
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Concurrency Control

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 18.2 Database System Concepts - 7th Edition

Outline

 Lock-Based Protocols

 Timestamp-Based Protocols

 Validation-Based Protocols

 Multiple Granularity

 Multiversion Schemes

 Insert and Delete Operations

 Concurrency in Index Structures

©Silberschatz, Korth and Sudarshan 18.3 Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a

data item

 Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as

 well as written. X-lock is requested using lock-X

 instruction.

 2. shared (S) mode. Data item can only be read. S-lock

 is requested using lock-S instruction.

 Lock requests are made to concurrency-control

manager. Transaction can proceed only after request is

granted.

©Silberschatz, Korth and Sudarshan 18.4 Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the

requested lock is compatible with locks already held

on the item by other transactions

 Any number of transactions can hold shared locks on

an item,

 But, if any transaction holds an exclusive on the item

no other transaction may hold any lock on the item.

©Silberschatz, Korth and Sudarshan 18.5 Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:

Locking as above is not sufficient

©Silberschatz, Korth and Sudarshan 18.6 Database System Concepts - 7th Edition

Scheduling of Transactions with

Lock-Based Protocols

 This schedule is not serializable (why?)

©Silberschatz, Korth and Sudarshan 18.8 Database System Concepts - 7th Edition

Transactions with unlocking delayed

©Silberschatz, Korth and Sudarshan 18.9 Database System Concepts - 7th Edition

Deadlock
 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-
S(B) causes T4 to wait for T3 to release its lock on B, while
executing lock-X(A) causes T3 to wait for T4 to release its
lock on A.

 Such a situation is called a deadlock.

• To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

©Silberschatz, Korth and Sudarshan 18.10 Database System Concepts - 7th Edition

Deadlock (Cont.)
 The potential for deadlock exists in most locking

protocols. Deadlocks are a necessary evil.

 Starvation is also possible if concurrency control

manager is badly designed. For example:

• A transaction may be waiting for an X-lock on an

item, while a sequence of other transactions

request and are granted an S-lock on the same

item.

• The same transaction is repeatedly rolled back

due to deadlocks.

 Concurrency control manager can be designed to

prevent starvation.

©Silberschatz, Korth and Sudarshan 18.11 Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

 A protocol which ensures conflict-

serializable schedules.

 Phase 1: Growing Phase

• Transaction may obtain locks

• Transaction may not release locks

 Phase 2: Shrinking Phase

• Transaction may release locks

• Transaction may not obtain locks

 The protocol assures serializability. It

can be proved that the transactions can

be serialized in the order of their lock

points (i.e., the point where a

transaction acquired its final lock).

Time

L
o
c
k
s

©Silberschatz, Korth and Sudarshan 18.12 Database System Concepts - 7th Edition

Partial Schedule under Two-

Phase Locking Protocol

©Silberschatz, Korth and Sudarshan 18.13 Database System Concepts - 7th Edition

The Two-Phase Locking

Protocol (Cont.)
 Two-phase locking does not ensure freedom from deadlocks

 Extensions to basic two-phase locking needed to ensure

recoverability and freedom from cascading roll-back

• Strict two-phase locking: a transaction must hold all its

exclusive locks till it commits/aborts.

 Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all

locks till commit/abort.

 Transactions can be serialized in the order in which they

commit.

 Most databases implement rigorous two-phase locking, but

refer to it as simply two-phase locking

©Silberschatz, Korth and Sudarshan 18.14 Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:

 – Growing Phase:

• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

 – Shrinking Phase:

• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Silberschatz, Korth and Sudarshan 18.15 Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

with lock conversion

©Silberschatz, Korth and Sudarshan 18.17 Database System Concepts - 7th Edition

Locking Protocols

 Given a locking protocol (such as 2PL)

• A schedule S is legal under a locking protocol if it

can be generated by a set of transactions that

follow the protocol

• A protocol ensures serializability if all legal

schedules under that protocol are serializable

©Silberschatz, Korth and Sudarshan 18.18 Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction,

without explicit locking calls.

 The operation read(D) is processed as:

 if Ti has a lock on D

 then

 read(D)

 else begin

 if necessary wait until no other

 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)

 end

©Silberschatz, Korth and Sudarshan 18.19 Database System Concepts - 7th Edition

Automatic Acquisition of

Locks (Cont.)
 The operation write(D) is processed as:

 if Ti has a lock-X on D

 then

 write(D)

 else begin

 if necessary wait until no other trans. has any lock on D,

 if Ti has a lock-S on D

 then

 upgrade lock on D to lock-X

 else

 grant Ti a lock-X on D

 write(D)

 end;

©Silberschatz, Korth and Sudarshan 18.20 Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process

 Transactions can send lock and unlock requests as

messages

 The lock manager replies to a lock request by sending a lock

grant messages (or a message asking the transaction to roll

back, in case of a deadlock)

