
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4 : Intermediate SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan4.2Database System Concepts - 7th Edition

Outline

 Join Expressions
 Views
 Transactions
 Integrity Constraints
 SQL Data Types and Schemas
 Index Definition in SQL
 Authorization

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a result another
relation.

 A join operation is a Cartesian product which requires that tuples in the
two relations match (under some condition). It also specifies the
attributes that are present in the result of the join

 The join operations are typically used as subquery expressions in the
from clause

 Three types of joins:
 Natural join
 Inner join
 Outer join

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 7th Edition

Natural Join in SQL

 Natural join matches tuples with the same values for all common
attributes, and retains only one copy of each common column.

 List the names of students along with the course ID of the courses that
they taken
 select name, course_id

from students, takes
where student.ID = takes.ID;

 Same query in SQL with “natural join” construct
 select name, course_id

from student natural join takes;

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

Natural Join in SQL (Cont.)

 The from clause can have multiple relations combined using natural join:

 select A1, A2, … An

from r1 natural join r2 natural join .. natural join rn

where P ;

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

Student Relation

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Takes Relation

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

student natural join takes

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

Dangerous in Natural Join

 Beware of unrelated attributes with same name which get equated
incorrectly

 Example -- List the names of students along with the titles of courses that
they have taken
 Correct version

 select name, title
 from student natural join takes, course
 where takes.course_id = course.course_id;

 Incorrect version

 select name, title
 from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where the
student takes a course in a department other than the student's
own department.

 The correct version (above), correctly outputs such pairs.

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 7th Edition

Natural Join with Using Clause

 To avoid the danger of equating attributes erroneously, we can use the
“using” construct that allows us to specify exactly which columns should be
equated.

 Query example

 select name, title
 from (student natural join takes) join course using (course_id)

©Silberschatz, Korth and Sudarshan4.11Database System Concepts - 7th Edition

Join Condition (Cont.)

 The on condition allows a general predicate over the relations being
joined.

 This predicate is written like a where clause predicate except for the use of
the keyword on.

 Query example

 select *
 from student join takes on student_ID = takes_ID

• The on condition above specifies that a tuple from student matches a
tuple from takes if their ID values are equal.

 Equivalent to:

 select *
 from student , takes
 where student_ID = takes_ID

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 7th Edition

Outer Join

 An extension of the join operation that avoids loss of information.
 Computes the join and then adds tuples form one relation that does not

match tuples in the other relation to the result of the join.
 Uses null values.
 Three forms of outer join:

 left outer join
 right outer join
 full outer join

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Outer Join Examples

 Relation course

 Relation prereq

 Observe that

 course information is missing CS-347

 prereq information is missing CS-315

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

Left Outer Join

 course natural left outer join prereq

 In relational algebra: course ⟕ prereq

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

Right Outer Join

 course natural right outer join prereq

 In relational algebra: course ⟖ prereq

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Full Outer Join

 course natural full outer join prereq

 In relational algebra: course ⟗ prereq

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Joined Types and Conditions

 Join operations take two relations and return as a result another
relation.

 These additional operations are typically used as subquery expressions
in the from clause

 Join condition – defines which tuples in the two relations match.
 Join type – defines how tuples in each relation that do not match any

tuple in the other relation (based on the join condition) are treated.

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Joined Relations – Examples

 course inner join prereq on
course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?
 course left outer join prereq on

course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Views

 In some cases, it is not desirable for all users to see the entire logical
model (that is, all the actual relations stored in the database.)

 Consider a person who needs to know an instructors name and
department, but not the salary. This person should see a relation
described, in SQL, by

 select ID, name, dept_name
 from instructor

 A view provides a mechanism to hide certain data from the view of
certain users.

 Any relation that is not of the conceptual model but is made visible to a
user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 7th Edition

View Definition

 A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name
is represented by v.

 Once a view is defined, the view name can be used to refer to the virtual
relation that the view generates.

