
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 4 : Intermediate SQL

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan4.2Database System Concepts - 7th Edition

Outline

 Join  Expressions
 Views
 Transactions
 Integrity Constraints
 SQL Data Types and Schemas
 Index Definition in SQL
 Authorization



©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a result another 
relation.

 A join operation is a Cartesian product which requires that tuples in the 
two relations match (under some condition).  It also specifies the 
attributes that are present in the result of the join 

 The join operations are typically used as subquery expressions in the 
from clause

 Three types of joins:
 Natural join
 Inner join
 Outer join
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Natural Join in SQL

 Natural join matches tuples with the same values for all common 
attributes, and retains only one copy of each common column.

 List the names of students along with the course ID of the courses that 
they taken
 select name, course_id

from  students, takes
where student.ID = takes.ID;

 Same query in SQL with “natural join” construct
 select name, course_id

from student natural join takes;
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Natural Join in SQL (Cont.)

 The from clause can have multiple relations combined using natural join:

     select  A1, A2, … An

from  r1  natural join r2 natural join .. natural join rn

where  P ;
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Student Relation
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Takes Relation
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student natural join takes
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Dangerous in Natural Join

 Beware of unrelated attributes with same name which get equated 
incorrectly

  Example -- List the names of students along with the titles of courses that 
they have taken
 Correct version

           select name, title
       from student natural join takes, course
       where takes.course_id = course.course_id;

 Incorrect version

       select name, title
   from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where the 
student takes a course in a department other than the student's 
own department. 

 The  correct  version (above), correctly outputs such pairs.
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Natural Join with Using Clause

 To avoid the danger of equating attributes erroneously, we can use the 
“using” construct that allows us to specify exactly which columns should be 
equated.

 Query example

        select name, title
   from  (student natural join takes)  join course using (course_id)
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Join Condition (Cont.)

 The  on  condition allows a general predicate over the relations being 
joined.  

 This predicate is written like a where clause predicate except for the use of 
the keyword on.

 Query example

        select *
   from  student join takes on student_ID  = takes_ID

• The on condition above specifies that a tuple from student matches a 
tuple from takes if their ID values are equal.

 Equivalent to:

        select *
   from  student , takes 
   where  student_ID  = takes_ID
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Outer Join

 An extension of the join operation that avoids loss of information.
 Computes the join and then adds tuples form one relation that does not 

match tuples in the other relation to the result of the join. 
 Uses null values.
 Three forms of outer join:

 left outer join
 right outer join
 full outer join
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Outer Join Examples

 Relation course

 Relation prereq

 Observe that 

              course information is missing CS-347

              prereq information is missing CS-315
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Left Outer Join

 course natural left outer join prereq

 In relational algebra:   course ⟕ prereq
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Right Outer Join

 course natural right outer join prereq

 In relational algebra:   course ⟖ prereq
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Full Outer Join

 course natural full outer join prereq

 In relational algebra:   course ⟗ prereq
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Joined Types and Conditions

 Join operations take two relations and return as a result another 
relation.

 These additional operations are typically used as subquery expressions 
in the from clause

 Join condition – defines which tuples in the two relations match.
 Join type – defines how tuples in each relation that do not match any 

tuple in the other relation (based on the join condition) are treated.
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Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)
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Joined Relations – Examples 

 course inner join prereq on
course.course_id = prereq.course_id

 What is the difference between the above, and a natural join? 
 course left outer join prereq on

course.course_id = prereq.course_id
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Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)
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Views

 In some cases, it is not desirable for all users to see the entire logical 
model (that is, all the actual relations stored in the database.)

 Consider a person who needs to know an instructors name and 
department, but not the salary.  This person should see a relation 
described, in SQL, by 

             select ID, name, dept_name
             from instructor

 

 A view provides a mechanism to hide certain data from the view of 
certain users. 

 Any relation that is not of the conceptual model but is made visible to a 
user as a “virtual relation” is called a view.
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View Definition

 A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.  The view name 
is represented by v.

 Once a view is defined, the view name can be used to refer to the virtual 
relation that the view generates.

