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Basic Steps in Query Processing 

1. Parsing and translation 

2. Optimization 

3. Evaluation 
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Introduction 

 Schema of an University: 

 instructor(ID, name, dept name, salary) 

 teaches(ID, course id, sec id, semester, year) 

 course(course id, title, dept name, credits) 

 

Find the names of the instructors of Music department and the titles of the courses they 

taught. 

 

 Alternative ways of evaluating a given query 

 

Πname,title (σdept name =―Music‖ (instructor ⋈ teaches ⋈ course)) 

 

Πname,title (σdept name =―Music‖ (instructor ⋈ (teaches ⋈ Πcourse id,title(course)))) 

 

Πname,title ((σdept name =―Music‖ (instructor) ⋈ teaches) ⋈ Πcourse id,title(course)) 
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Introduction 

 Alternative ways of evaluating a given query 

 Πname,title (σdept name =―Music‖ (instructor ⋈ (teaches ⋈ Πcourse id,title(course)))) 

• Equivalent expressions 

• Different algorithms for each operation 
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Introduction (Cont.) 

 An evaluation plan defines exactly what algorithm is used for each 

operation, and how the execution of the operations is coordinated. 
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Introduction (Cont.) 

 Cost difference between evaluation plans for a query can be enormous 

• E.g., seconds vs. days in some cases 

 Steps in cost-based query optimization 

1.   Generate logically equivalent expressions using equivalence rules 

2.   Annotate resultant expressions to get alternative query plans 

3.   Choose the cheapest plan based on estimated cost 

 Estimation of plan cost based on: 

• Statistical information about relations. Examples: 

 number of tuples, number of distinct values for an attribute 

• Statistics estimation for intermediate results 

 to compute cost of complex expressions 

• Cost formulae for algorithms, computed using statistics 
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Generating Equivalent Expressions 
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Transformation of Relational Expressions 

 Two relational algebra expressions are said to be equivalent if the two 

expressions generate the same set of tuples on every legal database 

instance 

• Note: order of tuples is irrelevant 

• we don’t care if they generate different results on databases that 

violate integrity constraints 

 In SQL, inputs and outputs are multisets of tuples 

• Two expressions in the multiset version of the relational algebra are 

said to be equivalent if the two expressions generate the same 

multiset of tuples on every legal database instance.  

 An equivalence rule says that expressions of two forms are equivalent 

• Can replace expression of first form by second, or vice versa 
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Equivalence Rules 

1. Conjunctive selection operations can be deconstructed into a sequence of 

individual selections. 

                 σ1  2 
(E)     ≡  σ1 (σ2 

(E))  

2. Selection operations are commutative. 

                 σ1
(σ2

(E))    ≡   σ2 (σ1
(E)) 

3. Only the last in a sequence of projection operations is needed, the others 

can be omitted. 

  L1
( L2

(…( Ln
(E))…))     ≡      L1

(E) 

where L1 ⊆ L2 … ⊆ Ln 

4.    Selections can be combined with Cartesian products and theta joins. 

a.  σ 
(E1 x E2)     ≡    E1 ⨝  E2 

b.  σ 1 
(E1 ⨝2

 E2)     ≡    E1 ⨝ 1∧2
 E2 
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Equivalence Rules (Cont.) 

5.  Theta-join operations (and natural joins) are commutative. 

 

           E1 ⨝  E2    ≡    E2 ⨝ E1 
 

6. (a) Natural join operations are associative: 

                  (E1 ⨝  E2) ⨝  
E3     ≡     E1 ⨝ (E2 ⨝ E3) 

 

(b) Theta joins are associative in the following manner: 

 

        (E1 ⨝ 1 E2) ⨝ 2  3 
E3    ≡    E1 ⨝1  3

 (E2 ⨝ 2
 E3) 

      

     where 2 involves attributes from only E2 and E3. 
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Pictorial Depiction of Equivalence Rules 
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Equivalence Rules (Cont.) 

7. The selection operation distributes over the theta join operation under the 

following two conditions: 

(a)  When all the attributes in 0  involve only the attributes of one  

       of the expressions (E1) being joined. 

 

                0 
E1 ⨝ E2)      ≡     (0

(E1)) ⨝ E2  

 

 (b) When 1 involves only the attributes of E1 and 2  involves   

      only the attributes of E2. 

                 1  2 E1 ⨝ E2)     ≡      (1
(E1)) ⨝ (2

(E2)) 
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8. The projection operation distributes over the theta join operation as follows: 

 (a) if  involves only attributes from L1  L2: 

          L1  L2
(E1 ⨝  E2)     ≡      L1

(E1) ⨝  L2
(E2)   

 (b) In general, consider a join E1 ⨝  E2.  

