
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 18 : Concurrency Control

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan18.2Database System Concepts - 7th Edition

Outline

 Lock-Based Protocols
 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiple Granularity
 Multiversion Schemes
 Insert and Delete Operations
 Concurrency in Index Structures

©Silberschatz, Korth and Sudarshan18.3Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Data items can be locked in two modes :
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock requests are made to concurrency-control manager. Transaction can

proceed only after request is granted.

©Silberschatz, Korth and Sudarshan18.4Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no other transaction

may hold any lock on the item.

©Silberschatz, Korth and Sudarshan18.5Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:
 T2: lock-S(A);
 read (A);
 unlock(A);

 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
 Locking as above is not sufficient to guarantee serializability

©Silberschatz, Korth and Sudarshan18.6Database System Concepts - 7th Edition

Transactions with Lock-Based Protocols

©Silberschatz, Korth and Sudarshan18.7Database System Concepts - 7th Edition

Schedule With Lock Grants

 Grants omitted in rest of
chapter
• Assume grant

happens just before
the next instruction
following lock
request

 This schedule is not
serializable (why?)

 A locking protocol is a
set of rules followed by
all transactions while
requesting and releasing
locks.

 Locking protocols
enforce serializability by
restricting the set of
possible schedules.

©Silberschatz, Korth and Sudarshan18.8Database System Concepts - 7th Edition

Transactions with unlocking delayed

©Silberschatz, Korth and Sudarshan18.9Database System Concepts - 7th Edition

Deadlock

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3
to wait for T4 to release its lock on A.

 Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

©Silberschatz, Korth and Sudarshan18.10Database System Concepts - 7th Edition

Deadlock (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks are
a necessary evil.

 Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock on
the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.

©Silberschatz, Korth and Sudarshan18.11Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

 A protocol which ensures conflict-
serializable schedules.

 Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

 Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

 The protocol assures serializability. It can be
proved that the transactions can be
serialized in the order of their lock points
(i.e., the point where a transaction acquired
its final lock).

Time

Lo
ck

s

©Silberschatz, Korth and Sudarshan18.12Database System Concepts - 7th Edition

Partial Schedule under Two-Phase Locking
Protocol

©Silberschatz, Korth and Sudarshan18.13Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks
 Extensions to basic two-phase locking needed to ensure recoverability of

freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive

locks till it commits/aborts.
 Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks till
commit/abort.
 Transactions can be serialized in the order in which they commit.

 Most databases implement rigorous two-phase locking, but refer to it as
simply two-phase locking

©Silberschatz, Korth and Sudarshan18.14Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:
 – Growing Phase:

• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

 – Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Silberschatz, Korth and Sudarshan18.15Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)
Example to lock conversion

©Silberschatz, Korth and Sudarshan18.16Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking is not a necessary
condition for serializability
• There are conflict serializable

schedules that cannot be obtained
if the two-phase locking protocol is
used.

 In the absence of extra information
(e.g., ordering of access to data), two-
phase locking is necessary for conflict
serializability in the following sense:
• Given a transaction Ti that does

not follow two-phase locking, we
can find a transaction Tj that uses
two-phase locking, and a schedule
for Ti and Tj that is not conflict
serializable.

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 7th Edition

Locking Protocols

 Given a locking protocol (such as 2PL)
• A schedule S is legal under a locking protocol if it can be generated

by a set of transactions that follow the protocol
• A protocol ensures serializability if all legal schedules under that

protocol are serializable

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without explicit
locking calls.

 The operation read(D) is processed as:
 if Ti has a lock on D
 then
 read(D)
 else begin
 if necessary wait until no other
 transaction has a lock-X on D
 grant Ti a lock-S on D;
 read(D)
 end

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

 The operation write(D) is processed as:
 if Ti has a lock-X on D
 then
 write(D)
 else begin
 if necessary wait until no other trans. has any lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D
 write(D)
 end;

 All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process
 Transactions can send lock and unlock requests as messages
 The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of a
deadlock)
• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a lock
table to record granted locks and pending requests

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 7th Edition

Lock Table
 Dark rectangles indicate granted

locks, light colored ones indicate
waiting requests

 Lock table also records the type of
lock granted or requested

 New request is added to the end of
the queue of requests for the data
item, and granted if it is compatible
with all earlier locks

 Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

 If transaction aborts, all waiting or
granted requests of the transaction
are deleted
• lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking
 Impose a partial ordering on the set D = {d1, d2 ,..., dh} of all data items.

• If di dj then any transaction accessing both di and dj must access di
before accessing dj.

• Implies that the set D may now be viewed as a directed acyclic graph,
called a database graph.