• The requesting transaction waits until its request is

answered

 The lock manager maintains an in-memory data-structure

called a lock table to record granted locks and pending

requests

©Silberschatz, Korth and Sudarshan 18.21 Database System Concepts - 7th Edition

Lock Table Dark rectangles indicate granted

locks, light colored ones indicate

waiting requests

 Lock table also records the type

of lock granted or requested

 New request is added to the end

of the queue of requests for the

data item, and granted if it is

compatible with all earlier locks

 Unlock requests result in the

request being deleted, and later

requests are checked to see if

they can now be granted

 If transaction aborts, all waiting

or granted requests of the

transaction are deleted

• lock manager may keep a

list of locks held by each

transaction, to implement

this efficiently

©Silberschatz, Korth and Sudarshan 18.22 Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-

phase locking

 Impose a partial ordering on the set D = {d1, d2 ,...,

dh} of all data items.

• If di dj then any transaction accessing both di

and dj must access di before accessing dj.

• Implies that the set D may now be viewed as a

directed acyclic graph, called a database graph.

 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan 18.23 Database System Concepts - 7th Edition

Tree Protocol
 Only exclusive locks are allowed.

 The first lock by Ti may be on any data item. Subsequently, a

data Q can be locked by Ti only if the parent of Q is currently

locked by Ti.

 Data items may be unlocked at any time.

 A data item that has been locked and unlocked by Ti cannot

subsequently be relocked by Ti

©Silberschatz, Korth and Sudarshan 18.24 Database System Concepts - 7th Edition

Serialized Schedule under Tree Protocol

©Silberschatz, Korth and Sudarshan 18.25 Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom from

deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the two-

phase locking protocol.

• Shorter waiting times, and increase in concurrency

• Protocol is deadlock-free, no rollbacks are required

 Drawbacks

• Protocol does not guarantee recoverability or cascade freedom

 Need to introduce commit dependencies to ensure recoverability

• Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time

 potential decrease in concurrency

©Silberschatz, Korth and Sudarshan 18.26 Database System Concepts - 7th Edition

Deadlock Handling
 System is deadlocked if there is a set of transactions

such that every transaction in the set is waiting for

another transaction in the set.

©Silberschatz, Korth and Sudarshan 18.27 Database System Concepts - 7th Edition

Deadlock Handling
 Deadlock Prevention

 Deadlock Detection & Deadlock Recovery

 Deadlock prevention protocols ensure that the system will never enter

into a deadlock state. Some prevention strategies:

• Require that each transaction locks all its data items before it begins

execution (pre-declaration).

 Hard to predict what data items need to be locked

 Poor data-item utilization (most of the time data items are idle)

• No circular waits in ordering the requests for locks.

• Transaction roll-back whenever the waiting for the lock is required.

• Impose partial ordering of all data items and require that a transaction

can lock data items only in the order specified by the partial order

(graph-based protocol).

©Silberschatz, Korth and Sudarshan 18.28 Database System Concepts - 7th Edition

Deadlock Prevention Strategies

 wait-die scheme — non-preemptive

• Older transaction may wait for younger one to release data item.

• Younger transactions never wait for older ones; they are rolled back

instead.

• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive

• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.

• Younger transactions may wait for older ones.

• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its original

timestamp.

• Ensures that older transactions have precedence over newer ones,

and starvation is thus avoided.

©Silberschatz, Korth and Sudarshan 18.29 Database System Concepts - 7th Edition

Deadlock prevention (Cont.)
 Timeout-Based Schemes:

• A transaction waits for a lock only for a specified

amount of time. After that, the wait times out and

the transaction is rolled back.

• Ensures that deadlocks get resolved by timeout if

they occur

• Simple to implement

• But may roll back transaction unnecessarily in

absence of deadlock

Difficult to determine good value of the timeout

interval.

• Starvation is also possible

©Silberschatz, Korth and Sudarshan 18.30 Database System Concepts - 7th Edition

Deadlock Detection
 Wait-for graph

• Vertices: transactions

• Edge from Ti Tj. : if Ti is waiting for a lock held in conflicting mode

byTj

 The system is in a deadlock state if and only if the wait-for graph has a

cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan 18.31 Database System Concepts - 7th Edition

Deadlock Recovery
 When deadlock is detected :

• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.

 Select that transaction as victim that will incur minimum cost

 How long the transaction is completed & left-over

 How many data items the transaction has used and how many

required for completion?

 How many transactions are involved in deadlock

• Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is

waiting for

 Starvation can happen (why?)

• One solution: oldest transaction in the deadlock set is never chosen as

victim

©Silberschatz, Korth and Sudarshan 18.32 Database System Concepts - 7th Edition

Multiple Granularity
 Allow data items to be of various sizes and define a hierarchy

of data granularities, where the small granularities are nested

within larger ones

 Can be represented graphically as a tree (but don't confuse

with tree-locking protocol)

 When a transaction locks a node in the tree explicitly, it

implicitly locks all the node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high

locking overhead

• Coarse granularity (higher in tree): low locking overhead,

low concurrency

©Silberschatz, Korth and Sudarshan 18.33 Database System Concepts - 7th Edition

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

 The corresponding tree

©Silberschatz, Korth and Sudarshan 18.34 Database System Concepts - 7th Edition

Intention Lock Modes

 In addition to S and X lock modes, there are three additional

lock modes with multiple granularity:

• intention-shared (IS): indicates explicit locking at a lower

level of the tree but only with shared locks.

