 4, respectively.

3 State of the Arts in Conventional

Techniques for Data-Driven Analysis

with Spatio-Temporal Data

In this section we report the state-of-the-arts in var-

ious conventional techniques (including pure statistical

and AI/CI-based approaches) which have been widely

used to analyze spatio-temporal data. The techniques

have been discussed with respect to each data analysis

family separately. Further, as per the underlying ob-

jective and/or the base approach used, we have hierar-

chically classified the existing techniques into variants

of basic techniques. This hierarchical structure offers

an easier and more laconic understanding of the state-

of-the-arts in spatio-temporal data mining/analysis.

3.1 Spatio-Temporal Prediction Techniques

In spite of the fact that the spatial relationships are

powerful and informative, while predicting the ST data,

most of the earlier researches focused only on the tem-

poral aspects without taking into account the spatial

dependencies. Various traditional statistical time series

prediction models formed the base structure of these

techniques. On the contrary, the recent research has

focused more on utilizing the rich set of spatial infor-

mation to improve the prediction accuracy. Therefore,

a number of spatially-enhanced prediction techniques

have been proposed in recent days. In this subsection,

we have discussed both conventional statistical and spa-

tially extended techniques for the prediction of ST data.

Moreover, as the significant driver of data-driven ap-

proaches, we have also explored the state-of-the-art ar-

tificial intelligence (AI) and computational intelligence

(CI) techniques. A hierarchical representation of these

techniques is depicted in Fig.6.

3.1.1 Traditional Statistical Techniques

Among various conventional statistical techniques,

the Exponentially Weighted Moving Average (EWMA)

model, the Autoregressive Moving Average (ARMA)

model, the Autoregressive Integrated Moving Ave-

rage (ARIMA) model, and the Generalized Autoregres-

sive Conditional Heteroskedastic (GARCH) model have

been extensively used especially for time series predic-

tion of spatio-temporal data.

In earlier days, the EWMA model has been widely

used for financial and economic time series prediction,

whereas the ARMA and ARIMA models are generally

applied in meteorological and other atmospheric pre-

diction work. Further, the recent research shows a ten-

dency of using hybrid ARIMA models along with artifi-

cial neural network (ANN) [18, 19]. On the other side, the

GARCH model is mostly used for analyzing time series

data in financial application [20]. A number of varia-

tions for GARCH models have been proposed till date.

NGARCH, IGARCH, fGARCH, etc. are a few exam-

ples in this regard. However, the major limitations of

applying these traditional statistical techniques for ST

prediction are: 1) most of these techniques suffer from

linear and/or univariate nature and the backward look-

ing problem; 2) none of these take the spatial properties

of the data into account.

Prediction Techniques

Pure Statistical 

Methods

Traditional

Approaches

Spatially-Enhanced 

Approaches

Conventional AI/Computational 

Intelligence Techniques

1) EWMA

2) ARMA 

3) ARIMA

4) GARCH, etc.

1) STAR
2) STARIMA
3) ST Kriging  
4) Bayesian Hierarchical Model
5) Dynamic ST Model, etc. 

1) Artificial Neural Network (ANN)

2) Fuzzy Logic 

3) Evolutionary Computing 

4) Bayesian Network (BN)

5) Markov Model

6) Chaos Theory 

7) Support Vector Machine (SVM), etc.

Fig.6. State of the arts in conventional techniques for prediction of ST data.
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3.1.2 Spatially-Enhanced Statistical Techniques

In order to overcome the limits of traditional tech-

niques, the spatial statisticians have proposed a number

of spatially extended prediction techniques to apply on

spatio-temporal data. The Space-Time Autoregressive

Moving Average (STARMA) model, the Space-Time

ARIMA (STARIMA) model, Spatio-Temporal Kriging

(ST Kriging), the Bayesian Hierarchical model, Dy-

namic Spatio-Temporal Models (DSMs), etc. are most

commonly used statistical ST prediction techniques. A

summary of these techniques are provided in Table 3.

3.1.3 AI/Computational Intelligence Techniques

The recent advancement in data-driven modeling for

spatio-temporal prediction is mainly due to the progress

in various computational intelligence (CI) techniques.

In this subsection, we have discussed both the conven-

tional and spatially enhanced CI techniques that have

been widely used for predicting ST data.

Artificial Neural Network (ANN). Several research

papers have been put forward employing ANN-based

approach for predicting spatio-temporal data from

various domains, including climatology, hydrology [25],

transport system, biology [26] and so on. Variants of

ANN models, like feed forward neural network trained

with Levenberg-Marquardt algorithm [25], echo state

network or ESN [27] have been employed for these pur-

poses. In [28], Daliakopoulos and Tsanis claimed that,

compared with the traditional models, ANN can show

superior performance in modeling complex hydrologi-

cal processes. ANNs have widely been used for traf-

fic prediction also. The work in [29] is an example in

this respect. However, most of these studies are deve-

loped with less exploration of uncertainty management

issues, and it is also necessary to incorporate robustness

in those approaches.

Fuzzy Logic. This is one of the popular CI tech-

niques, in which the computation is performed based on

the degree of truth, rather than the classical Boolean

logic. Recently, fuzzy logic has featured in many suc-

cessful applications including the prediction of spatio-

temporal data. For example, Bazartseren et al. [30] pro-

posed a system based on neuro-fuzzy technique which

is proved to be effective in short-term forecast of water

level. Two different adaptive neuro-fuzzy approaches,

namely ANFIS-GP and ANFIS-SC, have been proposed

in [31] for estimating the house selling price. More re-

search studies on hybrid fuzzy logic systems are dis-

cussed along with the Bayesian network based predic-

tion approaches.

Evolutionary Computing. Evolutionary algorithms

are biologically inspired algorithms which are based on

the natural principle of survival of the fittest. The ge-

netic programming (GP), genetic algorithm (GA), ant

coloney optimization (ACO), particle swarm optimiza-

tion (PSO), etc. are some variants of the evolutionary

computing algorithms. A number of research literatures

employing hybrid evolutionary computing to predict

spatio-temporal data can be found in the literature. For

example, Semero et al. [32] developed a GA-based ANN

model that can predict wind speed on short-term ba-

sis; hybrid SVM-PSO and SVM-GA based approaches

have been used for real estate price forecasting in [33]

and [34], respectively, and so on.

Bayesian Network (BN). The Bayesian network is

a powerful tool for representing and reasoning with un-

certain knowledge. It has the capability of intuitively

representing relevant dependencies and automatically

capturing probabilistic information from the data.

Being able to efficiently model complex systems

with numerous variables, BNs are extremely suitable

for various applications in environmental modeling,

especially in meteorology [3, 35]. Recently, Das and

Table 3. Summary of the State-of-the-Arts in Spatially-Enhanced Statistical Techniques for ST Prediction

Technique Key Feature Primary Application Area

STARMA &
STARIMA

Explicitly models both the temporal and the spatial dependency among vari-
ables from various locations; suitable for spatial time series data and moving
object data; however, the number of parameters increases geometrically with the
increasing number of locations

Transport system, hydrology,
remote sensing, climatology/
meteorology [21]

ST Kriging Generalizes the spatial Kriging process [22] with a ST covariance matrix and var-
iograms; widely used for predictions from incomplete and noisy ST events and
spatial time series of raster data; however, the performance decreases with in-
creasing forecast horizon

Climate/environmental science,
ecology, and meteorology [23]

DSTM Focuses on modeling the latent ST processes; assumes that the current values
of a process at any location evolve from past values from neighboring locations;
based on three-stage factorization of data, process, and parameters; suitable for
spatial time series data

Climate/environmental
science [24]
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Ghosh [36] proposed a semantically enhanced Bayesian

network (semBnet) which is able to improve perfor-

mance by incorporating domain knowledge during the

BN-based spatio-temporal prediction of meteorological

time series data. Apart from the meteorology, the BNs

have widely been applied in hydrological prediction as

well [37, 38]. The research work in [39] is another exam-

ple where spatially enhanced BN or SpaBN has been

used to model the spatial influence of the meteorologi-

cal and topographical factors while predicting reservoir

water dynamics. In [40] and [41], the BN-based ap-

proaches are found to show considerable improvement

when upgraded with added residual correction mecha-

nism during inference generation process under scarcity

of influencing factors. However, sometimes due to the

lack of appropriate data/information, it becomes dif-

ficult to express knowledge in standard BNs. In such

cases, a BN with incorporated fuzziness, can be used to

resolve the issue [42].

Markov Models. Markov chain, Hidden Markov

model, etc. are probabilistic models commonly used for

simulating and exploring the process of dynamic sys-

tems. These directed graph-theoretic approaches pro-

vide an easy mechanism to represent the state transi-

tions and thereby become effective for predictive analy-

tics. The application of Markov models is well-observed

in predicting spatial time series and moving object

data. For example, Yang et al. [43] used spatio-temporal

hidden Markov model (STHMM) for predicting travel

cost in transportation network, and Yuan et al. [44] uti-

lized Markov chain for predicting the traffic condition.

