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ABSTRACT
This paper proposes a novel data-driven model (BESTED),
based on spatial Bayesian network with incorporated expo-
nential smoothing mechanism, for predicting precipitation
time series on daily basis. In BESTED, the spatial Bayesian
network helps to efficiently model the influence of spatially
distributed variables. Moreover, the incorporated exponential
smoothing mechanism aids in tuning the network inferred
values to compensate for the unknown factors, influencing
the precipitation rate. Empirical study has been carried out
to predict the daily precipitation in West Bengal, India, for
the year 2015. The experimental result demonstrates the
superiority of the proposed BESTED model, compared to
the other benchmarks and state-of-the-art techniques.

CCS CONCEPTS
• Information systems → Spatio-temporal systems;
Geographic information systems;

KEYWORDS
Spatial Bayesian network, Spatio-temporal prediction, Time
series, Exponential smoothing, Precipitation
ACM Reference format:
Monidipa Das and Soumya K. Ghosh. 2017. BESTED: An Expo-
nentially Smoothed Spatial Bayesian Analysis Model for Spatio-
temporal Prediction of Daily Precipitation. In Proceedings of
SIGSPATIAL’17, Los Angeles Area, CA, USA, November 7–10,
2017, 4 pages.
https://doi.org/10.1145/3139958.3140040

1 INTRODUCTION
Prediction of environmental precipitation plays crucial role
in various disciplines, including climatology, hydrology, agri-
culture, transportation and so on. An accurate prediction of
precipitation rate can facilitate in improving the outcomes
of flooding model, runoff model, crop-growth model etc. and
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eventually may help in socioeconomic development of a re-
gion. However, precipitation is a complex spatio-temporal
phenomena. In order to properly model this process, signifi-
cant efforts have been made till date.

The proposed BESTED (spatial Bayesian network with
Exponential smoothing mechanism for Spatio-Tem-poral prED-
iction) is a probabilistic, data-driven computational approach,
which aims at overcoming some of the major challenges,
faced by probabilistic graphical models (like BNs) in spatio-
temporal prediction. The overall prediction problem, associ-
ated challenges, and the contributions of the present work
are discussed in the subsequent subsections.

1.1 Problem Statement and Challenges
The prediction problem in the present context can be formally
defined as follows:

∙ Given, historical daily time series data set over pre-
cipitation and other influencing meteorological fac-
tors, corresponding to a set of 𝑙 spatial locations 𝐿 =
{𝑙1, 𝑙2, · · · , 𝑙𝑙} for previous 𝑡 years: {𝑦1, 𝑦2, · · · , 𝑦𝑡}. The
problem is to determine the daily time series of precip-
itation for any location 𝑥 ∈ (𝐿 ∪ 𝑍) for future 𝑚 years{︀

𝑦(𝑡+1), ..., 𝑦(𝑡+𝑚)
}︀

. Here, 𝑍 is a set of 𝑘 new locations
{𝑧1, 𝑧2, ..., 𝑧𝑘}, such that 𝑧𝑖 /∈ 𝐿, for 𝑖 = 1 to 𝑘, and 𝑚
is a positive integer, i.e. 𝑚 ∈ {1, 2, 3, · · · }.

The major challenges in such prediction problem arise mainly
due to the spatio-temporal nature of the data involved. Two
of these key challenges are described below.
1) Challenge due to influence from spatially distributed
environmental variables: Being a spatio-temporal vari-
able, the precipitation at a new location and/or at a new
time-instant can be predicted based on the historical data
of precipitation and other known influencing factors from
neighborhood locations. Though the graphical models, like
Bayesian networks, are highly suitable for representing such
inter-variable influences, yet, for each such influencing vari-
able, introducing representative nodes corresponding to each
spatial location leads to extremely high structural and algo-
rithmic complexity of these models (refer Figure 2 [left]).
2) Challenge due to unknown influencing factors: An-
other common challenge faced by many prediction models is
that the information about all factors influencing the predic-
tion variable is not known always. For example, precipitation
is not only dependent on the level of humidity, wind speed,
temperature, latitude, altitude etc., but also on several other
factors, like atmospheric current, ocean current and many
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Figure 1: Workflow of the proposed BESTED model

more, which may be even unknown. Therefore, training of
a prediction model in absence of these information always
leads to some imperfection in the prediction process.