 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan18.23Database System Concepts - 7th Edition

Tree Protocol

 Only exclusive locks are allowed.
 The first lock by Ti may be on any data item. Subsequently, a data Q can be

locked by Ti only if the parent of Q is currently locked by Ti.
 Data items may be unlocked at any time.
 A data item that has been locked and unlocked by Ti cannot subsequently

be relocked by Ti

©Silberschatz, Korth and Sudarshan18.24Database System Concepts - 7th Edition

Serialized Schedule under Tree Protocol

©Silberschatz, Korth and Sudarshan18.25Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom from
deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the two-
phase locking protocol.
• Shorter waiting times, and increase in concurrency
• Protocol is deadlock-free, no rollbacks are required

 Drawbacks
• Protocol does not guarantee recoverability or cascade freedom

 Need to introduce commit dependencies to ensure recoverability
• Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under the
tree protocol, and vice versa.

©Silberschatz, Korth and Sudarshan18.26Database System Concepts - 7th Edition

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

©Silberschatz, Korth and Sudarshan18.27Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock Prevention
 Deadlock Detection & Deadlock Recovery

 Deadlock prevention protocols ensure that the system will never enter
into a deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it begins

execution (pre-declaration).
 Hard to predict what data items need to be locked
 Poor data-item utilization (most of the time data items are idle)

• No circular waits in ordering the requests for locks.
• Transaction roll-back whenever the waiting for the lock is required.
• Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

©Silberschatz, Korth and Sudarshan18.28Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled back

instead.
• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its original
timestamp.
• Ensures that older transactions have precedence over newer ones,

and starvation is thus avoided.

©Silberschatz, Korth and Sudarshan18.29Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time. After

that, the wait times out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of deadlock

 Difficult to determine good value of the timeout interval.
• Starvation is also possible

©Silberschatz, Korth and Sudarshan18.30Database System Concepts - 7th Edition

Deadlock Detection

 Wait-for graph
• Vertices: transactions
• Edge from Ti Tj. : if Ti is waiting for a lock held in conflicting mode

byTj

 The system is in a deadlock state if and only if the wait-for graph has a
cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan18.31Database System Concepts - 7th Edition

Deadlock Recovery

 When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.
 Select that transaction as victim that will incur minimum cost
 How long the transaction is completed & left-over
 How many data items the transaction has used and how many

required for completion?
 How many transactions are involved in deadlock

• Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

 Starvation can happen (why?)
• One solution: oldest transaction in the deadlock set is never chosen as

victim

©Silberschatz, Korth and Sudarshan18.32Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger ones

 Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks all
the node's descendants in the same mode.

 Granularity of locking (level in tree where locking is done):
• Fine granularity (lower in tree): high concurrency, high locking

overhead
• Coarse granularity (higher in tree): low locking overhead, low

concurrency

©Silberschatz, Korth and Sudarshan18.33Database System Concepts - 7th Edition

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

 The corresponding tree

©Silberschatz, Korth and Sudarshan18.34Database System Concepts - 7th Edition

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock modes
with multiple granularity:
• intention-shared (IS): indicates explicit locking at a lower level of the

tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a lower level with

exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree rooted by that node

is locked explicitly in shared mode and explicit locking is being done at
a lower level with exclusive-mode locks.

 Intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

©Silberschatz, Korth and Sudarshan18.35Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Silberschatz, Korth and Sudarshan18.36Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:
1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any
 mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is
 currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
 of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node (that
 is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently
 locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

 Lock granularity escalation: in case there are too many locks at a
particular level, switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan18.37Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Illustration of a Protocol :
1. Suppose that transaction T1 reads record ra2 in file Fa. Then, T1

needs to lock the database, area A1, and Fa in IS mode (and in that
order), and finally to lock ra2 in S mode.

2. Suppose that transaction T2 modifies record ra9 in file Fa. Then,
T2 needs to lock the database, area A1, and file Fa (and in that
order) in IX mode, and finally to lock ra9 in X mode.

3. Suppose T3 reads all records in file Fa. Then T3 needs to lock the
database and area A1 (and in that order) in IS mode, and finally to lock
Fa in S mode.

4. Suppose that transaction T4 reads the entire database. It can do so
after locking the database in S mode.

 T1, T3 and T4 can access the database concurrently

 T1 and T2 can execute concurrently

 T2 cannot execute concurrently with either T3 or T4.

©Silberschatz, Korth and Sudarshan18.38Database System Concepts - 7th Edition

Timestamp Based Concurrency Control

©Silberschatz, Korth and Sudarshan18.39Database System Concepts - 7th Edition

Timestamp-Based Protocols

 Each transaction Ti is issued a timestamp TS(Ti) when it enters the system.