Use of Markov models is also popular in urban growth

modeling [45]. To be noted, the Markovmodels are effec-

tive in a predictive scenario which exhibits the Markov

property.

Chaos Theory. This is another new area for dy-

namical system analysis. It has shown tremendous

growth in analyzing nonlinear dynamics of time series

data, obtained from the real observations of natural

phenomenon [46]. One of the commonly used chaos ana-

lysis tool is the fractal/multi-fractal analysis, which is

applied often, for analyzing ST data, especially in the

domains of finance [47], biology, and climatology [46].

Support Vector Machines (SVMs). SVMs offer a

set of supervised learning algorithms that can be used

in classification and regression problems. The use of

SVMs for the ST prediction is often observed in the

field of finance, meteorology and hydrology. For ex-

ample, hybrid SVM-based approaches, along with PSO

and genetic algorithm, are used in [33] and [34], respec-

tively, for real estate price forecasting. The authors

in [48] used SVM in combination with discrete wavelet

transform to forecast streamflow on monthly basis.

Overall, all the above mentioned conventional CI

techniques have their own advantages and disadvan-

tages over the others. None of these can be treated as

the best technique with respect to all prediction scenar-

ios. Although the ANN-based approaches are efficient

alternatives of the traditional statistical approaches,

sometimes these require quite complex models to be-

come good predictors. Further, these are sensitive to

the initial weight assignments and hyper-parameters

setup. In case of SVMs, finding heuristic to determine

the free parameters is also challenging. The approaches

based on chaos theory are also highly sensitive to the

initial condition. Though the issue of initialization is

quite resolved when applying evolutionary computing

and probabilistic reasoning, both of these suffer from

the curse of dimensionality, and also, the evolutionary

computing models may result in premature convergence

to the local maxima. A detailed comparative study of

all these CI techniques can be found in [3].

3.2 Spatio-Temporal Change Detection and

Analysis Techniques

Over the past few decades, there has been exten-

sive research on analyzing change pattern in spatio-

temporal data. The existing approaches deal with ei-

ther the thematic or the geometric change pattern.

This subsection discusses on various change detection

and change pattern analysis techniques used for spatio-

temporal data. A hierarchical representation of various

change detection techniques is depicted in Fig.7.

3.2.1 Thematic Change Detection Approach

The thematic change refers to how the thematic

information (e.g., vegetation cover, surface tempera-

ture), relevant to a spatio-temporal dataset, changes

with space and time. Most of the conventional meth-

ods focus on the spatio-temporal analysis of such the-

matic change. The cumulative sum (CUSUM), sub-

path enumeration and pruning (SEP), statistical spatial

wombling, S-outlier detection, ST scan statistics, ST

cluster detection, and image processing are some well-

used techniques in this regard. The key features of each

of these techniques are summarized in Table 4. As men-

tioned in the table, the image processing techniques are

most applicable for the sparial raster time series (e.g.,

remote sensing imagery), whereas the others can be ap-
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Change Detection Approach

Thematic Change 

Detection Approach

Geometric Change 

Detection Approach

Change Point

Detection Change Interval/Path

Detection

Change Location 

Detection Change Region 

Detection

(e.g., Mathematical Morphology 
Based Image Processing)

(e.g., Cumulative

Sum or CUSUM) (e.g., Sub-Path Enumeration
and Pruning Approach or
SEP; Statistical Spatial

Wombling)

(e.g., ST Scan Statistics;
ST Cluster Detection;
Image Processing) 

(e.g., S-Outlier
Detection)

Fig.7. State-of-the-arts in conventional techniques for change detection in ST data.

Table 4. Summary of the State-of-the-Arts in Conventional Techniques for Thematic Change Detection

Technique Key Feature Primary Application Area

CUSUM Mainly used for change point detection purpose; suitable for spatial time series
data

Social network, system
control [49]

SEP Finds collections of long interesting sub-paths defined by some interest mea-
sure; commonly used for change interval detection; useful to understand abrupt
changes; suitable for spatial time series data

Climatology [50]

Statistical spatial
wombling

Based on the idea of identifying spatial boundaries separating regions with signifi-
cantly different observed values of the spatial variable; suitable for ST events and
spatial time series data

Ecology, meteorology,
public health [51]

S-outlier detection Used for detecting change locations; suitable for ST events and spatial time series
data

Transport system,
meteorology/climatology [52]

ST scan statistics Detects change regions by means of identifying spatial clusters; based on the hy-
pothesis testing and maximum likelihood ratio score; suitable for ST events and
spatial time series data

Public health [53], ecology

ST cluster
detection

Determines spatial region, having higher risk or intensity of spatial event during
a certain period of time; suitable for ST events and spatial time series data

Public health, homeland
security, climatology,
ecology [54, 55]

Image processing Mostly used for detecting changes in remote sensing imagery; can be either pixel-
based or object-based; focuses either on detailed change trajectories or on detect-
ing binary change; suitable for ST events and spatial time series data

Public health, ecology,
climatology, urban
development and
planning [56, 57]

plied on non-image spatial time series data and spatio-

temporal events. The CUSUM technique is simple and

easy to implement. However, this is only applicable for

detecting the change point. Further, with the decre-

ment of the number of samples, its power of detecting

small changes reduces considerably. The SEP technique

can detect the interval of changes, rather than simply

identify change points. Yet, this method needs prede-

fined interest measures for change and stability, and the

model performance substantially depends on the same.

The statistical spatial wombling techniques are ideal for

identifying spatial zones of temporal changes. However,

with the increase in spatially referenced data, this tech-

nique requires a more precise measure for quantifying

the significance of the change boundaries. The S-outlier

based techniques [52] primarily aim at detecting the ST

changes by determining the spatial outliers at different

time stamps. However, these may not be effective in

several cases as these do not take into account the tem-

poral aspects of the data while detecting the S-outliers.

ST scan statistics, which typically scan the space while

looking for space-time clusters, are quite popular for

identifying ST changes [53, 54]. Nevertheless, these are

based on several assumptions on data distribution and

the shape of cluster, which restrict them for being ap-

plied in many scenarios. Incidentally, there exist diffe-

rent other techniques [55] employing ST clustering for

ST changes detection, which are free from so many as-
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sumptions over data. A more extensive discussion over

these techniques can be found in [50].

3.2.2 Geometric Change Detection Approach

Analyzing the geometric characteristics of the

change in spatio-temporal data is not a much explored

area. However, the analysis of geometric change pattern

is also essential, especially to provide insights into how

the spatial distribution of the ST phenomena changes

with time. This needs some special methods, different

from the conventional statistical exploratory data ana-

lysis techniques. In this regard, variants of set-theoretic

approaches can be found in the literature. For exam-

ple, in [58], the authors proposed a modeling approach

based on the basic operators from mathematical mor-

phology to analyze the changes in spatially distributed

events/objects or phenomena. Morphological study has

also been employed in [59] to categorize the spatio-

temporal change in objects.

3.3 Spatio-Temporal Outlier Detection

Techniques

The ST outlier detection techniques are broadly

classified into two major categories, based on whether

these are meant for the trajectory data or for the spatial

time series data. Fig.8 represents a compact hierarchi-

cal representation for the same.

3.3.1 Outlier Detection in Spatial Times Series Data

These techniques are mostly based on neighbor-

hood-based approaches, auto-regressive models, visua-

lization approaches, and shape analysis. The key fea-

tures of these techniques along with the associated chal-

lenges are summarized in Table 5.

The neighborhood based approaches taking care of

the contextual information are widely used in literature.

However, deriving the spatial neighborhood, defining

“considerable deviation”, combining the contextual and

spatiotemporal distances, etc. become major issues for

Shape Analysis

Outlier Detection Techniques

Neighborhood-Based Algorithms

Autoregressive Models

Visualization with Variogram Clouds 

1) Multidimensional Methods

2) Graph-Based Methods

Outlier Detection in 

Spatial Times Series Data
Outlier Detection in

Trajectory Data

Cluster-Based Approach

Supervised Learning

Distance-Based Approach 

Density-Based Approach

Isolation-Based Methods

Fig.8. State-of-the-arts in conventional techniques for outlier detection from ST data.