• intention-exclusive (IX): indicates explicit locking at a

lower level with exclusive or shared locks

• shared and intention-exclusive (SIX): the subtree rooted

by that node is locked explicitly in shared mode and

explicit locking is being done at a lower level with

exclusive-mode locks.

 Intention locks allow a higher level node to be locked in S or

X mode without having to check all descendent nodes.

©Silberschatz, Korth and Sudarshan 18.35 Database System Concepts - 7th Edition

Compatibility Matrix with

Intention Lock Modes
 The compatibility matrix for all lock modes is:

©Silberschatz, Korth and Sudarshan 18.36 Database System Concepts - 7th Edition

Multiple Granularity Locking

Scheme
 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently

 locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is
 currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that is, Ti is two-
 phase).

6. Ti can unlock a node Q only if none of the children of Q are currently locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-
to-root order.

 Lock granularity escalation: in case there are too many locks at a particular level,
switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan 18.37 Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Illustration of a Protocol :

1. Suppose that transaction T1 reads record ra2 in file Fa. Then, T1

needs to lock the database, area A1, and Fa in IS mode (and in that

order), and finally to lock ra2 in S mode.

2. Suppose that transaction T2 modifies record ra9 in file Fa. Then, T2

needs to lock the database, area A1, and file Fa (and in that order) in

IX mode, and finally to lock ra9 in X mode.

3. Suppose T3 reads all records in file Fa. Then T3 needs to lock the

database and area A1 (and in that order) in IS mode, and finally to

lock Fa in S mode.

4. Suppose that transaction T4 reads the entire database. It can do so

after locking the database in S mode.

 T1, T3 and T4 can access the database concurrently

 T1 and T2 can execute concurrently

 T2 cannot execute concurrently with either T3 or T4.

©Silberschatz, Korth and Sudarshan 18.38 Database System Concepts - 7th Edition

Timestamp Based

Concurrency Control

©Silberschatz, Korth and Sudarshan 18.39 Database System Concepts - 7th Edition

Timestamp-Based

Protocols
 Each transaction Ti is issued a timestamp TS(Ti) when it

enters the system.

• Each transaction has a unique timestamp

• Newer transactions have timestamps strictly greater than

earlier ones

• Timestamp could be based on a logical counter

 Timestamp-based protocols manage concurrent execution

such that time-stamp order = serializability order

 Several alternative protocols based on timestamps

©Silberschatz, Korth and Sudarshan 18.40 Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol

 Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any

transaction that executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any

transaction that executed read(Q) successfully.

 Imposes rules on read and write operations to ensure that

• Any conflicting operations are executed in timestamp

order

• Out of order operations cause transaction rollback

©Silberschatz, Korth and Sudarshan 18.41 Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to

read a value of Q that was already overwritten.

Hence, the read operation is rejected, and Ti is

rolled back.

2. If TS(Ti) W-timestamp(Q), then the read

 operation is executed, and R-timestamp(Q) is

 set to max(R-timestamp(Q), TS(Ti)).

©Silberschatz, Korth and Sudarshan 18.42 Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing

 was needed previously, and the system assumed that that value

 would never be produced.

Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an

 obsolete value of Q.

Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is

 set to TS(Ti).

©Silberschatz, Korth and Sudarshan 18.43 Database System Concepts - 7th Edition

Example of Schedule Under TSO

 How about this one,

where initially

 R-TS(Q)=W-TS(Q)=0

Assume that initially:

 R-TS(A) = W-TS(A) = 0

 R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and

 TS(T26) = 26

 Is this schedule valid under TSO?

©Silberschatz, Korth and Sudarshan 18.44 Database System Concepts - 7th Edition

Another Example Under TSO

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially

©Silberschatz, Korth and Sudarshan 18.45 Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability

since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

 Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

 But the schedule may not be cascade-free, and may not
even be recoverable.

©Silberschatz, Korth and Sudarshan 18.46 Database System Concepts - 7th Edition

Recoverability and Cascade Freedom

 Solution 1:

• A transaction is structured such that its writes are all

performed at the end of its processing

• All writes of a transaction form an atomic action; no

transaction may execute while a transaction is being written

• A transaction that aborts is restarted with a new timestamp

 Solution 2:

• Limited form of locking: wait for data to be committed

before reading it

 Solution 3:

• Use commit dependencies to ensure recoverability

©Silberschatz, Korth and Sudarshan 18.47 Database System Concepts - 7th Edition

Thomas’ Write Rule
 Modified version of the timestamp-ordering protocol in which

obsolete write operations may be ignored under certain

circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-

timestamp(Q), then Ti is attempting to write an obsolete value

of {Q}.