 View definition is not the same as creating a new relation by evaluating 
the query expression  
 Rather, a view definition causes the saving of an expression; the 

expression is substituted into queries using the view.
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View Definition and Use

 A view of instructors without their salary
 

              create view faculty as 
                      select ID, name, dept_name
                      from instructor

 Find all instructors in the Biology department
 

                select name
                from faculty
                where dept_name = 'Biology'

 Create a view of department salary totals
 

  create view departments_total_salary(dept_name, total_salary) as
       select dept_name, sum (salary)
       from instructor
      group by dept_name;
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Views Defined Using Other Views

 One view may be used in the expression defining another view 

 A view relation v1 is said to depend directly on a view relation v2  if v2 is 
used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1 depends 
directly to v2  or there is a path of dependencies from v1 to v2 

 A view relation v is said to be recursive  if it depends on itself.
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Views Defined Using Other Views

 create view physics_fall_2017 as
   select course.course_id, sec_id, building, room_number
   from course, section
   where course.course_id = section.course_id
              and course.dept_name = 'Physics'
              and section.semester = 'Fall'
              and section.year = '2017’;

 

 create view physics_fall_2017_watson as
    select course_id, room_number
    from physics_fall_2017
    where building= 'Watson';
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View Expansion

 Expand  the view :

          create view physics_fall_2017_watson  as
        select course_id, room_number
        from physics_fall_2017
        where building= 'Watson'

 To:

create view physics_fall_2017_watson as
    select course_id, room_number
    from (select course.course_id, building, room_number
          from course, section
          where course.course_id = section.course_id
               and course.dept_name = 'Physics'
               and section.semester = 'Fall'
               and section.year = '2017')
     where building= 'Watson';
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View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses of 
view relations.

 View expansion of an expression repeats the following replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi             
until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will terminate
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Materialized Views

 Certain database systems allow view relations to be physically stored.
  Physical copy created when the view is defined.
 Such views are called Materialized view:

 If relations used in the query are updated, the materialized view result 
becomes out of date
 Need to maintain the view, by updating the view whenever the 

underlying relations are updated.
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Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty 

                       values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion into  the instructor 

relation
 Must have a  value for salary.

 Two approaches
 Reject the insert
 Insert the tuple

('30765', 'Green', 'Music', null)

      into the instructor relation
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Some Updates Cannot be Translated Uniquely

 create view instructor_info as
      select ID, name, building
       from instructor, department
       where instructor.dept_name = department.dept_name;

 insert into instructor_info 

             values ('69987', 'White', 'Taylor');
 Issues

 Which department, if multiple departments in Taylor?
 What if no department is in Taylor?
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And Some Not at All

 create view history_instructors as
   select *
   from instructor
   where dept_name= 'History';

 What happens if we insert 

           ('25566', 'Brown', 'Biology', 100000)

       into history_instructors?
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View Updates in SQL 

 Most SQL implementations allow updates only on simple views 
 The from clause has only one database relation.
 The select clause contains only attribute names of the relation, and 

does not have any expressions, aggregates, or distinct 
specification.

 Any attribute not listed in the select clause can be set to null
 The query does not have a group by or having clause.
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Transactions

 A  transaction consists of a sequence of query and/or update 
statements and is a “unit” of work

 The SQL standard specifies that a transaction begins implicitly when an 
SQL statement is executed.  

 The transaction must end with one of the following statements:
 Commit work. The updates performed by the transaction become 

permanent in the database. 
 Rollback work. All  the updates performed by the SQL statements in 

the transaction are undone.
 Atomic transaction

 either fully executed or rolled back as if it never occurred
 Isolation from concurrent transactions
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Integrity Constraints

 Integrity constraints guard against accidental damage to the database, 
by ensuring that authorized changes to the database do not result in a 
loss of data consistency. 
 A checking account must have a balance greater than $10,000.00
 A salary of a bank employee must be at least $4.00 an hour
 A customer must have a (non-null) phone number
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 Constraints on a Single Relation 

 not null
 primary key
 unique
 check (P), where P is a predicate
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Not Null Constraints 

 not null
 Declare name and budget to be not null

          name varchar(20) not null
          budget numeric(12,2) not null
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Unique Constraints 

 unique ( A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …, Am  
form a super key.