Table 5. State-of-the-Arts in Conventional Techniques for Outlier Detection in Spatial Time Series

Technique Key Feature Primary Application Area

Neighborhood-
based algorithm

Neighborhoods are defined based on expanded set of contextual attributes along
with the spatio-temporal dimensions; however, combining the contextual and
spatio-temporal distances is a major challenge

Census, video analysis,
network analysis [60]

Autoregressive
model

Extension from both temporal and spatial autoregressive models, shows higher
degree of robustness than the neighborhood-based models; commonly used when
large amounts of reasonably complete data are available; high computational
complexity

Not so popular for outlier
detection

Visualization Provides insights into distribution of data; aids in selecting appropriate model
for subsequent processing; variogram cloud, pocket plot, Moran scatter plot, etc.
are some well-used tools in this regard

Urban planning and
development [13, 61]

Shape analysis Used for identifying ST outliers from images, like MRI scan, PET scan, weather
datasets; contours of the shapes are constructed on the basis of the changes in
the behavioral attributes between two snapshots

Medical science,
meteorology/climatology,
traffic [62]



Monidipa Das et al.: Survey of Data-Driven Approaches for Spatio-Temporal Analysis 677

these techniques [13]. Comparatively, the autoregres-

sive models are found to be more robust in this con-

text. Nevertheless, because of a large number of co-

efficient requirements and high computational comple-

xity, these are rarely used in practice. Apart from the

standard statistical outlier detection techniques, some-

times the visualization becomes useful by providing in-

sights into data distribution and subsequently facilitat-

ing the outlier analysis with ST data. However, some

of the visualization techniques, like variogram cloud,

suffer from high computational complexity and can be-

come intractable when the data contains even only hun-

dreds/thousands of spatial data points. The shape ana-

lysis techniques, on the other hand, aim at identify-

ing unusual shapes from the distribution of the spatial

attributes. Nevertheless, the shape contour detection

sometimes becomes an issue for these techniques.

3.3.2 Outlier Detection in Trajectory Data

Detection of spatio-temporal outliers from trajec-

tory data is challenging because of the dynamic and

high-dimensional nature of the trajectory data. The

existing work in this regard can be roughly classified

into five major categories, namely, supervised learn-

ing methods, clustering-based methods, distance-based

approaches, density-based approaches, and isolation-

based methods. Moreover, there exist stochastic model

based [63] approaches for ST outlier detection. The key

features of these techniques along with the associated

challenges are summarized in Table 6.

Among various techniques for outlier detection from

moving object data, the distance-based methods are

the most widely used ones [64]. However, these gene-

rally apply nested loop for every anomaly candidate,

and thus are not scalable to high-dimensional datasets.

On the other side, the distance-based, density-based,

and cluster-based techniques use only time and distance

to directly judge whether a trajectory is anomalous or

not, and so, these are able to provide insights into only

spatially/temporally local distributions of data points.

The temporal locality issue is handled by isolation-

based techniques [67] that compare the test trajectory

against a set of sampled historical trajectories to deter-

mine its normal/anomalous nature, whereas the spatial

locality issue is resolved by the motif-driven supervised

learning approaches [65] which analyze complex relation-

ships between multiple features associated with diffe-

rent spatial granularities.

3.4 Spatio-Temporal Hotspot Detection

Techniques

The state-of-the-art ST hotspot detection tech-

niques (refer to Fig.9) can be broadly classified into: 1)

clustering-based approach, 2) ST scan statistics based

approach, and 3) eigenspace method. The major as-

pects of each of these techniques are briefly presented

in Table 7.

Among various techniques for ST hotspot detec-

tion, the most popular and widely used approach is

the Space-Time Scan statistics or ST Scan statistics [68].

Typically, the ST scan statistics approach employs a

sliding window to search for significant spatiotempo-

ral clusters in entire space. However, these approaches

make several assumptions especially regarding the data

distribution and the shape of the hotspots which often

restrict them to be applied on real-world scenario. The

recently proposed eigenspace method [69] overcomes all

Table 6. Summary of State-of-the-Arts in Conventional Techniques for Outlier Detection in Trajectory Data

Technique Key Feature Primary Application Area

Supervised
learning

Views the movement/change paths as a sequence of object movement features or pat-
terns, called motif ; based on the motifs, a classifier is learnt to distinguish between
normal and the outliers

Transportation, mobility
analysis [65], online and
social network,
climatology/meteorology

Cluster-based Outlier score is determined based on whether a data point is not within any cluster,
its nearness to the other clusters, and the size of the cluster nearest to the data point;
not meant for optimizing the outlier detection process

Mobility analysis,
transport system [66]

Distance-based Assumes that the distances between outlier data-points and their k-nearest ST neigh-
bors are notably higher than that in normal case; analysis is performed at detailed
granular level; however, the computational complexity becomes extremely high with
the increase in data points; requires efficient pruning strategy

Transport system, mobility
analysis [64]

Density-based Uses local density as the outlier score; partitions the data space instead of the data
points

Mobility analysis,
transport system [13]

Isolation-based Explicitly isolates anomalies instead of profiling normal points; assumes that
the abnormal trajectories are “few in number” and notably “different from the
majority” [67]; e.g., “iBAT” model,“iBOAT” model, isolation forest or iForest model

Location-based services,
transport system, mobility
analysis [67]
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Hotspot Detection Techniques

ST Scan Statistics

Based Approach

Clustering-Based

Approach

Descriptive and Generative
Model Based Approach 

Density-Based

Method

Distance-Based

Method

(e.g., k-Means) (e.g., DBSCAN,
OPTICS)

(e.g., Mixture Model;
Markov Model) 

Eigenspace

Method

Fig.9. State-of-the-arts in conventional techniques for hotspot detection from ST data.

Table 7. Summary of the State-of-the-Arts in Conventional Techniques for ST Hotspot Detection

Technique Key Feature Primary Application Area

Descriptive and
generative
model based

Clustering based approach; learns global models, capable of describing the entire
dataset in terms of some distribution function and a set of fitting parameters;
mostly uses SVM and spatio-temporal neural network (STNN); suitable for ST
events, spatial time series data, and moving object data

Homeland security,
transport system, mobility
analysis, urban planning
and development,
public health [70]

Distance-based Clustering-based approach; clustering is performed based on some distance-
functions that capture the resemblance between data items; suitable for moving
object data

Transport system,
mobility analysis [71]

Density-based Clustering-based approach; sets a density-threshold for each object so as to dis-
tinguish relevant data-items from noise; suitable for moving object data

Mobility analysis,
transport system

ST scan statistics Based on exhaustive search over the whole space; suitable for ST events and spa-
tial time series; makes restrictive assumptions over the shape of the hotspots,
and the distribution and quality of data; sometimes become unrealistic for non-
traditional data sources

Public health,
epidemiology [72],
homeland security [54, 68]

Eigenspace method Instead of an exhaustive search over the space, the changes are tracked in a space-
time occurrences structure; shows better computational efficiency than the stan-
dard ST scan statistics; makes no assumption about data distribution, hotspot
shape, data quality, etc.; suitable for ST events, spatial time series data

Public health,
epidemiology,
homeland security [69]

these issues by tracking the changes in space-time cor-

relation structure. There also exist ST hotspot de-

tection approaches on density/distance-based cluster-

ing techniques. These are most applicable for moving

object/trajectory data. The descriptive and generative

models [70] for clustering techniques additionally help to

predict the hotspot for future time stamps.

3.5 Spatio-Temporal Partitioning and

Summarization Techniques

Spatio-temporal partitioning is closely related to

spatio-temporal hotspot detection. However, the key

difference is that, in the case of hotspots, the inten-

sity of events/activities within partition is substantially

higher than that of outside [8]. Contrarily, the spatio-

temporal summarization is performed to obtain an ag-

gregated statistics of the objects within each partition.

3.5.1 Partitioning Techniques

Depending on the type of underlying ST data, there

exist several variants of partitioning techniques which

can be broadly categorized as follows: global partition-

ing techniques, hierarchical approach, graph based ap-

proach, density based approach, and frequency based

approach (refer to Fig.10). The summary of the vari-

ous ST partitioning techniques is provided in Table 8.

The global partitioning and hierarchy-based meth-

ods are comparatively simpler than the other tech-

niques. However, these are not very appropriate for

partitioning the moving object data. The graph-based

methods are more suitable for generating summary and

rarely used for generating partitions only. The density-

based partitioning methods are found to perform well

for ST data portioning. However, because of the issue

of high dimensionality, these are not suitable for spatial

time series data. On the other side, the frequency-based
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Partitioning and Summarization

Techniques

Summarization

Techniques

Partitioning

Techniques

Graph Based Approach

Centroid Based Approach 

Helix Based Approach 

Signature Based ApproachDensity Based Approach

Frequency Based Approach

Global Partitioning  Techniques

Hierarchical Approach 

Graph Based Approach

Fig.10. State-of-the-art techniques for partitioning and summarization of ST data.

Table 8. Summary of the State-of-the-Arts in Conventional Techniques for ST Partitioning

Technique Key Feature Primary Application Area

Global
partitioning

Primary objective is to maximize the within-group similarity of the ST objects;
K-means/medoids, EM algorithm, CLIQUE, CLARANS, BIRCH, etc. are used
to serve the purpose; mainly used for partitioning ST events and spatial time
series data

Public health, homeland
security, urban planning
and development [50]

Hierarchy-based Partitions the ST data at different hierarchical levels; mostly used for ST events,
spatial time series data, and sometimes for moving object data

Transport system, mobil-
ity analysis, public health,
homeland security [50]

Graph-based Represents the ST data-items in terms of sparse K-nearest neighbor graph, subse-
quently partitions them into segments, and finally, merges in hierarchical fashion;
primarily used for ST events

Not so popular

Density-based In the case of ST events, first identifies dense points and connects them to gene-
rate contiguous groups/clusters or partitions; in case of trajectory data, first
performs trajectory segmentation and then applies density-based clustering tech-
niques; suitable for ST events, and moving object data

Transport system, mobility
analysis [73], public health,
homeland security

Frequency-based Identifies subsections of trajectories which have high frequencies; mostly based
on association rule mining techniques; suitable for moving object data

Mobility analysis,
transport system [74]

models are only applicable for moving object data. In-

cidentally, defining the matching prototype (or associ-

ation) becomes a major issue in this case.