 View definition is not the same as creating a new relation by evaluating
the query expression
 Rather, a view definition causes the saving of an expression; the

expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

 create view faculty as
 select ID, name, dept_name
 from instructor

 Find all instructors in the Biology department

 select name
 from faculty
 where dept_name = 'Biology'

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as
 select dept_name, sum (salary)
 from instructor
 group by dept_name;

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2 if v2 is
used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1 depends
directly to v2 or there is a path of dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as
 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = 'Physics'
 and section.semester = 'Fall'
 and section.year = '2017’;

 create view physics_fall_2017_watson as
 select course_id, room_number
 from physics_fall_2017
 where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

View Expansion

 Expand the view :

 create view physics_fall_2017_watson as
 select course_id, room_number
 from physics_fall_2017
 where building= 'Watson'

 To:

create view physics_fall_2017_watson as
 select course_id, room_number
 from (select course.course_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = 'Physics'
 and section.semester = 'Fall'
 and section.year = '2017')
 where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses of
view relations.

 View expansion of an expression repeats the following replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi
until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will terminate

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be physically stored.
 Physical copy created when the view is defined.
 Such views are called Materialized view:

 If relations used in the query are updated, the materialized view result
becomes out of date
 Need to maintain the view, by updating the view whenever the

underlying relations are updated.

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty

 values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion into the instructor

relation
 Must have a value for salary.

 Two approaches
 Reject the insert
 Insert the tuple

('30765', 'Green', 'Music', null)

 into the instructor relation

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as
 select ID, name, building
 from instructor, department
 where instructor.dept_name = department.dept_name;

 insert into instructor_info

 values ('69987', 'White', 'Taylor');
 Issues

 Which department, if multiple departments in Taylor?
 What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as
 select *
 from instructor
 where dept_name= 'History';

 What happens if we insert

 ('25566', 'Brown', 'Biology', 100000)

 into history_instructors?

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple views
 The from clause has only one database relation.
 The select clause contains only attribute names of the relation, and

does not have any expressions, aggregates, or distinct
specification.

 Any attribute not listed in the select clause can be set to null
 The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

Transactions

 A transaction consists of a sequence of query and/or update
statements and is a “unit” of work

 The SQL standard specifies that a transaction begins implicitly when an
SQL statement is executed.

 The transaction must end with one of the following statements:
 Commit work. The updates performed by the transaction become

permanent in the database.
 Rollback work. All the updates performed by the SQL statements in

the transaction are undone.
 Atomic transaction

 either fully executed or rolled back as if it never occurred
 Isolation from concurrent transactions

©Silberschatz, Korth and Sudarshan4.34Database System Concepts - 7th Edition

Integrity Constraints

 Integrity constraints guard against accidental damage to the database,
by ensuring that authorized changes to the database do not result in a
loss of data consistency.
 A checking account must have a balance greater than $10,000.00
 A salary of a bank employee must be at least $4.00 an hour
 A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan4.35Database System Concepts - 7th Edition

 Constraints on a Single Relation

 not null
 primary key
 unique
 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.36Database System Concepts - 7th Edition

Not Null Constraints

 not null
 Declare name and budget to be not null

 name varchar(20) not null
 budget numeric(12,2) not null

©Silberschatz, Korth and Sudarshan4.37Database System Concepts - 7th Edition

Unique Constraints

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …, Am
form a super key.

 Super keys are permitted to be null (in contrast to primary
keys).

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 7th Edition

The check clause

 The check (P) clause specifies a predicate P that must be satisfied by
every tuple in a relation.

 Example: ensure that semester is one of fall, winter, spring or summer

 create table section
 (course_id varchar (8),
 sec_id varchar (8),
 semester varchar (6),
 year numeric (4,0),
 building varchar (15),
 room_number varchar (7),
 time slot id varchar (4),
 primary key (course_id, sec_id, semester, year),
 check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 7th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation.
 Example: If “Biology” is a department name appearing in one of the

tuples in the instructor relation, then there exists a tuple in the
department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that contain
attributes A and where A is the primary key of S. A is said to be a
foreign key of R if for any values of A appearing in R these values also
appear in S.