1.2 Contributions
Our proposed prediction model addresses these two chal-
lenges by using spatial Bayesian network (SpaBN) [2] with
incorporated exponential smoothing mechanism. The key con-
tributions in this regard are as follows:

∙ proposing a data-driven model (BESTED) for spatio-
temporal prediction of daily precipitation time series;

∙ deriving an improved spatial BN analysis method with
integrated exponential smoothing mechanism;

∙ validating the efficacy of the BESTED model with an
empirical study on predicting daily precipitation in the
state of West Bengal, India;

∙ performing comparative study with the well-known
benchmarks (e.g. ARIMA, VARMA etc.), and state-
of-the-art data-driven prediction approaches, based
on ANN, SVM, standard BN, spatial BN, hierarchi-
cal Bayesian auto-regressive (HBAR) model, spatio-
temporal kriging (ST-OK) etc.

2 BESTED: A SPATIO-TEMPORAL
PREDICTION MODEL

As shown in the Figure 1, the flow of the BESTED model
consists of four major steps: 1) Data pre-processing, 2) Spatial
weight/importance calculation, 3) Spatial Bayesian network
analysis, and 4) Tuned inference generation.

2.1 Data pre-processing
The step of data pre-processing comprises of data discretiza-
tion and capturing short-term variation from the historical
time series of each influencing meteorological factors.

Discretization makes the historical data suitable for dis-
crete spatial Bayesian analysis in the subsequent step. If 𝑣𝑚𝑖𝑛

and 𝑣𝑚𝑎𝑥 are the minimum and maximum value observed in
the historical data of variable 𝑣, then the length/size (𝑆) of
the discretized range is calculated as: 𝑆 = 𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑅𝑐
, where,

𝑅𝑐 is the number of discretized ranges for the variable 𝑣.

On the other side, the step of capturing short-term climatic
variation helps to prepare an optimal size data set for training
purpose. For example, in general, the precipitation shows
monthly variation, and therefore, in case of prediction for a
particular day, the historical data of corresponding month is
more insightful, compared to the data of the whole year.

2.2 Spatial weight/importance calculation
This step aims at assigning some appropriate weight to each
of the locations 𝑙𝑖 at the neighborhood of the prediction
location 𝑥. The value of the weight reflects the strength of
spatial influence of the location 𝑙𝑖 on 𝑥. In the proposed
BESTED model, the spatial weight is estimated as follows:

Let 𝑆𝑊𝑖 be the spatial weight for neighboring location 𝑙𝑖,
𝑆𝐷𝑖 be the spatial distance between 𝑙𝑖 and prediction location
(𝑥), and 𝑁𝐶𝑜𝑟𝑟𝑖

𝑣 be the normalized correlation between the
meteorological variable 𝑣 at the location 𝑙𝑖 and that at the
prediction location 𝑥. Then the spatial weight (𝑆𝑊𝑖) for
location 𝑙𝑖 is estimated as follows:

𝑆𝑊𝑖 =
∑︀

𝑣
𝑁𝐶𝑜𝑟𝑟𝑖

𝑣 + 𝑁𝐼𝑆𝐷𝑖∑︀𝐾

𝑗=1(
∑︀

𝑣
𝑁𝐶𝑜𝑟𝑟𝑗

𝑣 + 𝑁𝐼𝑆𝐷𝑗)
(1)

where, 𝑁𝐼𝑆𝐷𝑖 is the normalized inverse spatial distance
between 𝑙𝑖 and 𝑥, such that 𝑁𝐼𝑆𝐷𝑖 ∈ [0, 1]; 𝐾 is the total
number of neighboring locations considered.

2.3 Spatial Bayesian network analysis
In this step, the BESTED model learns the spatio-temporal
inter-relationships between precipitation and the other influ-
encing factors. Then, based on given evidences, it infers the
precipitation rate value for the prediction day.

The process is carried out on the basis of spatial Bayesian
network (SpaBN) analysis, proposed in our earlier work [2].
For any spatially distributed variable, instead of introducing
representative node for each spatial location, as depicted in
Figure 2 [left], the SpaBN replaces all such nodes with a
single composite node (refer Figure 2 [right]), and thereby
significantly reduces the network complexity from both rep-
resentational as well as computational perspective.
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Figure 2: Complex causal dependency graph of stan-
dard BN and the equivalent SpaBN structure

2.3.1 Learning spatio-temporal inter-relationships among
precipitation and other known influencing factors. In order to
explain the SpaBN based learning process in BESTED model,
let’s consider the SpaBN structure in Figure 2, representing
causal dependency between temperature (𝑉1), humidity (𝑉2),
and precipitation (𝑉3), spatially distributed in seven locations.
Let 𝐾 be the number of neighboring locations considered.
Then, according to the principle of SpaBN, the marginal and
conditional probabilities are estimated in following manner
(example given with respect to the variable 𝑉3):