Apart from the techniques to directly partition raw

ST data, recent research efforts are also found to learn

cluster pattern hidden in ST data. The Autoencoder

Regularized Network (ARNet) [75] proposed by Dong et

al. and multi-task learning model T2INet [76] proposed

by Kieu et al. are worth mentioning in this context.

These models have unique property of partitioning even

from incompletely labeled moving object data.

3.5.2 Summarization Techniques

Spatio-temporal (ST) summarization is often per-

formed together with ST partitioning so that the ob-

jects within each partition/group can be summarized

by some “aggregated statistics” [50]. The primary ob-

jective of ST summarization is to find a compact as

well as informative description of an ST dataset. Consi-

dering all the different categories of underlying ST data

(e.g., spatial time series data, moving object/trajectory

data), the summarization techniques can be classified

into: distance-based, graph-based, helix-based, and

signature-based techniques (refer to Fig.10). Key prop-

erties of these techniques are presented in Table 9.

Though the graph-based techniques [77] are most

widely used for ST summarization, these suffer from

high computational cost for creating track similarity

index which requires computing the distance of each

node to the nearest node in the other tracks. This

limitation of graph-based model is resolved by cen-

troid methods [78] since these use matrix-view, instead
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Table 9. Summary of the State-of-the-Arts in Conventional Techniques for ST Summarization

Technique Key Feature Primary Application Area

Graph-based Suitable for moving object data; mainly focuses on determining “hot” trajectories
via frequent subgraphs, hierarchical clustering, density clustering, etc.; needs to
measure similarity between tracks

Mobility analysis,
transport system [77]

Centroid-based Suitable for moving object data; aims to generate summary of a group of moving
objects in terms of a set of representative centroid objects; uses matrix-based
view instead of a graph-based view

Mobility analysis,
transport system [78, 80]

Helix-based The spine of the helix describes the ST trajectory of an object’s center, while the
prongs describe the deformation of the object’s outline at specific time instances;
suitable for deformable objects, like spatial raster datasets

Urban planning and
development, public health,
video analysis, mobility
analysis

Signature-based Produces a family of data summaries or “signatures” that can effectively rep-
resent the actual data with much smaller storage footprint, while allowing for
efficient querying; used for spatial time series, and moving object data

Transport system, mobility
analysis [79]

of graph-view. The helix-based models are suitable for

spatial raster time series, capturing a variety of phe-

nomena at discrete temporal instances. These can also

be used for developing complex and efficient knowledge

bases. However, helix-based models suffer from com-

plex calculation of contour modeling. The signature-

based models [79] represent the ST summary in terms

of a unique characteristic/pattern of the data. Even-

tually, these reduce the storage requirements and also

support efficient query processing.

3.6 Spatio-Temporal Coupling and

Tele-Coupling Techniques

3.6.1 Coupling Techniques

As stated earlier, the spatio-temporal coupling

refers to the pattern of occurrence of two or more

spatio-temporal object/event types in close spatial and

temporal proximity. The common methods in this

regard can be categorized as per the ordering pat-

tern of the objects [8]. Some of these include mixed

drove spatio-temporal co-occurrence pattern mining

approaches, spatio-temporal sequential pattern min-

ing approaches, and cascading spatio-temporal pattern

mining approaches (refer to Fig.11). The key aspects of

each of the techniques are briefly described in Table 10.

The co-occurrence pattern mining techniques are

useful for identifying events or a subset of events that

occur together in both space and time (e.g., solar

events). However, defining the interest measure to find

prevailing ST co-occurrence patterns often becomes

computationally expensive when the spatio-temporal

data is massive. The issue can be handled by employ-

ing filter and refine algorithms [81]. The cascading pat-

tern mining techniques are applicable for events that

occur serially but are found to be located together (e.g.,

drunk driving incidence after and nearby to a bar clos-

ing). However, these suffer from expensive ST neigh-

borhood computation for evaluating interest measure,

which needs further research. The sequential pattern

mining techniques are used for mining totally ordered

patterns (e.g., sequence of visiting places in a region of

Couplings and Tele-Couplings Techniques

Tele-Couplings TechniquesCouplings Techniques

Filter and Refine Approach 

Wild Bootstrap Approach

Cone-Tree Based Approach

Mixed Drove Spatio-Temporal
Co-Occurrence Pattern Mining Approach

Cascading Spatio-Temporal
Pattern Mining Approach

Spatio-Temporal Sequential
Pattern Mining Approach

Fig.11. State-of-the-arts in conventional techniques for analyzing coupling/tele-coupling in ST data.
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Table 10. Summary of the State-of-the-Arts in Conventional Techniques for ST Coupling

Techniques Key Feature Primary Application Area

Co-occurrence pattern
mining

Used for unordered patterns and often useful for applications like tactic iden-
tification in games/battlefields, network planning, predator-prey interactions
tracking, etc; primarily based on the concept of representing the events in
terms of feature summary and grouping them based on some complex inte-
rest measure; applicable for ST events, ST time series, and also for moving
object data

Environmental study,
climatology [50, 81]

Cascading pattern
mining

Meant for partially ordered subsets of events; mostly based on directed acyclic
graph (DAG) based approaches; suffers from exponential cardinality of can-
didate patterns; suitable for ST events and spatial time series data

Understanding effect of
climate change, global
warming, spread of
multiple infectious disease,
etc. [82], homeland security

Sequential pattern
mining

Used for mining totally ordered patterns; especially applied on moving object
and transaction data; mostly based on the PrefixSpan algorithm or extension
of it; needs to define an appropriate significance measure

Mobility analysis,
transport system,
transaction system [50, 83]

interest) from the ST data. However, defining meaning-

ful significance measures and designing algorithm under

these measures become serious challenges. “K-function

statistics” can be used to overcome this issue.

3.6.2 Tele-Coupling Techniques

Discovering tele-coupling pattern is important es-

pecially in understanding global environmental change

and climate oscillations [84, 85]. In a broader sense,

spatio-temporal tele-coupling refers to “high correlation

across spatial time series at a long distance” [8]. Var-

ious approaches in these regard are mostly based on

ST auto-correlation analysis and can be broadly cate-

gorized into filter and refine based, cone-tree based, and

wild bootstrap approaches (refer to Fig.11). The major

challenges in tele-coupling pattern mining arise due to

time series length, numerous candidate pairs, and spu-

rious “high correlation” location-pairs. The filter and

refine based and cone-tree based approaches are used to

deal with the first two challenges by filtering out redun-

dant pair-wise correlation computation and using effi-

cient index structure, respectively. On the other side,

the wild bootstrap approaches are used to address the

challenge regarding spurious pairs of locations [11].

4 State-of-the-Art Deep Learning Techniques

for Analyzing Spatio-Temporal Data

In addition to the conventional statistical and

CI/AI-based techniques, recently deep-learning has

gained increasing research interest in the field of spatio-

temporal data analysis. Deep learning offers a set of

machine learning algorithms that attempt to “learn in

multiple levels, corresponding to different levels of ab-

straction or concepts” [86], and thereby can appropri-

ately utilize the huge set of available ST data. How-

ever, to the best of our knowledge, none of the existing

surveys has discussed on these techniques from the per-

spective of all the ST data analysis families. We, there-

fore, intend to present the state-of-the-art deep learning

approaches for ST data analysis in this separate section.

4.1 Deep Learning Approaches for

Spatio-Temporal Prediction

Most of the deep learning approaches for spatio-

temporal prediction are based on convolutional neu-

ral networks (CNNs), deep neural networks (DNNs),

recurrent neural networks (RNNs), and stacked auto-

encoders (SAEs). A summary of all the articles em-

ploying these models is presented in Table 11.

The DNN models applied in the domain of ST pre-

diction generally appear with additional functionali-

ties like feature-level data fusion [91], convolution [90],

etc. which are mainly utilized to learn the spatial and

temporal dependencies. However, because of using a

large number of parameters, these often suffer from

large memory consumption and over fitting problems.