 Super keys are permitted to be null (in contrast to primary 
keys).
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The check clause

 The  check (P) clause specifies a predicate P that must be satisfied by 
every tuple in a relation.

 Example:  ensure that semester is one of fall, winter, spring or summer
     
              create table section 
                   (course_id varchar (8),
                    sec_id varchar (8),
                    semester varchar (6),
                    year numeric (4,0),
                    building varchar (15),
                    room_number varchar (7),
                    time slot id varchar (4), 
                    primary key (course_id, sec_id, semester, year),
                    check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))
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Referential Integrity

 Ensures that a value that appears in one relation for a given set of 
attributes also appears for a certain set of attributes in another relation.
 Example:  If “Biology” is a department name appearing in one of the 

tuples in the instructor relation, then there exists a tuple in the 
department relation for “Biology”.

 Let A be a set of attributes.  Let R and S be two relations that contain 
attributes A and where A is the primary key of S. A is said to be a  
foreign key of R if for any values of A appearing in R these values also 
appear in S.
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Referential Integrity (Cont.)

 Foreign keys can be specified as part of the SQL create table  
statement 

         foreign key (dept_name) references department
 By default, a foreign key references the primary-key attributes of the 

referenced table.
 SQL allows  a list of attributes of the referenced relation to be specified 

explicitly.

       foreign key (dept_name) references department (dept_name)
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Cascading Actions in Referential Integrity

 When a referential-integrity constraint is violated, the normal procedure is to 
reject the action that caused the violation.

 An alternative, in case of delete or update is to cascade

            create table course (
             (…
              dept_name varchar(20),
              foreign key (dept_name) references department
                   on delete cascade
                   on update cascade,
                . . .) 

 Instead of cascade we can use :  
 set null,
 set default
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Integrity Constraint Violation During Transactions

 Consider:

      create table person (
     ID  char(10),

        name char(40),
        mother char(10),
        father  char(10),
        primary key ID,
        foreign key father references person,
        foreign key mother references  person)

 How to insert a tuple without causing constraint violation?
 Insert father and mother of a person before inserting person
 OR, set father and mother to null initially, update after inserting all 

persons (not possible if father and mother attributes declared to be not 
null) 

 OR defer constraint checking
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Complex Check Conditions

 The predicate in the check clause can be an arbitrary predicate that can 
include a subquery.

          check (time_slot_id  in (select time_slot_id from time_slot))

     The check condition states  that the  time_slot_id in each tuple in the 
section  relation is actually the identifier of a time slot in the time_slot 
relation.
 The condition has to be checked not only when a tuple is inserted or 

modified in section , but also when the relation time_slot changes 
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Assertions

 An assertion is a predicate expressing a condition that we wish the 
database always to satisfy.

 The following constraints, can be expressed using assertions:
 For each tuple in the student relation, the value of the attribute tot_cred 

must equal the sum of credits of courses that the student has completed 
successfully.

 An instructor cannot teach in two different classrooms in a semester in the 
same time slot

 An assertion in SQL takes the form:

        
create assertion <assertion-name> check (<predicate>);

create assertion credits earned constraint check

(not exists (select ID

from student

where tot cred <> (select coalesce(sum(credits), 0)

from takes natural join course

where student. ID = takes. ID 

and grade is not null and grade<> ’F’ )))



©Silberschatz, Korth and Sudarshan4.45Database System Concepts - 7th Edition

Built-in Data Types in SQL 

 date:  Dates, containing a (4 digit) year, month and date
 Example:  date '2005-7-27'

 time:  Time of day, in hours, minutes and seconds.
 Example:  time '09:00:30'         time '09:00:30.75'

 timestamp: date plus time of day
 Example:  timestamp  '2005-7-27 09:00:30.75'

 interval:  period of time
 Example:   interval  '1' day
 Subtracting a date/time/timestamp value from another gives an 

interval value
 Interval values can be added to date/time/timestamp values
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Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large 
object:
 blob: binary large object -- object is a large collection of uninterpreted 

binary data (whose interpretation is left to an application outside of the 
database system)

 clob: character large object -- object is a large collection of character 
data

 When a query returns a large object, a pointer is returned rather than the 
large object itself.
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User-Defined Types

 create type construct in SQL creates user-defined type
 

create type Dollars as numeric (12,2) final 
 

 Example:

               create table department
          (dept_name varchar (20),
          building varchar (15),
          budget Dollars);
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Domains

 create domain construct in SQL-92 creates user-defined domain 
types

 

create domain person_name char(20) not null
 

 Types and domains are similar.  Domains can have constraints, 
such as not null, specified on them.