• Rather than rolling back Ti as the timestamp ordering

protocol would have done, this {write} operation can be

ignored.

 Otherwise this protocol is the same as the timestamp ordering

protocol.

 Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not

conflict-serializable.

©Silberschatz, Korth and Sudarshan 18.48 Database System Concepts - 7th Edition

Concurrency Control

under Insertion & Deletion

Operations

©Silberschatz, Korth and Sudarshan 18.49 Database System Concepts - 7th Edition

Insert & Delete Operations
 Delete: Ii = delete(Q)

• Ij = read(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical
error. If Ij comes before Ii, Tj can execute the read operation successfully.

• Ij = write(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical
error. If Ij comes before Ii, Tj can execute the write operation
successfully.

• Ij = delete(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical
error. If Ij comes before Ii, Ti will have a logical error.

• Ij = insert(Q). Ii and Ij conflict. Suppose that data item Q did not exist
prior to the execution of Ii and Ij. Then, if Ii comes before Ij, a logical error
results for Ti. If Ij comes before Ii, then no logical error results. Likewise,
if Q existed prior to the execution of Ii and Ij, then a logical error results if
Ij comes before Ii, but not otherwise.

©Silberschatz, Korth and Sudarshan 18.50 Database System Concepts - 7th Edition

Two-phase locking and TSO protocols

for Insert/Delete Operations
 Delete Operation

 Under the two-phase locking protocol, an exclusive lock is required on a data
item before that item can be deleted.

 Under the timestamp-ordering protocol, a test similar to that for a write must
be performed. Suppose that transaction Ti issues delete(Q).

• If TS(Ti) < R-timestamp(Q), then the value of Q that Ti was to delete has
already been read by a transaction Tj with TS(Tj) > TS(Ti). Hence, the
delete operation is rejected, and Ti is rolled back.

• If TS(Ti) < W-timestamp(Q), then a transaction Tj with TS(Tj) > TS(Ti) has
written Q. Hence, this delete operation is rejected, and Ti is rolled back.

• Otherwise, the delete is executed.

 Insertion Operation

• Conflicts with delete, read and write operations

• Under the two-phase locking protocol, if Ti performs an insert(Q)
operation, Ti is given an exclusive lock on the newly created data item Q.

• Under the timestamp-ordering protocol, if Ti performs an insert(Q)
operation, the values R-timestamp(Q) andW-timestamp(Q) are set to
TS(Ti).

©Silberschatz, Korth and Sudarshan 18.66 Database System Concepts - 7th Edition

Validation-Based Protocol

©Silberschatz, Korth and Sudarshan 18.67 Database System Concepts - 7th Edition

Validation-Based Protocol

 Idea: can we use commit time as serialization order?

 To do so:

• Postpone writes to end of transaction

• Keep track of data items read/written by transaction

• Validation performed at commit time, detect any out-of-

serialization order reads/writes

 Also called as optimistic concurrency control since

transaction executes fully in the hope that all will go well

during validation

©Silberschatz, Korth and Sudarshan 18.68 Database System Concepts - 7th Edition

Validation-Based Protocol
 Execution of transaction Ti is done in three phases.

 1. Read and execution phase: During this phase, the system executes

transaction Ti. It reads the values of the various data items and stores them

in variables local to Ti. It performs all write operations on temporary local

variables, without updates of the actual database.

 2. Validation phase: The validation test (described below) is applied to

transaction Ti. This determines whether Ti is allowed to proceed to the write

phase without causing a violation of serializability. If a transaction fails the

validation test, the system aborts the transaction.

 3. Write phase: If the validation test succeeds for transaction Ti, the

temporary local variables that hold the results of any write operations

performed by Ti are copied to the database. Read-only transactions omit this

phase.

 The three phases of concurrently executing transactions can be interleaved,

but each transaction must go through the three phases in that order.

• We assume for simplicity that the validation and write phase occur

together, atomically and serially

 I.e., only one transaction executes validation/write at a time.

©Silberschatz, Korth and Sudarshan 18.69 Database System Concepts - 7th Edition

Validation-Based Protocol (Cont.)

 Each transaction Ti has 3 timestamps

• StartTS(Ti) : the time when Ti started its execution

• ValidationTS(Ti): the time when Ti entered its validation

phase

• FinishTS(Ti) : the time when Ti finished its write phase

 Validation tests use above timestamps and read/write sets to

ensure that serializability order is determined by validation

time

• Thus, TS(Ti) = ValidationTS(Ti)

 Validation-based protocol has been found to give greater

degree of concurrency than locking/TSO if probability of

conflicts is low.