Similar problems are also encountered in SAE models

though these have advantage of representing features in

a more compact way even from noisy inputs [94]. Con-

trarily, with the concept of weight sharing and pool-

ing, the CNNs reduce the parameter as well as com-

putational time requirements. In addition, these are

translation-invariant and are intrinsically able to learn

local dependencies using convolution. The recent re-

search also shows that CNNs with added residual unit

(e.g., ST-ResNet [89]) are also able to effectively cap-

ture large-scale ST dependencies through deep convo-

lutional network architecture. Eventually, these models

become suitable for ST prediction (classification) of im-

agery or video data [87]. Nevertheless, the vanilla CNN
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Table 11. Summary of Articles Employing Deep Learning for ST Prediction

Technique Task Dataset

CNN-based multi-granular deep Prediction of actions in videos [87] UCF-101, Sports-1M

architecture (1D/2D/3D CNN, Prediction of traffic speed [88] Own (Beijing transportation network)

ST-ResNet) Prediction of crowd flow [89] TaxiBJ, BikeNYC

DNN Prediction of traffic/crowd flow [90] TaxiBJ15, TaxiGY16, LoopGY16, BikeNYC14

Prediction of crime occurrence [91] Own (from Chicago, Illinois)

RNN (LSTM, structured-RNN) Travel speed prediction [92] Own (from Beijing and Shanghai)

Driver maneuver anticipation [93] CAD-120

SAE Traffic flow prediction [94] Data from Caltrans Performance
Measurement System (PeMS)

Prediction of air quality [95] Air quality data from the Ministry of
Environmental Protection of China

DSN and its variants
(Deep-STEP, Deep-STEP FE)

Prediction of vegetation index [96, 97] Landsat TM-5 satellite imagery (United States
Geological Survey)

models consider only the current input and cannot han-

dle the sequential data, which certainly restricts their

effectiveness during regression. The RNN-based mod-

els, on the other hand, can utilize their internal mem-

ory for remembering the sequence and can sometime

perform better than CNNs, especially in case of ST re-

gression. In addition, the structured RNNs can learn

high-level spatio-temporal structures [93]. Though the

standard RNN models are prone to become the victim

of vanishing/exploding gradient problem which confines

them learning long-term dependencies, the issue is re-

solved when RNN-LSTM (long-short term memory) is

applied [92, 98]. Another new deep learning model used

in ST prediction is the deep stacking networks (DSNs).

Though these models require a predefined neighbor-

hood coverage to learn the spatial dependencies, the

recent studies show that the spatio-temporal extensions

of DSNs [96, 97] can perform better than DNNs while pre-

dicting spatial raster time series.

4.2 Deep Learning Approaches for

Spatio-Temporal Change Pattern Analysis

Most of the deep learning approaches for ST

change pattern analysis have been developed for an-

alyzing satellite remote sensing imagery to under-

stand land-cover change [99–104] and for analyzing video

data to recognize human action and various other

events/objects [105, 106], evolving over time and space.

The deep learning approaches employed in analyzing

remote sensing imagery are mostly based on convolu-

tional neural networks (CNNs), stacked auto-encoders

(SAEs), stacked denoising auto-encoder (SDAE), recur-

rent neural network (RNN) with long short-term mem-

ory (LSTM) architecture, ID-LSTM (Incremental Dual

LSTM), and deep belief network with cellular automata

based architecture (DBN-CA). In the other case, the

majority of the deep learning techniques applied for

analyzing the video data are based on convolutional

neural networks (CNNs), very deep convolutional net-

work (VGGNets), two-stream convolutional network,

etc. More on deep network based video recognition can

be found in the work of [87]. A summary of various

articles using these techniques is provided in Table 12.

In the case of ST change pattern analysis, an appro-

priate modeling and simulation of the change plays a

critical role, and accordingly, the majority of the deep

learning based change pattern analysis techniques are

found to have hybrid features inherited from two or

more base techniques. For example, the DBN-CA [110]

has excellent feature detection capability, achieved by

means of unsupervised learning of DBN. Additionally,

it also offers the best transition rules as captured using

the cellular automata (CA). ID-LSTM [109] uses a com-

bination of two LSTM architectures in order to keep

account of long-term and short-term variations sepa-

rately. This becomes extremely useful for dealing with

newly evolving class/patterns. However, in this case,

the complexity of the model increases since it needs

to deal with a large number of parameters. On the

other side, in order to overcome the limitation of vanilla

CNN models in dealing with sequential changes in ST

time series (e.g., video streams), the 3D CNNs [108],

VGGNets [107], and two-stream ConvNets [106] are pro-

posed. Though these models suffer from the drawback

of increasing complexity and large computational time,

they show promising performance to recognize change

pattern from multi-frame optical flow of a video stream.
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Table 12. Summary of Articles Employing Deep Learning for ST Change Pattern Analysis

Technique Task Dataset

CNN models Land-cover change pattern learning [99] Landsat-7 ETM+ satellite image

(Vanilla CNN [99], Large-scale video classification [105] CSports-1M, UCF101

ConvNet [105], 3D CNN [108], Land-cover mapping from satellite images [100] 3A multispectral RapidEye imagery

Two-stream ConvNets [106], Video classification, action recognition [106] HMDB51, THUMOS14, ActivityNet

VGGNets [107]) Complex video action recognition [107] UCF101, HMDB51

Motion analysis in video data [108] UCF101, HMDB51, ACT

SAE/SDAE Change pattern analysis from large-scale remote
sensing data [101]

Time series of Landsat imagery and MODIS
imagery

Multi-spatial-resolution change detection from
remote sensing images [102]

Ottawa, Stone-Gate, Sardinia, and
Yellow-River dataset

Urban area classification [103] UAVSAR L-Band dataset, ALOS-2 L-Band
dataset

LSTM models
(RNN-LSTM, ID-LSTM)

Binary and multi-class land-cover change
detection [104]

Landsat 7 ETM+ satellite imagery and EO-1
Hyperion dataset

Land cover classification, prediction [109] MODIS dataset (NASA satellite)

DBN-CA Urban growth pattern simulation [110] Landsat 7 ETM+, Landsat TM, and Landsat
8 satellite imagery

4.3 Deep Learning Approaches for Rest of the

Spatio-Temporal Data Analysis Families

Application of deep learning in the other families

of ST data analysis (ST outlier and hotspot detection,

ST partitioning and summarizaion, ST coupling/tele-

coupling, etc.) is not very common. Only a very few re-

search studies can be found in literature. The majority

of the existing deep learning models for spatio-temporal

outlier detection are based on autoencoder or its hy-

brid spatio-temporal extensions. For example, Xu et

al. [111] used stacked autoencoder network to automati-

cally learn both appearance and motion representations

of scene activities for video anomaly detection. Zhao

et al. [112] proposed a Spatio-Temporal Auto-Encoder

model (STAE) which is extremely useful for detecting

anomalies from real-world and complex video scenes

with cluttered backgrounds. Kieu et al. [113] proposed

a 2D convolutional autoencoder and an LSTM autoen-

coder for detecting outliers from multidimensional time

series, like driving data. Zhu and Newsam [114] deve-

loped a deep convolutional network based classifier that

detects sentiment hotspots and predicts the emotion

conveyed by geotagged images. However, deep learn-

ing for ST data analysis is still at primitive stage and

needs to be explored further. The statistics of various

deep learning approaches used for analyzing ST data is

depicted in Fig.12.
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Fig.12. Statistics of the various deep learning approaches used for analyzing ST data.
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5 Spatio-Temporal Data Analysis in Various

Application Areas

Analyzing spatio-temporal data is crucial for many

of the application domains that frequently need to take

decisions based on large spatial and spatio-temporal

datasets. This section provides an overview of some of

such domain specific problems and the applications of

spatio-temporal data analysis techniques to resolve the

respective issues. The overall discussion may help in

stimulating research initiatives and exploring prospec-

tive avenues in spatio-temporal data analysis which are

still unexplored. Thirteen different application domains

have been considered in this regard. For each applica-

tion domain we discuss the following three aspects:

• nature/characteristics of the data;

• challenging issues in analyzing the data;

• existing data mining techniques.

1) Climatology/Meteorology. The climatological/

meteorological data, either collected from the sensor

networks or recorded by the spatially distributed mete-

orological stations or derived from the satellite remote

sensing imagery, are by nature spatio-temporal data,

more specifically, spatial time series data. The major-

ity of the researches in this domain focus on the spatio-

temporal prediction of climatological/meteorological

time series and also on the detection and analysis of the

pattern in climate change. Regarding spatio-temporal

prediction of climatological/meteorological data, the

approaches proposed in [19, 32, 36, 46, 96] are some sig-

nificant and recent work. Most of these approaches are

CI-based or spatio-temporally extended statistical ap-

proaches and are found to perform better than tradi-

tional time series prediction techniques. A comparative

study of a few of these techniques is provided in [3].