•  Let L1 and L2 be sets of attributes from E1 and E2, respectively.   

• Let L3 be attributes of E1 that are involved in join condition , but are 

not in L1  L2, and 

•  let L4 be attributes of E2 that are involved in join condition , but are 

not in L1  L2. 

 L1  L2
(E1 ⨝  E2)     ≡     L1  L2

( L1  L3
(E1) ⨝  L2  L4

(E2)) 

 

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗  

Equivalence Rules (Cont.) 
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Equivalence Rules (Cont.) 

 9.  The set operations union and intersection are commutative 

               E1  E2     ≡    E2  E1  

               E1  E2     ≡    E2  E1 

       (set difference is not commutative). 

10.  Set union and intersection are associative. 

            (E1  E2 )  E3    ≡    E1  (E2  E3)  

                 (E1  E2 )  E3    ≡    E1  (E2  E3)  

11.  The selection operation distributes over ,  and –.  

            a.   (E1  E2)    ≡     (E1)  (E2) 

            b.   (E1  E2)    ≡     (E1)  (E2) 

            c.    (E1 – E2)    ≡     (E1) – (E2) 

            d.    (E1  E2)   ≡    (E1)  E2 

                  e.    (E1 – E2)    ≡    (E1) – E2 

        preceding equivalence does not hold for  

12.  The projection operation distributes over union 

        L(E1  E2)     ≡     (L(E1))  (L(E2))  
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Equivalence Rules (Cont.) 

13.  Selection distributes over aggregation as below 

          (G𝛾A(E))    ≡   G𝛾A((E))  

       provided  only involves attributes in G 

14.  a. Full outerjoin is commutative: 

            E1 ⟗ E2     ≡    E2 ⟗ E1  

           b. Left and right outerjoin are not commutative, but: 

            E1 ⟕ E2     ≡    E2 ⟖ E1 

15.  Selection distributes over left and right outerjoins as below, provided 1              

       only involves attributes of E1   

       a. 1
 (E1 ⟕ E2)    ≡    (1

 (E1)) ⟕ E2  

       b. 1
 (E1 ⟖ E2)    ≡    E2 ⟕ (1

 (E1)) 

16.  Outerjoins can be replaced by inner joins under some conditions 

        a. 1
 (E1 ⟕ E2)    ≡    1

 (E1 ⨝ E2) 

        b. 1
 (E1 ⟖ E1)    ≡    1

 (E1 ⨝ E2) 

        provided 1 is null rejecting on E2  
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Equivalence Rules (Cont.) 

Note that several equivalences that hold for joins do not hold for outerjoins 

 year=2017(instructor ⟕ teaches) ≢ instructor ⟕ year=2017 (teaches)  

 

However in some cases outer and inner joins are equivalent 

 year=2017(instructor ⟕ teaches) ≡ year=2017(instructor ⨝ teaches) 

 

 Outerjoins are not associative 

               (r ⟕ s) ⟕ t     ≢     r ⟕ (s ⟕ t) 
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Transformation Example: Pushing Selections 

 Query:  Find the names of all instructors in the Music department, along 

with the titles of the courses that they teach 

• name, title(dept_name= ‘Music’ 

               (instructor ⨝ (teaches ⨝ course_id, title (course)))) 

 Transformation using rule 7a. 

• name, title((dept_name= ‘Music’(instructor)) ⨝    

               (teaches ⨝ course_id, title (course))) 

 Performing the selection as early as possible reduces the size of the 

relation to be joined.  
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Example with Multiple Transformations 

 Query: Find the names of all instructors in the Music department who have 

taught a course in 2017, along with the titles of the courses that they taught 

• name, title(dept_name= "Music‖year = 2017 

         (instructor ⨝ (teaches ⨝ course_id, title (course)))) 

 Transformation using join associatively (Rule 6a): 

• name, title(dept_name= “Music‖year = 2017 

         ((instructor ⨝ teaches) ⨝  course_id, title (course))) 

 Second form provides an opportunity to apply the “perform selections 

early” rule, resulting in the subexpression 

           dept_name = “Music‖ (instructor) ⨝  year = 2017 (teaches) 
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Multiple Transformations (Cont.) 
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Transformation Example: Pushing Projections 

 Consider: name, title(dept_name= “Music” (instructor) ⨝ teaches)  
                                   ⨝  course_id, title (course)))) 

 When we compute 

  (dept_name = “Music” (instructor ⨝ teaches) 

 
we obtain a relation whose schema is: 
(ID, name, dept_name, salary, course_id, sec_id, semester, year) 