©Silberschatz, Korth and Sudarshan 18.70 Database System Concepts - 7th Edition

Validation Test for Transaction Tj
 If for all Ti with TS (Ti) < TS (Tj) either one of the following

condition holds:

• finishTS(Ti) < startTS(Tj)

• startTS(Tj) < finishTS(Ti) < validationTS(Tj) and the set

of data items written by Ti does not intersect with the set of

data items read by Tj.

 then validation succeeds and Tj can be committed.

 Otherwise, validation fails and Tj is aborted.

 Justification:

• First condition applies when execution is not concurrent

 The writes of Tj do not affect reads of Ti since they occur

after Ti has finished its reads.

• If the second condition holds, execution is concurrent, Tj

does not read any item written by Ti

©Silberschatz, Korth and Sudarshan 18.71 Database System Concepts - 7th Edition

Schedule Produced by Validation

 Example of schedule produced using validation

©Silberschatz, Korth and Sudarshan 18.72 Database System Concepts - 7th Edition

Multiversion

Concurrency Control

©Silberschatz, Korth and Sudarshan 18.73 Database System Concepts - 7th Edition

Multiversion Schemes
 Multiversion schemes keep old versions of data item to

increase concurrency. Several variants:

• Multiversion Timestamp Ordering

• Multiversion Two-Phase Locking

• Snapshot isolation

 Key ideas:

• Each successful write results in the creation of a new

version of the data item written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select an appropriate

version of Q based on the timestamp of the transaction

issuing the read request, and return the value of the selected

version.

 reads never have to wait as an appropriate version is returned

immediately.

©Silberschatz, Korth and Sudarshan 18.74 Database System Concepts - 7th Edition

Multiversion Timestamp Ordering

 Each data item Q has a sequence of versions

<Q1, Q2,...., Qm>. Each version Qk contains

three data fields:

• Content -- the value of version Qk.

• W-timestamp(Qk) -- timestamp of the

transaction that created (wrote) version Qk

• R-timestamp(Qk) -- largest timestamp of a

transaction that successfully read version Qk

©Silberschatz, Korth and Sudarshan 18.75 Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

 Suppose that transaction Ti issues a read(Q) or write(Q) operation.

Let Qk denote the version of Q whose write timestamp is the largest

write timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then

 the value returned is the content of version Qk

 If R-timestamp(Qk) < TS(Ti), set R-timestamp(Qk) = TS(Ti),

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. Otherwise, a new version Qi of Q is created

• W-timestamp(Qi) and R-timestamp(Qi) are initialized to

TS(Ti).

©Silberschatz, Korth and Sudarshan 18.76 Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

 Observations

• Reads always succeed

• A write by Ti is rejected if some other

transaction Tj that (in the serialization order

defined by the timestamp values) should

read Ti's write, has already read a version

created by a transaction older than Ti.

 Protocol guarantees serializability

©Silberschatz, Korth and Sudarshan 18.77 Database System Concepts - 7th Edition

Multiversion Two-Phase Locking
 Differentiates between read-only transactions and update transactions

 Update transactions acquire read and write locks, and hold all locks up to

the end of the transaction. That is, update transactions follow rigorous two-

phase locking.

• Read of a data item returns the latest version of the item

• The first write of Q by Ti results in the creation of a new version Qi of the

data item Q written

 W-timestamp(Qi) set to ∞ initially

• When update transaction Ti completes, commit processing occurs:

 Value ts-counter stored in the database is used to assign timestamps

• ts-counter is locked in two-phase manner

 Set TS(Ti) = ts-counter + 1

 Set W-timestamp(Qi) = TS(Ti) for all versions Qi that it creates

 ts-counter = ts-counter + 1

©Silberschatz, Korth and Sudarshan 18.78 Database System Concepts - 7th Edition

Multiversion Two-Phase Locking (Cont.)

 Read-only transactions

• are assigned a timestamp = ts-counter when they

start execution

• follow the multiversion timestamp-ordering protocol

for performing reads

Do not obtain any locks

 Read-only transactions that start after Ti increments

ts-counter will see the values updated by Ti.

 Read-only transactions that start before Ti increments

the ts-counter will see the value before the updates

by Ti.

 Only serializable schedules are produced.

©Silberschatz, Korth and Sudarshan 18.79 Database System Concepts - 7th Edition

MVCC: Implementation Issues

 Creation of multiple versions increases storage overhead

• Extra tuples

• Extra space in each tuple for storing version information

 Versions can, however, be garbage collected

• E.g., if Q has two versions Q5 and Q9, and the oldest active transaction

has timestamp > 9, than Q5 will never be required again

 Issues with

• primary key and foreign key constraint checking

• Indexing of records with multiple versions

See textbook for details

©Silberschatz, Korth and Sudarshan 18.80 Database System Concepts - 7th Edition

Snapshot Isolation
 Motivation: Decision support queries that read large amounts of data

have concurrency conflicts with OLTP transactions that update a few rows

• Poor performance results

 Solution 1: Use multiversion 2-phase locking

• Give logical ―snapshot‖ of database state to read only transaction

 Reads performed on snapshot

• Update (read-write) transactions use normal locking

• Works well, but how does system know a transaction is read only?