On the other side, the recently proposed ST change

pattern analyses on climatological/meteorological

data mostly use ST scan statistics [52], image

processing [115, 116], or geometric analysis based on mor-

phological operators [58]. Besides, the recent research

trend can also be found in identifying climate change

hotspot, outlier, coupling, etc., by analyzing the cli-

matological/meteorological data. For example, Wu et

al. [52] proposed a scan statistics based ST outlier detec-

tion approach which can discover an outlier pattern of a

weather phenomenon like El Nino Oscilliation; spatio-

temporal analysis techniques have been utilized in [117]

for modeling and analyzing urban heat island; Huang

et al. [118] used ST analysis to detect coupling in climate

data, in the form of sequential pattern. Further, the

recent researches show that the key challenge in ana-

lyzing climatological data arises mainly due to inherent

chaotic nature and uncertainty present in the data,

which may be well tackled by incorporating appro-

priate domain knowledge [36] and integrating scientific

theory [16].

2) Hydrology. Analyzing spatio-temporal variability

of various hydrological processes, and modeling hydro-

logical responses to the natural and anthropogenic acti-

vities at different spatio-temporal scales have gained

increasing research interest in recent days. Apart

from the existing hydrological models (e.g., SWAT),

there is an emerging tendency to employ various data-

driven approaches for these purposes [41]. The major-

ity of these approaches are based on pure ANN or its

combination with other intelligent techniques [119], like

echo state network (ESN) [27], adaptive network-based

fuzzy inference system (ANFIS) [120], and Bayesian

neural network (BNN) [121]. The comparative study

in [28] demonstrates that, compared with the tradi-

tional conceptual models, ANN can offer superior per-

formance in modeling complex hydrological processes.

However, the effectiveness of an ANN-based model is

highly influenced by “proper understanding of the inter-

variable dependency” and the “extent of knowledge re-

garding functionality of neural network” [39]. There-

fore, recently, authors in [39] took an attempt to use

probabilistic graph-based approach (based on spatial

Bayesian network or SpaBN) to model reservoir water

dynamics. More Bayesian and ANN-based approaches

used in hydrology can be found in [122] and [123], re-

spectively. However, since the hydrological processes

are intrinsically dynamic and extremely complex, com-

bining both physical and data-driven approaches for

modeling hydrological process is expected to be more

effective.

3) Environment and Ecology. With the aim of pro-

tecting and restoring the natural environment, the ap-

plication of spatio-temporal analysis in environmental

and ecological management has gained rising popula-

rity in recent days. Some of the key objectives in these

studies remain in finding the spatial change patterns

of ecosystems [124, 125], analyzing the predatory impact

and the mutualisms between various organisms, moni-

toring the dynamics (such as shrinking and expansion)

of certain land cover types like forest/desert, studying

the impact of climate change as well as human acti-

vities on eco-system [126], etc. Apart from all these

studies on change pattern analysis, research is also

going on to study the coupling and tele-coupling be-
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tween globalization/urbanization and the state of eco-

environment [85, 127]. However, the advancement of ST

analysis in this domain is significantly affected by diffe-

rent technical challenges due to heterogeneous and dis-

tributed nature of the data and also because of various

sociological challenges like insufficient rewards for data

collection or sharing.

4) Medical Science and Public Health. The appli-

cations of ST data analysis in the domain of medi-

cal science can be broadly classified into: applications

on clinical medicine which deal with the health issues

from individual perspective, and applications on com-

munity medicine or public health which deal with the

health issues from the perspective of populations. The

majority of the research studies on individual medical

data intend to study the cross-sectional medical imag-

ing (MRI scan, PET scan) or other kinds of spatial

time series (e.g., ECG) for detecting chronic diseases

such as Alzheimer’s disease, multiple sclerosis, etc., di-

agnosing abnormal health conditions like arrhythmia,

and monitoring abnormalities like growth of brain tu-

mors, proliferation of cancer cells, etc. in the human

body [128, 129]. All these studies mainly fall under the

category of ST change pattern analysis and ST out-

lier detection. On the other side, the mission of public

health data analysis [130, 131] is mainly to monitor the

epidemic disease outbreak for identifying the regions

with a high risk of infection and thereby to help in

taking adequate measures accordingly [132, 133]. These

can also be viewed as ST pattern analysis and out-

lier discovery problems, and have gained growing re-

search interest in present days. However, the hete-

rogeneous unstructured nature of the data and various

privacy/security concerns impose critical challenge in

flourishing ST data analysis in this domain.

5) Transport System. Of late, the spatio-temporal

analysis has gained increasing research interest in the

field of transport system as well. The objective is to

analyze the avalanche of data collected from global

positioning system (GPS)-based receivers, cameras,

inductive-loop detectors, microwave detectors, etc., and

to generate useful insights for enhancing transportation

system performance, strengthening travel security, and

offering more options to travelers. Based on the ulti-

mate objective, various applications in this regard can

be classified into four broad categories, namely, travel

management (e.g., travel time prediction, motion track-

ing, short-term traffic forecasting [134]), congestion con-

trol (e.g., congestion detection, traffic flow prediction,

congestion propagation pattern analysis, abnormal

event sensing [94, 135]), route planning (e.g., personal-

ized route planning [136, 137], context-aware routing [138],

path finding [139], path selection [140]), and accident

management (e.g., bus route modification, bicycle cor-

ridor selection, analyzing driving behavior [141, 142]).

Heterogeneous traffic patterns at different road seg-

ments, data sparseness and distribution skewness with

respect to large road network, causal influence from ex-

ternal factors, etc., are some key issues imposing sig-

nificant challenges on ST analysis for transport system

data.

6) Urban Planning and Development. The major-

ity of the researches on spatio-temporal analysis in this

domain focus on two key aspects, namely urban growth

monitoring and public welfare. The existing studies on

urban sprawl or growth monitoring are mostly based on

ST analysis of satellite remote sensing imagery and the

population data. In this regard, the studies in [99,143]

are worth mentioning. Some of these studies also dis-

cuss on ST coupling between urbanization and state

of the eco-environment [85]. On the other hand, the re-

search studies on public welfare mainly use vector data,

like GPS traces, thematic maps, as collected from mo-

bile devices, sensor networks, or the respective monitor-

ing stations/organizations, to generate new insights and

aid in improving the quality of city life. Traffic mana-

gement and transportation planning [144], power sup-

ply and energy management [145], water supply network

monitoring, education and health management [146],

etc. are some important applications in this respect.

In all the above cases, the huge volume of the availa-

ble data and the lack of proper validation mechanism

impose substantial challenge during ST analysis.

7) Finance and Economy. The application of ST

data analysis in the domain of finance and economy

is mostly visible in analyzing real estate or housing

price. In general, the financial data, like stock mar-

ket price, share index, stock exchange index, etc. are

considered to be purely temporal, and accordingly, a

majority of the existing researches in this regard fall un-

der the category of time series analysis without consi-

dering any spatial aspects. However, the real estate

price or housing price is a category of financial data

which is significantly affected by the recent selling prices

of the nearby real estate/houses, and therefore, promi-

nently shows spatio-temporal dependencies among such

prices [147]. The studies in [148] and [149] are worth

mentioning in this regard. These mainly belong to the

category of ST change pattern analysis and ST pre-

diction considering statistical regression models. How-
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ever, since the individual real estate/housing sales oc-

cur at irregular time intervals, modeling such processes

considering “standard discrete time series” becomes ex-

tremely difficult [147]. Similar to the real estate/housing

price data, the economical data, such as the average an-

nual income, extensively depends on the spatial aspects.

8) Bio-Informatics and Molecular Biology. Spatio-

temporal analysis in bio-informatics and molecular bi-

ology is a highly promising but still an under-explored

research area because of various challenging issues like

rapidly growing volume and diversity of biomedical

data, heterogeneous and ill-defined data structure, lack

of appropriate tools/techniques for access and visua-

lization of complex biological information, and so on.

The majority of the researches in these domains are

on analyzing the spatio-temporal dynamics at the cel-

lular and molecular level [150, 151]. Besides, a few stu-

dies are also involved in learning the structural fea-

tures of the molecules and predicting the same at cer-

tain context [152]. Moreover, recently deep learning ap-

proaches have gained popularity in these domains as

well [153]. A compact discussion on the application of

deep learning techniques in bio-informatics and molec-

ular biology can be found in [154] and [155].

9) Location-Based Services (LBSs). LBSs are

software-level services that utilize real-time location

data, mostly from the mobile devices or smartphones,

to provide a service or information that is relevant

to the user at that location. LBS can be used in a

variety of contexts, including transportation, health,

work, entertainment, personal life, and so on. Typi-

cally, the data used by LBS can be broadly categorized

into a) GPS data that is obtained through the global

positioning functionality and internet technology em-

bedded in the mobile device of the user, and b) par-

ticipatory sensing data that is collected and shared

by a group of active participants, through their per-

sonal mobile devices and web services [156]. Some typi-

cal examples of LBS include local business search and

marketing (e.g., optimal location search for retail store

placement [157]), point of interest searching (e.g., search-

ing for ATMs, restaurants, cafes, within a user-specified

range of distance [158]), e-marketing, social network-

ing (e.g., sharing geo-tagged photos/messages among a

group of people [159, 160]), automotive traffic monitoring

(e.g., vehicle tracking, inferring traffic congestion [161]),

route finding (e.g., shortest path finding, most visited

route finding [162]), emergency management (e.g., ac-

cident management, disaster management, and health

management [163]). The majority of these studies are

involved in analyzing the location-related data or user

trajectories, to get a better understanding of the

spatial/spatio-temporal patterns/relationships.