• Each transaction has a unique timestamp
• Newer transactions have timestamps strictly greater than earlier ones
• Timestamp could be based on a logical counter

 Timestamp-based protocols manage concurrent execution such that
 time-stamp order = serializability order

 Several alternative protocols based on timestamps

©Silberschatz, Korth and Sudarshan18.40Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol
 Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

 Imposes rules on read and write operations to ensure that
• Any conflicting operations are executed in timestamp order
• Out of order operations cause transaction rollback

©Silberschatz, Korth and Sudarshan18.41Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that
 was already overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is executed,
and
 R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing
 was needed previously, and the system assumed that that value
 would never be produced.

 Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
 obsolete value of Q.

 Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is
 set to TS(Ti).

©Silberschatz, Korth and Sudarshan18.43Database System Concepts - 7th Edition

Example of Schedule Under TSO

 How about this one,
where initially
 R-TS(Q)=W-TS(Q)=0

Assume that initially:
 R-TS(A) = W-TS(A) = 0
 R-TS(B) = W-TS(B) = 0
Assume TS(T25) = 25 and
 TS(T26) = 26

 Is this schedule valid under TSO?

©Silberschatz, Korth and Sudarshan18.44Database System Concepts - 7th Edition

Another Example Under TSO

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially

©Silberschatz, Korth and Sudarshan18.45Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the
arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph
 Timestamp protocol ensures freedom from deadlock as no transaction

ever waits.
 But the schedule may not be cascade-free, and may not even be

recoverable.

©Silberschatz, Korth and Sudarshan18.46Database System Concepts - 7th Edition

Recoverability and Cascade Freedom

 Solution 1:
• A transaction is structured such that its writes are all performed at the

end of its processing
• All writes of a transaction form an atomic action; no transaction may

execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

 Solution 2:
• Limited form of locking: wait for data to be committed before reading it

 Solution 3:
• Use commit dependencies to ensure recoverability

©Silberschatz, Korth and Sudarshan18.47Database System Concepts - 7th Edition

Thomas’ Write Rule

 Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti
is attempting to write an obsolete value of {Q}.

• Rather than rolling back Ti as the timestamp ordering protocol would
have done, this {write} operation can be ignored.

 Otherwise this protocol is the same as the timestamp ordering protocol.
 Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-
serializable.

©Silberschatz, Korth and Sudarshan18.48Database System Concepts - 7th Edition

Concurrency Control under Insertion &
Deletion Operations

©Silberschatz, Korth and Sudarshan18.49Database System Concepts - 7th Edition

Insert & Delete Operations

 Delete: Ii = delete(Q)

• Ij = read(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If Ij
comes before Ii, Tj can execute the read operation successfully.

• Ij = write(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If Ij
comes before Ii, Tj can execute the write operation successfully.

• Ij = delete(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If
Ij comes before Ii, Ti will have a logical error.

• Ij = insert(Q). Ii and Ij conflict. Suppose that data item Q did not exist prior to
the execution of Ii and Ij. Then, if Ii comes before Ij, a logical error results for Ti.
If Ij comes before Ii, then no logical error results. Likewise, if Q existed prior to
the execution of Ii and Ij, then a logical error results if Ij comes before Ii, but not
otherwise.

©Silberschatz, Korth and Sudarshan18.50Database System Concepts - 7th Edition

Two-phase locking and TSO protocols for
Insert/Delete Operations

 Delete Operation
 Under the two-phase locking protocol, an exclusive lock is required on a data item

before that item can be deleted.
 Under the timestamp-ordering protocol, a test similar to that for a write must be

performed. Suppose that transaction Ti issues delete(Q).
• If TS(Ti) < R-timestamp(Q), then the value of Q that Ti was to delete has

already been read by a transaction Tj with TS(Tj) > TS(Ti). Hence, the delete
operation is rejected, and Ti is rolled back.

• If TS(Ti) < W-timestamp(Q), then a transaction Tj with TS(Tj) > TS(Ti) has
written Q. Hence, this delete operation is rejected, and Ti is rolled back.

• Otherwise, the delete is executed.
 Insertion Operation

• Conflicts with delete, read and write operations
• Under the two-phase locking protocol, if Ti performs an insert(Q) operation, Ti

is given an exclusive lock on the newly created data item Q.
• Under the timestamp-ordering protocol, if Ti performs an insert(Q) operation,

the values R-timestamp(Q) andW-timestamp(Q) are set to TS(Ti).