 Solution 2 (partial): Give snapshot of database state to every transaction

• Reads performed on snapshot

• Use 2-phase locking on updated data items

• Problem: variety of anomalies such as lost update can result

•

©Silberschatz, Korth and Sudarshan 18.81 Database System Concepts - 7th Edition

Snapshot Isolation

 A transaction T1 executing with Snapshot

Isolation

• Takes snapshot of committed data at

start

• Always reads/modifies data in its own

snapshot

• Updates of concurrent transactions are

not visible to T1

• Writes of T1 complete when it commits

• First-committer-wins rule:

 Commits only if no other concurrent

transaction has already written data

that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) 0

R(Y) 1

W(X:=2)

W(Z:=3)

Commit

R(Z) 0

R(Y) 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

©Silberschatz, Korth and Sudarshan 18.82 Database System Concepts - 7th Edition

Snapshot Read

 Concurrent updates invisible to snapshot read

©Silberschatz, Korth and Sudarshan 18.83 Database System Concepts - 7th Edition

Snapshot Write: First Committer Wins

• Variant: ―First-updater-wins‖

 Check for concurrent updates when write occurs by locking item

 But lock should be held till all concurrent transactions have
finished

 (Oracle uses this plus some extra features)

©Silberschatz, Korth and Sudarshan 18.84 Database System Concepts - 7th Edition

Benefits of SI

 Reads are never blocked,

• and also don’t block other txns activities

 Performance similar to Read Committed

 Avoids several anomalies

• No dirty read, i.e. no read of uncommitted data

• No lost update

 I.e., update made by a transaction is overwritten by another
transaction that did not see the update)

• No non-repeatable read

 I.e., if read is executed again, it will see the same value

 Problems with SI

• SI does not always give serializable executions

 Serializable: among two concurrent txns, one sees the effects of
the other

 In SI: neither sees the effects of the other

• Result: Integrity constraints can be violated

©Silberschatz, Korth and Sudarshan 18.85 Database System Concepts - 7th Edition

Snapshot Isolation

 Example of problem with SI

• Initially A = 3 and B = 17

 Serial execution: A = ??, B = ??

 if both transactions start at the same time,

with snapshot isolation: A = ?? , B = ??

 Called skew write

 Skew also occurs with inserts

• E.g:

 Find max order number among all orders

 Create a new order with order number = previous max + 1

 Two transaction can both create order with same number

• Is an example of phantom phenomenon

©Silberschatz, Korth and Sudarshan 18.86 Database System Concepts - 7th Edition

Snapshot Isolation Anomalies

 SI breaks serializability when transactions modify different items, each

based on a previous state of the item the other modified

• Not very common in practice

 E.g., the TPC-C benchmark runs correctly under SI

 when txns conflict due to modifying different data, there is usually

also a shared item they both modify, so SI will abort one of them

• But problems do occur

 Application developers should be careful about write skew

 SI can also cause a read-only transaction anomaly, where read-only

transaction may see an inconsistent state even if updaters are serializable

• We omit details

 Using snapshots to verify primary/foreign key integrity can lead to

inconsistency

• Integrity constraint checking usually done outside of snapshot

©Silberschatz, Korth and Sudarshan 18.87 Database System Concepts - 7th Edition

Serializable Snapshot Isolation

 Serializable snapshot isolation (SSI): extension of snapshot isolation that

ensures serializability

 Snapshot isolation tracks write-write conflicts, but does not track read-write

conflicts

• Where Ti writes a data a data item Q, Tj reads an earlier version of Q,

but Tj is serialized after Ti

 Idea: track read-write dependencies separately, and roll-back transactions

where cycles can occur

• Ensures serializability

• Details in book

 Implemented in PostgreSQL from version 9.1 onwards

• PostgreSQL implementation of SSI also uses index locking to detect

phantom conflicts, thus ensuring true serializability

©Silberschatz, Korth and Sudarshan 18.88 Database System Concepts - 7th Edition

SI Implementations

 Snapshot isolation supported by many databases

• Including Oracle, PostgreSQL, SQL Server, IBM DB2, etc

• Isolation level can be set to snapshot isolation

 Oracle implements ―first updater wins‖ rule (variant of ―first committer

wins‖)

• Concurrent writer check is done at time of write, not at commit time

• Allows transactions to be rolled back earlier

 Warning: even if isolation level is set to serializable, Oracle actually uses

snapshot isolation

• Old versions of PostgreSQL prior to 9.1 did this too

• Oracle and PostgreSQL < 9.1 do not support true serializable

execution

©Silberschatz, Korth and Sudarshan 18.89 Database System Concepts - 7th Edition

Working Around SI Anomalies

 Can work around SI anomalies for specific queries by using select .. for

update (supported e.g. in Oracle)