However, one of the significant challenges faced by

location-based services is the issue of privacy preser-

vation which arises because of publishing the personal

location information/trajectories to a third party or to

the public for data analysis purpose [164]. The other

challenges are imposed by the huge volume of data log,

heterogeneous data from multiple data sources, issue of

real-time data processing, etc.

10)Mobility Analysis. With the rapid dissemination

of location-aware data generated by various technolog-

ical infrastructures such as GPS positioning and wire-

less networks, the mobility analysis has been notably

promoted in recent days. Huge volume of such spatio-

temporal data, especially the tracking records of human

activities, are available and these offer potential oppor-

tunities to assess the lifestyle, habits, and demands of

citizens, in terms of mobility. Over the last few years,

researchers and knowledge extraction communities have

devised a number of techniques and models for ana-

lyzing movement patterns from raw GPS traces. Fur-

ther, recently, a new promising area of research has

been emerged to provide “applications with richer and

more meaningful knowledge about movement”, which

is called semantic trajectory analysis [71]. This is ac-

complished through amalgamation of raw mobility data

with relevant contextual information. In any case, the

ultimate objective is to understand the individuals mo-

bility behavior and aid in various location-based ser-

vices. Diverse range of application of spatio-temporal

analysis with movement data can be found in the litera-

ture. Next location prediction, passenger finding/taxi

finding [165], user profiling/categorization [166], driving

behavior analysis [167], crowd behavior/movement pat-

tern analysis, transportation mode detection [168], real

time detection of anomalous trajectory [67], etc. are

some crucial examples in this regard. More on trajec-

tory data mining and semantic trajectory data mining

can be found in the work of [169] and [71] respectively.

However, various issues, like real-time processing of

avalanche of data, efficient storage and retrieval of tra-

jectory traces, scarcity of labeled and clean GPS data,

privacy concern due to rapid GPS data sharing, impose

critical challenge in extracting behavioral patterns and

implicit information from mobility data.

11) Online and Social Network. With the increasing

accessibility of mobile devices equipped with Internet

connections, GPS sensors, and many other advanced
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technologies, the number of users actively participat-

ing in creation, assembling, and dissemination of local

knowledge or spatial/geographic information is grow-

ing rapidly. Various social network sites, like Twit-

ter, Facebook, Flickr, and their evolution into location-

based social networks play a significant role in attract-

ing millions of users in this context. Now, the spatial

information that can be harvested from social media

feeds does not fall under the category of volunteered

geographic information [170], since it remains embed-

ded in the content of these feeds and not consciously

volunteered by the users. The geotagged photo is a

typical example in this regard. The key challenge in

analyzing such spatio-temporal data arises because of

real-time flow, constantly increasing volume, and het-

erogeneity of the data. The social media feeds are com-

prised of diverse categories of data (image/photo, text,

video, etc.) from different platforms and the data are

by nature unstructured and ill-defined, which impose

significant challenge in data integration and extracting

meaningful patterns/semantics out of the data. The

majority of the research studies on social media data

are on event detection [171] and abnormality investiga-

tion to aid in disaster and emergency management [172],

traffic management, and disease/health management.

Attempts have also been made to forecast ST event by

analyzing social media data [173]. Recent research trend

also shows an increasing interest in analyzing user be-

havioral pattern [174] and sentiment from the social me-

dia feeds [114]. A more systematic review of ST analysis

on social media data can be found in [175].

12) Homeland Security. The application of spatio-

temporal analysis for homeland security is mostly found

in monitoring and controlling crime occurrence and ter-

rorist attack in any region. With the increasing ability

of collecting and storing detailed data tracking crime

occurrence, a considerable amount of ST data is availa-

ble with several countries and organizations. Analyz-

ing the huge volume of crime data can help to better

understand the patterns in criminal activities and to

further predict crime hotspots in future, so that the

police department can take adequate measures, like re-

vising patrol strategies, improving street lighting, and

investing surveillance cameras with night vision capabi-

lity. The majority of the research studies on crime data

are found in the form of crime pattern analysis [176],

crime hotspot detection [70], and eventual prediction of

the same for future [91, 177]. One of such interesting pat-

terns as identified by the researchers is high concentra-

tion of vehicle crimes at night in residential neighbor-

hoods, and during the mid-day time in nonresidential

areas. Some studies also found an increase in domestic

violence during the summer months and an increase in

commercial robberies during the winter. However, the

research challenges still arise due to lack of required

data for conducting comprehensive analysis.

The overall statistics from the perspective of each

considered domain has been presented in our supple-

mentary document 1○. Further, a summary of popu-

lar publicly available ST datasets over diverse domains,

along with the indication of suitable ST analysis family,

is presented in Table 13.

6 Recent Trend and Future Scope of Work

After studying the data-driven approaches for

spatio-temporal analysis, we can observe that ST ana-

lysis is still a widely open domain for research, and

there are several relevant issues that require further ex-

ploration. In this section, we summarize a few of these

research directions, including visual analytics, hierar-

chical modeling, data sparseness handling, deep learn-

ing, participatory sensing, theory-guided data science,

etc., which have gained increasing research interest in

recent days and have ample scopes to be explored in

future.

6.1 Visual Analytics

Visual analytics can be defined as an approach that

combines visualization with human perception and data

analysis. The recent advent of visual analytics is mainly

fostered by the need of appropriate tools to handle mas-

sive amounts of spatial/spatio-temporal data. Visuali-

zation gives a basic view of these huge volumes of data,

from which the human gain further insights by applying

the power of intuition. Then these human-generated

insights are transformed into knowledge which helps to

further carry out exploratory data analysis using availa-

ble techniques. Thus, visual analytics has recently be-

come a promising approach with a wide applicability

in planning and decision making at various domains.

Flow map, spatio-temporal graph [178], clustering [179],

generalization, aggregation, etc. are some currently

used approaches for visual analytics on moving object

data. A huge scope remains in exploring visual analy-

tics under various challenging issues including scala-

1○http://cse.iitkgp.ac.in/˜monidipa.das/Supplementary/JCST.pdf, Nov. 2019.
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Table 13. Publicly Available Datasets for Spatio-Temporal (ST) Analysis

Data Data Along with Source ST ST Change ST ST ST Partitioning ST Coupling

Category Prediction Pattern Outlier Hotspot and and

Analysis Detection Detection Summarization Tele-Coupling

ST event Crime 2○ 3○ √ √ √

data Disease 2○− 4○ √ √ √

Disaster 2○ 3○ √ √ √

Climate 2○ 3○ 5○− 7○ √ √ √

Environment and ecology 2○ 3○ √ √ √

Spatial Climate data 2○ 3○ 5○− 7○ √ √ √ √ √

time Hydrology data 2○ 3○ √ √ √

series Environment and ecology 2○ 3○ √ √ √ √

data Transportation 2○ 3○ 8○ √ √ √ √

Geospatial image series 5○ 9○ √ √ √ √ √

Medical Sc. & public health 3○ 10○ √ √ √

Urban planning 3○ 9○ √ √ √ √

Biology 4○ √ √ √

Finance and economy 3○ √ √

Location-based services 11○ √ √ √ √ √

Social network 12○ √ √ √ √ √

Crime 3○ √ √ √

Moving Cabspotting (USA) 11○ √ √ √ √ √

object/ Geolife (China) 11○ 13○ √ √ √ √ √

trajectory MDC (Switzerland) 11○ √ √ √ √ √

data T-drive (China) 11○ √ √ √ √ √

Brightkite (Global) 11○ √ √ √ √ √

Gowalla (Global) 11○ √ √ √ √ √

bility with data volume, data dimensionality, represen-

tation, integration of heterogeneous data, and so on.

6.2 Hierarchical Modeling

One of the significant challenges in analyzing ST

data is that such data often contain variability at sev-

eral spatial and temporal scales. The space-time vari-

ability is further complicated due to different spatial

behaviors at different time instants and vice versa. In

this regard, the hierarchical modeling is found to be an

effective means of handling this issue [180]. The essence

of hierarchical analysis remains in its ability to model

real-world scenario and handling complexity in the un-

derlying processes. Additionally, a Bayesian hierarchi-

cal model can deal with the uncertainty in data. From

the mid of the last decade, hierarchical modeling has

shown rising popularity, especially in the domains of en-

vironmental study [24] (e.g., study of formation patterns

2○ArcGIS Hub. https://hub.arcgis.com/pages/open-data, Nov. 2019.
3○US Government’s Open Data. https://www.data.gov/, Nov. 2019.
4○UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets.php, Nov. 2019.
5○Bureau of Meteorology, Australia. www.bom.gov.au, Nov. 2019.
6○Open Govt. Data India. https://data.gov.in/catalogs/ministry department/india-meteorological-department-imd, Nov. 2019.
7○Climate Research Unit. http://www.cru.uea.ac.uk/data/, Nov. 2019.
8○California Open Data Portal. https://data.ca.gov/dataset/caltrans-traffic-volumes, Nov. 2019.
9○USGS-EarthExplorer. https://earthexplorer.usgs.gov/, Nov. 2019.
10○Centres for Disease Control and Prevention. https://www.cdc.gov/dhdsp/maps/gisx/resources/geo-spatial-data.html, Nov.