©Silberschatz, Korth and Sudarshan18.66Database System Concepts - 7th Edition

Validation-Based Protocol
 Idea: can we use commit time as serialization order?
 To do so:

• Postpone writes to end of transaction
• Keep track of data items read/written by transaction
• Validation performed at commit time, detect any out-of-serialization

order reads/writes
 Also called as optimistic concurrency control since transaction executes

fully in the hope that all will go well during validation

©Silberschatz, Korth and Sudarshan18.67Database System Concepts - 7th Edition

Validation-Based Protocol

 Execution of transaction Ti is done in three phases.
 1. Read and execution phase: Transaction Ti (a) During this phase, the system

executes transaction Ti. It reads the values of the various data items and stores them
in variables local to Ti. It performs all write operations on temporary local variables,
without updates of the actual database.

 2. Validation phase: The validation test (described below) is applied to transaction
Ti. This determines whether Ti is allowed to proceed to the write phase without
causing a violation of serializability. If a transaction fails the validation test, the
system aborts the transaction.

 3. Write phase: If the validation test succeeds for transaction Ti, the temporary local
variables that hold the results of any write operations performed by Ti are copied to
the database. Read-only transactions omit this phase.

 The three phases of concurrently executing transactions can be interleaved, but
each transaction must go through the three phases in that order.
• We assume for simplicity that the validation and write phase occur together,

atomically and serially
 I.e., only one transaction executes validation/write at a time.

©Silberschatz, Korth and Sudarshan18.68Database System Concepts - 7th Edition

Validation-Based Protocol (Cont.)

 Each transaction Ti has 3 timestamps

• StartTS(Ti) : the time when Ti started its execution

• ValidationTS(Ti): the time when Ti entered its validation phase

• FinishTS(Ti) : the time when Ti finished its write phase
 Validation tests use above timestamps and read/write sets to ensure that

serializability order is determined by validation time
• Thus, TS(Ti) = ValidationTS(Ti)

 Validation-based protocol has been found to give greater degree of
concurrency than locking/TSO if probability of conflicts is low.

©Silberschatz, Korth and Sudarshan18.69Database System Concepts - 7th Edition

Validation Test for Transaction Tj

 If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

• finishTS(Ti) < startTS(Tj)

• startTS(Tj) < finishTS(Ti) < validationTS(Tj) and the set of data items
written by Ti does not intersect with the set of data items read by Tj.

 then validation succeeds and Tj can be committed.
 Otherwise, validation fails and Tj is aborted.
 Justification:

• First condition applies when execution is not concurrent
 The writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.
• If the second condition holds, execution is concurrent, Tj does not read

any item written by Ti.

©Silberschatz, Korth and Sudarshan18.70Database System Concepts - 7th Edition

Schedule Produced by Validation

 Example of schedule produced using validation

	Slide 1
	Outline
	Lock-Based Protocols
	Lock-Based Protocols (Cont.)
	Lock-Based Protocols (Cont.)
	Transactions with Lock-Based Protocols
	Schedule With Lock Grants
	Transactions with unlocking delayed
	Deadlock
	Deadlock (Cont.)
	The Two-Phase Locking Protocol
	Partial Schedule under Two-Phase Locking Protocol
	The Two-Phase Locking Protocol (Cont.)
	Lock Conversions
	Slide 15
	The Two-Phase Locking Protocol (Cont.)
	Locking Protocols
	Automatic Acquisition of Locks
	Automatic Acquisition of Locks (Cont.)
	Implementation of Locking
	Lock Table
	Graph-Based Protocols
	Tree Protocol
	Serialized Schedule under Tree Protocol
	Graph-Based Protocols (Cont.)
	Deadlock Handling
	Deadlock Handling
	More Deadlock Prevention Strategies
	Deadlock prevention (Cont.)
	Deadlock Detection
	Deadlock Recovery
	Multiple Granularity
	Example of Granularity Hierarchy
	Intention Lock Modes
	Compatibility Matrix with Intention Lock Modes
	Multiple Granularity Locking Scheme
	Multiple Granularity Locking Scheme
	Slide 38
	Timestamp-Based Protocols
	Timestamp-Ordering Protocol
	Timestamp-Based Protocols (Cont.)
	Timestamp-Based Protocols (Cont.)
	Example of Schedule Under TSO
	Another Example Under TSO
	Correctness of Timestamp-Ordering Protocol
	Recoverability and Cascade Freedom
	Thomas’ Write Rule
	Slide 48
	Insert & Delete Operations
	Slide 50
	Validation-Based Protocol
	Validation-Based Protocol
	Validation-Based Protocol (Cont.)
	Validation Test for Transaction Tj
	Schedule Produced by Validation