• Example

 select max(orderno) from orders for update

 read value into local variable maxorder

 insert into orders (maxorder+1, …)

 select for update (SFU) clause treats all data read by the query as if it

were also updated, preventing concurrent updates

 Can be added to queries to ensure serializability in many applications

• Does not handle phantom phenomenon/predicate reads though

©Silberschatz, Korth and Sudarshan 18.90 Database System Concepts - 7th Edition

Weak Levels of Concurrency

©Silberschatz, Korth and Sudarshan 18.91 Database System Concepts - 7th Edition

Weak Levels of Consistency

 Degree-two consistency: differs from two-phase locking in that S-locks

may be released at any time, and locks may be acquired at any time

• X-locks must be held till end of transaction

• Serializability is not guaranteed, programmer must ensure that no

erroneous database state will occur]

 Cursor stability:

• For reads, each tuple is locked, read, and lock is immediately

released

• X-locks are held till end of transaction

• Special case of degree-two consistency

©Silberschatz, Korth and Sudarshan 18.92 Database System Concepts - 7th Edition

Weak Levels of Consistency in SQL

 SQL allows non-serializable executions

• Serializable: is the default

• Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained)

 However, the phantom phenomenon need not be prevented

• T1 may see some records inserted by T2, but may not see
others inserted by T2

• Read committed: same as degree two consistency, but most systems
implement it as cursor-stability

• Read uncommitted: allows even uncommitted data to be read

 In most database systems, read committed is the default consistency level

• Can be changed as database configuration parameter, or per
transaction

 set isolation level serializable

©Silberschatz, Korth and Sudarshan 18.93 Database System Concepts - 7th Edition

Concurrency Control across User Interactions

 Many applications need transaction support across user interactions

• Can’t use locking for long durations

 Application level concurrency control

• Each tuple has a version number

• Transaction notes version number when reading tuple

 select r.balance, r.version into :A, :version
from r where acctId =23

• When writing tuple, check that current version number is same as the
version when tuple was read

 update r set r.balance = r.balance + :deposit, r.version = r.version+1
where acctId = 23 and r.version = :version

©Silberschatz, Korth and Sudarshan 18.94 Database System Concepts - 7th Edition

Concurrency Control across User Interactions

 Equivalent to optimistic concurrency control without validating read
set

• Unlike SI, reads are not guaranteed to be from a single snapshot.

• Does not guarantee serializability

• But avoids some anomalies such as ―lost update anomaly‖

 Used internally in Hibernate ORM system

 Implemented manually in many applications

 Version numbers stored in tuples can also be used to support first
committer wins check of snapshot isolation

©Silberschatz, Korth and Sudarshan 18.95 Database System Concepts - 7th Edition

Advanced topics in Concurrency Control

©Silberschatz, Korth and Sudarshan 18.96 Database System Concepts - 7th Edition

Online Index Creation

 Problem: how to create an index on a large relation without affecting

concurrent updates

• Index construction may take a long time

• Two-phase locking will block all concurrent updates

 Key ideas:

• Build index on a snapshot of the relation, but keep track of all updates

that occur after snapshot

 Updates are not applied on the index at this point

• Then apply subsequent updates to catch up

• Acquire relation lock towards end of catchup phase to block

concurrent updates

• Catch up with remaining updates, and add index to system catalog

• Subsequent transactions will find the index in catalog and update it

©Silberschatz, Korth and Sudarshan 18.97 Database System Concepts - 7th Edition

Concurrency in Index Structures

 Indices are unlike other database items in that their only job is to help in

accessing data.

 Index-structures are typically accessed very often, much more than other

database items.

• Treating index-structures like other database items, e.g. by 2-phase

locking of index nodes can lead to low concurrency.

 There are several index concurrency protocols where locks on internal

nodes are released early, and not in a two-phase fashion.

• It is acceptable to have nonserializable concurrent access to an index

as long as the accuracy of the index is maintained.

 In particular, the exact values read in an internal node of a

B+-tree are irrelevant so long as we land up in the correct leaf

node.

©Silberschatz, Korth and Sudarshan 18.98 Database System Concepts - 7th Edition

Concurrency in Index Structures (Cont.)

 Crabbing protocol used instead of two-phase locking on the nodes of the

B+-tree during search/insertion/deletion:

• First lock the root node in shared mode.

• After locking all required children of a node in shared mode, release the

lock on the node

• During insertion/deletion, upgrade leaf node locks to exclusive mode.

• When splitting or coalescing requires changes to a parent, lock the

parent in exclusive mode.