 Push projections using equivalence rules 8a and 8b; eliminate unneeded 
attributes from intermediate results to get: 
      name, title(name, course_id ( 
                             dept_name= “Music” (instructor) ⨝ teaches))  
                ⨝   course_id, title (course)))) 

 Performing the projection as early as possible reduces the size of the 
relation to be joined.  
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Join Ordering Example 

 For all relations r1, r2, and r3, 

  (r1 ⨝ r2) ⨝ r3  = r1 ⨝ (r2 ⨝ r3 ) 

 (Join Associativity) ⨝  

 If r2 ⨝  r3  is quite large and r1 ⨝ r2 is small, we choose 

 

  (r1 ⨝ r2) ⨝ r3 

 so that we compute and store a smaller temporary relation. 
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Join Ordering Example (Cont.) 

 Consider the expression 

  name, title(dept_name= “Music” (instructor) ⨝ teaches)  

    ⨝  course_id, title (course)))) 

 Could compute   teaches ⨝ course_id, title (course) first, and join result with  

  dept_name= “Music” (instructor)  

but  the result of the first join is likely to be a large relation. 

 Only a small fraction of the university’s instructors are likely to be from 

the Music department 

•  it is better to compute 

   dept_name= “Music” (instructor) ⨝ teaches  

        first.  
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Enumeration of Equivalent Expressions 

 Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression 

 Can generate all equivalent expressions as follows:  

•  Repeat 

 apply all applicable equivalence  rules on every subexpression of 

every equivalent expression found so far 

 add newly generated expressions to the set of equivalent 

expressions  

Until no new equivalent expressions are generated above 

 The above approach is very expensive in space and time 

• Two approaches 

 Optimized plan generation based on transformation rules 

 Special case approach for queries with only selections, projections 

and joins 
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Implementing Transformation Based Optimization 

 Space requirements reduced by sharing common sub-expressions: 

• when E1 is generated from E2 by an equivalence rule, usually only the 

top level of the two are different, subtrees below are the same and can 

be shared using pointers 

 E.g., when applying join commutativity 

 

 

 

 

 

 

• Same sub-expression may get generated multiple times 

 Detect duplicate sub-expressions and share one copy 

 Time requirements are reduced by not generating all expressions 

• Dynamic programming 

 We will study only the special case of dynamic programming for join 

order optimization 
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Choice of Evaluation Plans 

 Must consider the interaction of evaluation techniques when choosing 

evaluation plans 

• choosing the cheapest algorithm for each operation independently may 

not yield best overall algorithm.  E.g. 

 merge-join may be costlier than hash-join, but may provide a sorted 

output which reduces the cost for an outer level aggregation. 

 nested-loop join may provide opportunity for pipelining 

 Practical query optimizers incorporate elements of the following two broad 

approaches: 

1. Search all the plans and choose the best plan in a  

cost-based fashion. 

2. Uses heuristics to choose a plan. 
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Cost-Based Optimization 

 Consider finding the best join-order for r1 ⨝ r2 ⨝   . . . ⨝ rn. 

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater than 

176 billion! 

 No need to generate all the join orders.  Using dynamic programming, the 

least-cost join order for any subset of  

{r1, r2, . . . rn} is computed only once and stored for future use.   
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Dynamic Programming in Optimization 

 To find best join tree for a set of n relations: 

• To find best plan for a set S of n relations, consider all possible plans 

of the form:  S1 ⨝ (S – S1) where S1 is any non-empty subset of S. 

• Recursively compute costs for joining subsets of S to find the cost of 

each plan.  Choose the cheapest of the 2n – 2 alternatives. 

• Base case for recursion:  single relation access plan 

 Apply all selections on Ri using best choice of indices on Ri 

• When plan for any subset is computed, store it and reuse it when it is 

required again, instead of recomputing it 

 Dynamic programming 
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Heuristic Optimization 

 Cost-based optimization is expensive, even with dynamic programming. 

 Systems may use heuristics to reduce the number of choices that must be 

made in a cost-based fashion. 

 Heuristic optimization transforms the query-tree by using a set of rules that 

typically (but not in all cases) improve execution performance: 

• Perform selection early (reduces the number of tuples) 

• Perform projection early (reduces the number of attributes) 

• Perform most restrictive selection and join operations (i.e., with smallest 

result size) before other similar operations. 

• Some systems use only heuristics, others combine heuristics with partial 

cost-based optimization. 
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Statistics for Cost Estimation 
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Statistical Information for Cost Estimation 

 nr:  number of tuples in a relation r. 

 br: number of blocks containing tuples of r. 

 lr: size of a tuple of r. 

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one block. 