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 7th Edition

Referential Integrity (Cont.)

 Foreign keys can be specified as part of the SQL create table
statement

 foreign key (dept_name) references department
 By default, a foreign key references the primary-key attributes of the

referenced table.
 SQL allows a list of attributes of the referenced relation to be specified

explicitly.

 foreign key (dept_name) references department (dept_name)

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 7th Edition

Cascading Actions in Referential Integrity

 When a referential-integrity constraint is violated, the normal procedure is to
reject the action that caused the violation.

 An alternative, in case of delete or update is to cascade

 create table course (
 (…
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 . . .)

 Instead of cascade we can use :
 set null,
 set default

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 7th Edition

Integrity Constraint Violation During Transactions

 Consider:

 create table person (
 ID char(10),

 name char(40),
 mother char(10),
 father char(10),
 primary key ID,
 foreign key father references person,
 foreign key mother references person)

 How to insert a tuple without causing constraint violation?
 Insert father and mother of a person before inserting person
 OR, set father and mother to null initially, update after inserting all

persons (not possible if father and mother attributes declared to be not
null)

 OR defer constraint checking

©Silberschatz, Korth and Sudarshan4.43Database System Concepts - 7th Edition

Complex Check Conditions

 The predicate in the check clause can be an arbitrary predicate that can
include a subquery.

 check (time_slot_id in (select time_slot_id from time_slot))

 The check condition states that the time_slot_id in each tuple in the
section relation is actually the identifier of a time slot in the time_slot
relation.
 The condition has to be checked not only when a tuple is inserted or

modified in section , but also when the relation time_slot changes

©Silberschatz, Korth and Sudarshan4.44Database System Concepts - 7th Edition

Assertions

 An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

 The following constraints, can be expressed using assertions:
 For each tuple in the student relation, the value of the attribute tot_cred

must equal the sum of credits of courses that the student has completed
successfully.

 An instructor cannot teach in two different classrooms in a semester in the
same time slot

 An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

create assertion credits earned constraint check

(not exists (select ID

from student

where tot cred <> (select coalesce(sum(credits), 0)

from takes natural join course

where student. ID = takes. ID

and grade is not null and grade<> ’F’)))

©Silberschatz, Korth and Sudarshan4.45Database System Concepts - 7th Edition

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date
 Example: date '2005-7-27'

 time: Time of day, in hours, minutes and seconds.
 Example: time '09:00:30' time '09:00:30.75'

 timestamp: date plus time of day
 Example: timestamp '2005-7-27 09:00:30.75'

 interval: period of time
 Example: interval '1' day
 Subtracting a date/time/timestamp value from another gives an

interval value
 Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan4.46Database System Concepts - 7th Edition

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large
object:
 blob: binary large object -- object is a large collection of uninterpreted

binary data (whose interpretation is left to an application outside of the
database system)

 clob: character large object -- object is a large collection of character
data

 When a query returns a large object, a pointer is returned rather than the
large object itself.

©Silberschatz, Korth and Sudarshan4.47Database System Concepts - 7th Edition

User-Defined Types

 create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 Example:

 create table department
 (dept_name varchar (20),
 building varchar (15),
 budget Dollars);

©Silberschatz, Korth and Sudarshan4.48Database System Concepts - 7th Edition

Domains

 create domain construct in SQL-92 creates user-defined domain
types

create domain person_name char(20) not null

 Types and domains are similar. Domains can have constraints,
such as not null, specified on them.

 Example:

 create domain degree_level varchar(10)
 constraint degree_level_test
 check (value in ('Bachelors', 'Masters', 'Doctorate'));

©Silberschatz, Korth and Sudarshan4.49Database System Concepts - 7th Edition

Index Creation

 Many queries reference only a small proportion of the records in a table.
 It is inefficient for the system to read every record to find a record with

particular value
 An index on an attribute of a relation is a data structure that allows the

database system to find those tuples in the relation that have a specified
value for that attribute efficiently, without scanning through all the tuples of
the relation.