 Above protocol can cause excessive deadlocks

• Searches coming down the tree deadlock with updates going up the

tree

• Can abort and restart search, without affecting transaction

 The B-link tree locking protocol improves concurrency

• Intuition: release lock on parent before acquiring lock on child

©Silberschatz, Korth and Sudarshan 18.99 Database System Concepts - 7th Edition

Concurrency Control in Main-Memory Databases

 Index locking protocols can be simplified with main-memory databases

• Short term lock can be obtained on entire index for duration of an

operation, serializing updates on the index

 Avoids overheads of multiple lock acquire/release

 No major penalty since operations finish fast, since there is no disk

wait

 Latch-free techniques for data-structure update can speed up operations

further

©Silberschatz, Korth and Sudarshan 18.100 Database System Concepts - 7th Edition

Latch-Free Data-structure Updates

 This code is not safe without latches if executed concurrently:

 insert(value, head) {

 node = new node

 node−>value = value

 node−>next = head

 head = node

 }

 This code is safe

 insert latchfree(head, value) {

 node = new node

 node−>value = value

 repeat

 oldhead = head

 node−>next = oldhead

 result = CAS(head, oldhead, node)

 until (result == success)

 }

©Silberschatz, Korth and Sudarshan 18.101 Database System Concepts - 7th Edition

Latch-Free Data-structure Updates

 This code is not safe without latches if executed concurrently:

 insert(value, head) {

 node = new node

 node−>value = value

 node−>next = head

 head = node

 }

 This code is safe

 insert latchfree(head, value) {

 node = new node

 node−>value = value

 repeat

 oldhead = head

 node−>next = oldhead

 result = CAS(head, oldhead, node)

 until (result == success)

 }

©Silberschatz, Korth and Sudarshan 18.102 Database System Concepts - 7th Edition

Latch-Free Data-structures (Cont.)

 Consider:

 delete latchfree(head) {

 /* This function is not quite safe; see explanation in text. */

 repeat

 oldhead = head

 newhead = oldhead−>next

 result = CAS(head, oldhead, newhead)

 until (result == success)

 }

 Above code is almost correct, but has a concurrency bug

• P1 initiates delete with N1 as head; concurrently P2 deletes N1 and

next node N2, and then reinserts N1 as head, with N3 as next

• P1 may set head as N2 instead of N3.

 Known as ABA problem

 See book for details of how to avoid this problem

©Silberschatz, Korth and Sudarshan 18.103 Database System Concepts - 7th Edition

Concurrency Control with Operations

 Consider this non-two phase schedule,

which preserves database integrity

constraints

 Can be understood as transaction

performing increment operation

• E.g., increment(A, -50), increment (B,

50)

• As long as increment operation does not

return actual value, increments can be

reordered

 Increments commute

• New increment-mode lock to support

reordering

• Conflict matrix with increment lock mode

 Two increment operations do not

conflict with each other

©Silberschatz, Korth and Sudarshan 18.104 Database System Concepts - 7th Edition

Concurrency Control with Operations (Cont.)

 Undo of increment(v, n) is performed by increment (v, -n)

 Increment_conditional(v, n):

• Updates v by adding n to it, as long as final v > 0, fails otherwise

• Can be used to model, e.g. number of available tickets,

avail_tickets, for a concert

• Increment_conditional is NOT commutative

 E.g., last few tickets for a concert

• But reordering may still be acceptable

©Silberschatz, Korth and Sudarshan 18.105 Database System Concepts - 7th Edition

Real-Time Transaction Systems

 Transactions in a system may have deadlines within which they must be

completed.

• Hard deadline: missing deadline is an error

• Firm deadline: value of transaction is 0 in case deadline is missed

• Soft deadline: transaction still has some value if done after deadline

 Locking can cause blocking

 Optimistic concurrency control (validation protocol) has been shown to do

will in a real-time setting

©Silberschatz, Korth and Sudarshan 18.106 Database System Concepts - 7th Edition

End of Chapter 18

©Silberschatz, Korth and Sudarshan 18.107 Database System Concepts - 7th Edition

View Serializability

 Let S and S´ be two schedules with the same set of transactions. S and S´
are view equivalent if the following three conditions are met, for each data

item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in

 schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was

 produced by transaction Tj (if any), then in schedule S’ also

 transaction Ti must read the value of Q that was produced by the

 same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in

 schedule S must also perform the final write(Q) operation in schedule

 S’.

 As can be seen, view equivalence is also based purely on reads and

writes alone.

©Silberschatz, Korth and Sudarshan 18.108 Database System Concepts - 7th Edition

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a serial

schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable has blind

writes.

©Silberschatz, Korth and Sudarshan 18.109 Database System Concepts - 7th Edition

Test for View Serializability

 The precedence graph test for conflict serializability cannot be used directly

to test for view serializability.

• Extension to test for view serializability has cost exponential in the size

of the precedence graph.

 The problem of checking if a schedule is view serializable falls in the class of

NP-complete problems.

• Thus, existence of an efficient algorithm is extremely unlikely.

 However practical algorithms that just check some sufficient conditions for

view serializability can still be used.

©Silberschatz, Korth and Sudarshan 18.110 Database System Concepts - 7th Edition

Other Notions of Serializability

 The schedule below produces same outcome as the serial schedule < T1,
T5 >, yet is not conflict equivalent or view equivalent to it.

 Determining such equivalence requires analysis of operations other than

read and write.

• Operation-conflicts, operation locks