𝑃 (𝑉3) = 𝛾 ·

[︃
𝐾∑︁

𝑖=1

𝑃 (𝑉 𝑖
3 ) · 𝑆𝑊𝑖

]︃
(2)

𝑃 (𝑉3|𝑉1, 𝑉2) = 𝛾 ·

[︃
𝐾∑︁

𝑖=1

𝑛(𝑉 𝑖
1 , 𝑉 𝑖

2 , 𝑉 𝑖
3 )

𝑛(𝑉 𝑖
1 , 𝑉 𝑖

2 ) · 𝑆𝑊𝑖

]︃
(3)

where, 𝑆𝑊𝑖 is the spatial weight/importance of the 𝑖-th
neighboring location with respect to the prediction location;
𝑛(< · >) represents the total count of observation for the
variable value combination < · >.

In a similar fashion, in order to make prediction for any
day, the network is trained with the data of each previous year
(𝑦1, 𝑦2, · · · , 𝑦𝑡) separately, to learn the associated probabilistic
relationships among the variables during each year. At the
end of training for each year, the marginal and conditional
probability estimates 𝑃 𝑣

𝑝 (corresponding to each variable
𝑣) for the prediction year 𝑦𝑝 is generated by honoring the
temporal auto-correlation property [3], in following manner:

𝑃 𝑣
𝑝 =

𝑡∑︁
𝑖=1

(︃
𝑃 𝑣

𝑦𝑖
× 1/𝑑𝑖∑︀𝑡

𝑗=1 1/𝑑𝑗

)︃
(4)

where, 𝑑𝑖 is the temporal distance of training year 𝑦𝑖 from
prediction year 𝑦𝑝; 𝑡 is the total number of training years.

2.3.2 Generating inference on precipitation. Once the pa-
rameter learning is over, the inference for precipitation is
generated as per SpaBN by utilizing the spatial weights
(𝑆𝑊𝑖). For example, let the observed/ evidence variables are:
temperature (𝑉1) and humidity (𝑉2), from which the value of
precipitation (𝑉3) is to be inferred. Then, as per SpaBN,

Inferred value of precip. (𝑉3) =
𝐾∑︁

𝑖=1

𝑃 (𝑉 𝑖
3 |𝑉 𝑖

1 , 𝑉 𝑖
2 ) ·𝑆𝑊𝑖 (5)

where the value for 𝑃 (𝑉 𝑖
3 |𝑉 𝑖

1 , 𝑉 𝑖
2 ) can be determined from the

conditional probability table for precipitation (𝑉3). Among
these inferred values, the predicted value becomes the one
corresponding to the maximum probability estimate.

2.4 Tuning of inferred values
Significance: One of the major issues in probabilistic graph-
ical prediction model is that it is not always known precisely
which variable influences which other. In that case, due to
the lack of appropriate influencing nodes in the dependency
graph, the modeling of spatio-temporal interrelationships us-
ing graphical model becomes a challenging task. The absence
of major influencing variables/nodes in the graph may cause
inadequate parameter learning, which can eventually lead
to poor inference generation from the model. Therefore, the
objective in this step is to tune the inferred value of precipita-
tion, as generated by SpaBN, in such a way that the absence
of influencing nodes can be recompensed at some level. For
that purpose, the proposed BESTED model uses exponential
smoothing mechanism.

Let, at the end of training with data of past 𝑡 years, the in-
ferred value of precipitation for a particular day in prediction
year 𝑦(𝑡+1) is 𝐼(𝑡+1). Then, the tuned inferred value becomes:

𝐼 ′
(𝑡+1) = 𝐼(𝑡+1) + 𝜖𝑡 (6)

where, the 𝜖𝑡 is termed as the tuning component and it is
recursively determined as follows:

𝜖𝑡 = (𝛼𝐸𝑡−1) + (1 − 𝛼)𝜖𝑡−1 (7)
Here, 𝛼 ∈ [0, 1] is the smoothing factor and 𝐸𝑡−1 is the error
in inference corresponding to the same day in year 𝑦(𝑡−1) and
is calculated as follows:

𝐸𝑡−1 = 𝐴𝑐𝑡𝑢𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 − 𝐼 ′
𝑡−1 (8)

3 EXPERIMENTATION
The experimentation has been carried out in a spatial region
in the state of West Bengal, India (refer Figure 3). In order
to predict precipitation (P), two more meteorological parame-
ters, namely, temperature(T) and relative humidity (H), have
been chosen as the influencing co-variates. Historical data1

of 2010-2014, has been used to predict precipitation rate at
the Loc-1 [22.93∘N, 87.31∘E], for the year 2015. Nine more
locations have been chosen as the neighboring locations from
the study area and let these be denoted as Loc-2, Loc-3, and
so on. Estimation of spatial weight/importance with respect
to the prediction location Loc-1 is shown in the Figure 3.