 V(A, r): number of distinct values that appear in r for attribute A; same as 

the size of A(r). 

 If tuples of r are stored together physically in a file, then:  
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Histograms 

 Histogram on attribute age of relation person 

 

 

 

 

 

 

 

 

 

 

 Equi-width histograms 

 Equi-depth histograms break up range such that each range has 

(approximately) the same number of tuples 

• E.g. (4, 8, 14, 19)  

 Many databases also store n most-frequent values and their counts 

• Histogram is built on remaining values only 
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 A=v(r) 

• nr / V(A,r) : number of records that will satisfy the selection 

• Equality condition on a key attribute: size estimate = 1 

 AV(r) (case of A  V(r) is symmetric) 

• Let c denote  the estimated number of tuples satisfying the condition.  

• If min(A,r) and max(A,r) are available in catalog 

 c = 0 if v < min(A,r) 

 

 c = 

 

•  If histograms available, can refine above estimate 

• In absence of statistical information c is assumed to be nr / 2. 

 

Selection Size Estimation 
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Size Estimation of Complex Selections 

 The selectivity of a condition i is the probability that a tuple in the relation 

r satisfies i .  

•  If si  is the number of satisfying tuples in r, the selectivity of  i is given 

by si /nr. 

 Conjunction:  1 2. . .  n (r).  Assuming independence, estimate of  

  

tuples in the result is: 

 

 Disjunction:1 2 . . .  n (r).   Estimated number of tuples: 

 

 

 

 Negation:  (r).  Estimated number of tuples: 

 nr – size((r)) 
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Join Operation:  Running Example 

Running example:  
 student ⨝ takes 

Catalog information for join examples: 

 nstudent = 5,000. 

 fstudent  = 50, which implies that  
 bstudent =5000/50 = 100. 

 ntakes = 10000. 

 ftakes   = 25, which implies that  
 btakes = 10000/25 = 400. 

 V(ID, takes) = 2500, which implies that on average, each student who has 
taken a course has taken 4 courses. 

• Attribute ID in takes is a foreign key referencing student. 

• V(ID, student) = 5000 (primary key!) 
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Estimation of the Size of Joins 

 The Cartesian product r  x s contains nr .ns tuples; each tuple occupies sr + 

ss bytes. 

 If R  S = , then r ⋈ s is the same as r  x s.  

 If R  S is a key for R, then a tuple of s will join with at most one tuple from 

r 

• therefore, the number of tuples in r ⋈ s is no greater than the number 

of tuples in s. 

 If R  S in S is a foreign key in S referencing R, then the number of tuples 

in r ⋈ s is exactly the same as the number of tuples in s. 

 The case for R  S being a foreign key referencing S is symmetric. 

 In the example query student ⋈ takes, ID in  takes is a foreign key 

referencing student 

•  hence, the result has exactly ntakes tuples, which is 10000 
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Estimation of the Size of Joins (Cont.) 

 If R  S = {A} is not a key for R or S. 

If we assume that every tuple t in R produces tuples in R    S, the number 

of tuples in R ⨝ S is estimated to be: 

 

 

 

If the reverse is true, the estimate obtained will be: 

 

 

 

The lower of these two estimates is probably the more accurate one. 

 Can improve on above if histograms are available 

• Use formula similar to above, for each cell of histograms on the two 

relations  

),( sAV

nn sr *

),( rAV

nn sr *
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Estimation of the Size of Joins (Cont.) 

 Compute the size estimates for student ⨝ takes without using information 

about foreign keys: 

• V(ID, takes) = 2500, and 

V(ID, student) = 5000 

• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 * 

10000/5000 = 10000 

• We choose the lower estimate, which in this case, is the same as our 

earlier computation using foreign keys. 
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Size Estimation for Other Operations 

 Projection:  estimated size of A(r)   =   V(A,r) 

 Aggregation : estimated size of G𝛾A(r)   = V(G,r) 

 Set operations 

•  For unions/intersections of selections on the same relation: rewrite 

and use size estimate for selections 

 E.g., 1 (r)  2 (r)  can be rewritten as 1 or  2 (r) 

• For operations on different relations: 

 estimated size of r  s  = size of r + size of s.    

 estimated size of r  s  = minimum size of r and size of s. 

 estimated size of r – s   = r. 

 All the three estimates may be quite inaccurate, but provide upper 

bounds on the sizes. 
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Size Estimation (Cont.) 

 Outer join:   

• Estimated size of r ⟕ s  = size of  r ⨝ s  + size of r 

 Case of right outer join is symmetric 

• Estimated size of r ⟗ s  = size of r ⨝ s + size of r + size of s 
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End of Chapter 