 Example:

        create domain degree_level varchar(10)
       constraint degree_level_test
            check (value in ('Bachelors', 'Masters', 'Doctorate'));
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Index Creation

 Many queries reference only a small proportion of the records in a table. 
 It is inefficient for the system to read every record to find  a record with  

particular value
 An index on an attribute of a relation is a data structure that allows the 

database system to find those tuples in the relation that have a specified 
value for that attribute efficiently, without scanning through all the tuples of 
the relation.

 We create an index with the create index command

         create index <name> on <relation-name> (attribute);
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Index Creation Example

 create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

 create index studentID_index on student(ID)
 The query:

            select * 
       from  student
       where  ID = '12345'

     can be executed by using the index to find the required record,  without 
looking at all records of student
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Authorization

 We may assign a user several forms of authorizations on parts of the 
database.

 Read - allows reading, but not modification of data.
 Insert - allows insertion of new data, but not modification of existing 

data.
 Update - allows modification, but not deletion of data.
 Delete - allows deletion of data.

 Each of these types of authorizations is called a privilege. We may 
authorize the user all, none, or a combination of these types of privileges 
on specified parts of a database, such as a relation or a view.
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Authorization (Cont.)

 Forms of authorization to modify the database schema
 Index - allows creation and deletion of indices.
 Resources - allows creation of new relations.
 Alteration - allows addition or deletion of attributes in a relation.
 Drop - allows deletion of relations.
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Authorization Specification in SQL

 The grant statement is used to confer authorization

   grant <privilege list> on <relation or view > to <user list>
 <user list> is:

 a user-id
 public, which allows all valid users the privilege granted
 A role (more on this later)

 Example:
 grant  select on  department to Amit,  Satoshi

 Granting a privilege on a view does not imply granting any privileges on 
the underlying relations.

 The grantor of the privilege must already hold the privilege on the 
specified item (or be the database administrator).
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Privileges in SQL

 select: allows read access to relation, or the ability to query using the 
view

 Example: grant users U1, U2, and U3 select authorization on the 
instructor relation:

grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples
 update: the ability  to update using the SQL update statement
 delete: the ability to delete tuples.
 all privileges: used as a short form for all the allowable privileges



©Silberschatz, Korth and Sudarshan4.55Database System Concepts - 7th Edition

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user list>
 Example:

revoke select on student  from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee may hold.
 If <revokee-list> includes public, all users lose the privilege except those 

granted it explicitly.
 If the same privilege was granted twice to the same user by different 

grantees, the user may retain the privilege after the revocation.
 All privileges that depend on the privilege being revoked are also 

revoked.
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Roles

 A role is a way to distinguish among various users as far as what  these 
users can access/update in the database.

 To create a role we use:

        create a role <name>
 Example:

   create role instructor
 Once a role is created we can assign “users” to the role using:

 grant  <role> to <users>
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Roles Example

 create role instructor;
 grant instructor to Amit;
 Privileges can be granted to roles:

 grant select on takes to instructor;
 Roles can be granted to users, as well as to other roles

 create role teaching_assistant
 grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant
 Chain of roles

 create role dean;
 grant instructor to dean;
 grant dean to Satoshi;
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Authorization on Views

 create view  geo_instructor as
(select *
from instructor
where dept_name = 'Geology');

 grant select on geo_instructor to  geo_staff
 Suppose that a  geo_staff member issues

 select *
from geo_instructor;

 What if 
 geo_staff does not have permissions on instructor?
 Creator of view did not have some permissions on instructor?
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Other Authorization Features

 references privilege to create foreign key
 grant reference (dept_name) on department to Mariano;
 Why is this required?

 transfer of privileges
 grant select on department to Amit with grant option;
 revoke select on department from Amit, Satoshi cascade;
 revoke select on department from Amit, Satoshi restrict;
 And more!
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End of Chapter 4
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