The comparative study has been performed with eight
other pure statistical and computational intelligence based
techniques, including automated ARIMA, VARMA, HBAR
(Hierarchical Bayesian Auto-Regressive model [5]), ST-OK
(Spatio-Temporal Ordinary Kriging [1]), ANN, SVM, stan-
dard BN (SBN), and SpaBN. MATLAB (NNTool) has been
utilized to perform prediction using ANN, and for imple-
menting the SBN and SpaBN[2] based predictions, whereas
1http://research.microsoft.com/en-us/um/cambridge/projects/
fetchclimate/app/

http://research.microsoft.com/en-us/um/cambridge/projects/fetchclimate/app/
http://research.microsoft.com/en-us/um/cambridge/projects/fetchclimate/app/
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Figure 3: Study area in West Bengal (India)

to predict precipitation using A-ARIMA, VARMA, HBAR,
ST-OK and SVM, the R-tool (version 3.2.2) has been used.

Table 1: Comparative study of daily precipitation
rate prediction in West Bengal, India

Prediction Approaches Performance Metrics
NRMSD MAE MAPE 𝑅2

A-ARIMA 0.377 81.274 37.245 0.388
VARMA 0.406 93.19 55.731 0.387

ANN 0.190 28.286 20.277 0.912
SVM 0.066 14.437 9.651 0.994

HBAR 0.385 92.91 81.257 0.840
ST-OK 0.260 51.856 5.175 0.797

SBN 0.066 12.947 1.957 0.985
SpaBN 0.059 8.762 1.602 0.990

BESTED (proposed) 0.029 7.622 0.700 0.996

Figure 4: Percentage improvement of BESTED in
comparison with pure SpaBN based prediction

3.1 Results
The performance of BESTED model has been measured in
terms of four popular statistical measures: normalized root
mean square deviation (NRMSD) [2], mean absolute error
(MAE), mean absolute percentage error (MAPE)[4], and Coef-
ficient of determination or R-squared (𝑅2). The experimental
results have been summarized in Table 1 and in Figure 4.

Discussions: On analyzing the results, summarized in Table
1 and in Figure 4, the following inferences can be drawn:

∙ In almost all the cases of prediction, the proposed
BESTED has outperformed the other prediction tech-
niques by producing least NRMSD and least MAE
values. This proves the superiority of the BESTED
model in precipitation prediction.

∙ The MAPE measures also show a significantly lesser
value (0.70%) for the BESTED model, demonstrating
its efficacy in learning spatio-temporal dependency
between precipitation and other influencing factors.

∙ The high values of 𝑅2 (≈ 1) in every case also indicate
that the series predicted by the BESTED model have
the best match with the observed precipitation time
series of the corresponding year.

∙ Moreover, it is evident from Figure 4 that, in every
case, the proposed BESTED model has attained sig-
nificant improvement over the performance of pure
SpaBN based analysis which does not consider the in-
ference tuning process. The average improvement in
NRMSD, MAE, and MAPE are ≈51%, ≈13%, and
≈56%, respectively. This proves the effectiveness of
exponentially smoothing the inferred value of precipi-
tation, as adopted by the BESTED model.

4 CONCLUSIONS
The present work proposes BESTED, a data-driven model
for spatio-temporal prediction of daily precipitation time
series. The novelties in this work are twofold: 1) unlike the
existing probabilistic graphical models of precipitation pre-
diction, the proposed BESTED has an incorporated facility
of modeling influences from spatially distributed variables
in an efficient manner. This is achieved by utilizing the spa-
tial Bayesian network (SpaBN) analysis; 2) the integrated
exponential smoothing mechanism in BESTED model offers
a superior inference generation ability, which can compensate
for the absence of unknown factors influencing precipitation.
The experimental results are found to be encouraging. Most
significantly, the proposed exponentially smoothed spatial
Bayesian analysis in BESTED shows ≈ 56% improvement in
mean absolute percentage error of prediction, compared to
the standard spatial Bayesian network [2] based analysis.
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