 We create an index with the create index command

 create index <name> on <relation-name> (attribute);

©Silberschatz, Korth and Sudarshan4.50Database System Concepts - 7th Edition

Index Creation Example

 create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

 create index studentID_index on student(ID)
 The query:

 select *
 from student
 where ID = '12345'

 can be executed by using the index to find the required record, without
looking at all records of student

©Silberschatz, Korth and Sudarshan4.51Database System Concepts - 7th Edition

Authorization

 We may assign a user several forms of authorizations on parts of the
database.

 Read - allows reading, but not modification of data.
 Insert - allows insertion of new data, but not modification of existing

data.
 Update - allows modification, but not deletion of data.
 Delete - allows deletion of data.

 Each of these types of authorizations is called a privilege. We may
authorize the user all, none, or a combination of these types of privileges
on specified parts of a database, such as a relation or a view.

©Silberschatz, Korth and Sudarshan4.52Database System Concepts - 7th Edition

Authorization (Cont.)

 Forms of authorization to modify the database schema
 Index - allows creation and deletion of indices.
 Resources - allows creation of new relations.
 Alteration - allows addition or deletion of attributes in a relation.
 Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan4.53Database System Concepts - 7th Edition

Authorization Specification in SQL

 The grant statement is used to confer authorization

 grant <privilege list> on <relation or view > to <user list>
 <user list> is:

 a user-id
 public, which allows all valid users the privilege granted
 A role (more on this later)

 Example:
 grant select on department to Amit, Satoshi

 Granting a privilege on a view does not imply granting any privileges on
the underlying relations.

 The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan4.54Database System Concepts - 7th Edition

Privileges in SQL

 select: allows read access to relation, or the ability to query using the
view

 Example: grant users U1, U2, and U3 select authorization on the
instructor relation:

grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples
 update: the ability to update using the SQL update statement
 delete: the ability to delete tuples.
 all privileges: used as a short form for all the allowable privileges

©Silberschatz, Korth and Sudarshan4.55Database System Concepts - 7th Edition

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user list>
 Example:

revoke select on student from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee may hold.
 If <revokee-list> includes public, all users lose the privilege except those

granted it explicitly.
 If the same privilege was granted twice to the same user by different

grantees, the user may retain the privilege after the revocation.
 All privileges that depend on the privilege being revoked are also

revoked.

©Silberschatz, Korth and Sudarshan4.56Database System Concepts - 7th Edition

Roles

 A role is a way to distinguish among various users as far as what these
users can access/update in the database.

 To create a role we use:

 create a role <name>
 Example:

 create role instructor
 Once a role is created we can assign “users” to the role using:

 grant <role> to <users>

©Silberschatz, Korth and Sudarshan4.57Database System Concepts - 7th Edition

Roles Example

 create role instructor;
 grant instructor to Amit;
 Privileges can be granted to roles:

 grant select on takes to instructor;
 Roles can be granted to users, as well as to other roles

 create role teaching_assistant
 grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant
 Chain of roles

 create role dean;
 grant instructor to dean;
 grant dean to Satoshi;

©Silberschatz, Korth and Sudarshan4.58Database System Concepts - 7th Edition

Authorization on Views

 create view geo_instructor as
(select *
from instructor
where dept_name = 'Geology');

 grant select on geo_instructor to geo_staff
 Suppose that a geo_staff member issues

 select *
from geo_instructor;

 What if
 geo_staff does not have permissions on instructor?
 Creator of view did not have some permissions on instructor?

©Silberschatz, Korth and Sudarshan4.59Database System Concepts - 7th Edition

Other Authorization Features

 references privilege to create foreign key
 grant reference (dept_name) on department to Mariano;
 Why is this required?

 transfer of privileges
 grant select on department to Amit with grant option;
 revoke select on department from Amit, Satoshi cascade;
 revoke select on department from Amit, Satoshi restrict;
 And more!

©Silberschatz, Korth and Sudarshan4.60Database System Concepts - 7th Edition

End of Chapter 4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