2019.
11○Mobility Datasets-GitHub. https://privamov.github.io/accio/docs/datasets.html, Nov. 2019.
12○Stanford Large Network Dataset. https://snap.stanford.edu/data/, Nov. 2019.
13○Microsoft Research. https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/, Nov.

2019.
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of floods/droughts, ozone layer), ecology, and public

health and safety [180] (e.g., crime pattern discovery,

medical image analysis).

6.3 Handling Data Sparseness

Spatio-temporal data are often found to be sparse

because of missing measurements, and this is very

common for the moving object data, like GPS traces,

which is unlikely to cover all edges during all time

intervals [181]. Therefore, effectively dealing with the

sparseness in ST data has become one of the promi-

nent research areas of interest in recent years. Weight

propagation [182], Laplace smoothing [183], Latent Space

Model [184], Graph Convolutional Weight Completion

techniques [185], etc. are some state-of-the-art ap-

proaches proposed to address the challenges of data

sparseness in trajectory data. However, many of these

techniques ignore the temporal-dependencies in the

data, and thus, huge scopes remain in further exploring

this issue and coming up with improved models.

6.4 Deep Learning

Since the mid of the last decade, deep learning has

emerged as a new area of machine learning research and

within a few years it has been able to show significant

impact on a wide range of applications, including signal

processing, information retrieval, natural language pro-

cessing, text processing, multimodal information pro-

cessing, and so on. However, as discussed in Section 4,

the effectiveness of these algorithms on ST data ana-

lysis is still under-explored, since only a few researchers

have considered this direction mostly for ST prediction

and change pattern analysis purpose [87, 88, 100–102, 106].

Ample scopes remain in exploring deep learning for the

other kinds of ST data analysis, including ST hotspot

and ourlier detection, ST partitioning and summariza-

tion, ST coupling and tele-coupling, etc.

6.5 Participatory Sensing

Participatory sensing is a process in which indi-

viduals or communities use their personal mobile de-

vices and cloud/web services to collect, analyze, and

interpret data for systematically exploring interesting

aspects of the surrounding world. This is termed as

“citizen sensing”, “human-centric sensing”, “commu-

nity sensing”, etc., as well. The objective is to uti-

lize the real-time and the high-resolution spatial infor-

mation from social media, such as Twitter, for aiding

scientific research and decision making process. Par-

ticipatory sensing has already shown encouraging ef-

fect in several applications, including urban risk mana-

gement, urban temperature analysis, environmental

monitoring, chronic disease management, and climate

assessment [186]. Huge scopes remain in utilizing partic-

ipatory sensing for other applications of ST data ana-

lysis.

6.6 Modeling Based on Theory-Guided Data

Science

Incidentally, though data science models have shown

outstanding success in several domains, their applica-

tion is severely restricted in scientific problems that in-

volve complex physical phenomena. Further, since the

data science models act as a black boxes, they lack the

ability to deliver a mechanistic understanding of the

underlying processes and therefore cannot be used as a

basis for subsequent scientific developments. Therefore,

recently, the theory-guided data science has emerged as

a new paradigm with an aim to systematically integrate

scientific theories with data science models in the pro-

cess of knowledge discovery [187]. This new paradigm

has already begun to show promising performance in

solving diverse categories of complex scientific prob-

lems including novel patterns and relationship discovery

in climate science [188], density functional designing in

quantum chemistry, surface water dynamics estimation

in hydrology [189], etc.

7 Conclusions

In this article, we presented an overview of the state-

of-the-art spatio-temporal data mining techniques and

their applications in various domains. More than 300

papers, mostly from the last 10 years (2009-2018), have

been studied to provide a comprehensive review of the

present trend of research on six major families of ST

data analysis, and also to indicate various promising

directions of work in future. The research articles have

been considered from 13 different application areas and

various data-driven approaches have been categorized

into traditional/pure statistical, CI-based, and deep

learning based techniques. A detailed statistical ana-

lysis for this survey and the list of all the papers studied

for this purpose can be found in our online supplemen-

tary document (see Section 5). At the end of study,

it is clear that the data-driven modeling for ST data

analysis is still a widely opened field for research hav-

ing ample scopes, especially in further enhancing the

existing models with integrated scientific theories.
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Courcoul A, Gilbert M, Guérin J L, Paul M C. Spatiotem-

poral patterns of highly pathogenic avian influenza virus

subtype H5N8 spread, France, 2016 to 2017. Eurosurveil-

lance, 2018, 23(26): Article No. 1.

[132] Lai P C, Chow C B, Wong H T, Kwong K H, Kwan Y

W, Liu S H, Tong W K, Cheung W K, Wong W L. An

early warning system for detecting H1N1 disease outbreak

— A spatio-temporal approach. International Journal of

Geographical Information Science, 2015, 29(7): 1251-1268.

[133] Bisanzio D, Dzul-Manzanilla F, Gomez-Dantés H et al.

Spatiotemporal coherence of dengue, chikungunya and Zika

outbreaks in Merida, Mexico. PLoS: Neglected Tropical Dis-

eases, 2018, 12(3): Article No. 0006298.

[134] Vlahogianni E I, Karlaftis M G, Golias J C. Short-term

traffic forecasting: Where we are and where were going.

Transportation Research Part C: Emerging Technologies,

2014, 43: 3-19.

[135] Nguyen H, Liu W, Chen F. Discovering congestion propa-

gation patterns in spatio-temporal traffic data. IEEE

Transactions on Big Data, 2017, 3(2): 169-180.

[136] Lim K H, Chan J, Leckie C, Karunasekera S. Personalized

trip recommendation for tourists based on user interests,

points of interest visit durations and visit recency. Know-

ledge and Information Systems, 2018, 54(2): 375-406.

[137] Dai J, Yang B, Guo C, Ding Z. Personalized route recom-

mendation using big trajectory data. In Proc. the 31st IEEE

International Conference on Data Engineering, April 2015,

pp.543-554.

[138] Yang B, Guo C, Ma Y, Jensen C S. Toward personalized,

context-aware routing. The VLDB Journal, 2015, 24(2):

297-318.

[139] Yang B, Dai J, Guo C, Jensen C S, Hu J. PACE: A Path-

CEntric paradigm for stochastic path finding. The VLDB

Journal, 2018, 27(2): 153-178.

[140] Hu J, Yang B, Guo C, Jensen C S. Risk-aware path selec-

tion with time-varying, uncertain travel costs: A time series

approach. The VLDB Journal, 2018, 27(2): 179-200.

[141] Wang P, Fu Y, Zhang J, Wang P, Zheng Y, Aggarwal C.

You are how you drive: Peer and temporal-aware represen-

tation learning for driving behavior analysis. In Proc. the

24th ACM SIGKDD International Conference on Know-

ledge Discovery & Data Mining, August 2018, pp.2457-

2466.

[142] Morton J, Wheeler T A, Kochenderfer M J. Analysis of re-

current neural networks for probabilistic modeling of driver

behavior. IEEE Transactions on Intelligent Transportation

Systems, 2016, 18(5): 1289-1298.

[143] Subasinghe S, Estoque R C, Murayama Y. Spatiotempo-

ral analysis of urban growth using GIS and remote sens-

ing: A case study of the Colombo Metropolitan Area, Sri

Lanka. ISPRS International Journal of Geo-Information,

2016, 5(11): Article No. 197.

[144] Scheepens R, Hurter C, van de Wetering H, van Wijk

J J. Visualization, selection, and analysis of traffic flows.

IEEE Transactions on Visualization and Computer Graph-

ics, 2016, 22(1): 379-388.

[145] Voulis N, Warnier M, Brazier F M. Understanding spatio-

temporal electricity demand at different urban scales: A

data-driven approach. Applied Energy, 2018, 230: 1157-

1171.

[146] Padilla C M, Kihal-Talantikite W, Vieira V M, Rossello P,

Le Nir G, Zmirou-Navier D, Deguen S. Air quality and so-

cial deprivation in four French metropolitan areas — A lo-

calized spatio-temporal environmental inequality analysis.

Environmental Research, 2014, 134: 315-324.

[147] Smith T E, Wu P. A spatio-temporal model of housing

prices based on individual sales transactions over time.

Journal of Geographical Systems, 2009, 11(4): 333-355.

[148] Holly S, Pesaran M H, Yamagata T. The spatial and tem-

poral diffusion of house prices in the UK. Journal of Urban

Economics, 2011, 69(1): 2-23.
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