
Appendix A: A Practical Guide to Entity-Relationship Modeling 

 213

 
 

A Practical Guide to Entity-Relationship Modeling 
 

Il-Yeol Song and Kristin Froehlich 
College of Information Science and Technology 

Drexel University 
Philadelphia, PA  19104 

 
 
 
 
Abstract 
 
The Entity-Relationship (ER) model and its accompanying ER diagrams are widely used 
for database design and Systems Analysis. Many books and articles just provide a 
definition of each modeling component and give examples of pre-built ER diagrams. 
Beginners in data modeling have a great deal of difficulty learning how to approach a 
given problem, what questions to ask in order to build a model, what rules to use while 
constructing an ER diagram, and why one diagram is better than another. In this paper, 
therefore, we present step-by-step guidelines, a set of decision rules proven to be useful 
in building ER diagrams, and a case study problem with a preferred answer as well as a 
set of incorrect diagrams for the problem. The guidelines and decision rules have been 
successfully used in our beginning Database Management Systems course for the last 
eight years. The case study will provide readers with a detailed approach to the modeling 
process and a deeper understanding of data modeling.  
 
 
Introduction 
 
 Entity relationship diagrams (ERD) are widely used in database design and 
systems analysis to represent systems or problem domains. The ERD was introduced by 
Chen (1976) in early 1976. Teorey, Yang, and Fry (1986) present an extended ER model 
for relational database design. The ERD models a given problem in terms of its essential 
elements and the interactions between those elements in a problem domain. The ERD can 
serve as the basis for databases, which store data about the problem domain, and which 
use, manipulate, and constrain that data. Experts in systems analysis and database design 
are adept at identifying user requirements and then translating them into corresponding 
components of the model. Many books and articles just provide a definition of each 
modeling component and give examples of pre-built ER diagrams. Beginners in data 
modeling have a great deal of difficulty learning how to approach a given problem, what 
questions to ask in order to build a model, what rules to use while constructing an ER 
diagram, and why one diagram is better than another.  



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 214

 
 Ahrens and Song (1991) present a set of requirements elicitation template 
sentences, structured English template sentences, and some decision rules for database 
modeling. This paper presents a set of heuristic rules which improve upon those presented 
by Ahrens and Song (1991), together with a detailed case study analysis. We include 
step-by-step guidelines, a set of decision rules proven to be useful in building ER 
diagrams, and a case study problem with a preferred answer as well as a set of incorrect 
diagrams for the problem. These guidelines and decision rules have been successfully 
used in our beginning Database Management Systems course for the last eight years. The 
case study will provide readers with a detailed approach to the modeling process and a 
deeper understanding of data modeling.  
 
The Entity-Relationship Diagram 
 
 The entity relationship diagram is a graphical representation of a conceptual 
structure of a problem domain being modeled. The ERD assists the database designer in 
identifying the data and the rules that will be represented and used in a database. The 
ERD is an implementation-independent representation of a problem domain and it 
facilitates communication between the end-user and the analyst. ERDs can be easily 
converted into a logical database structure that can be readily implemented in a particular 
commercial database management system. 
 
 The basic components of the ERD are entities, properties of entities called 
attributes, and relationships between entities.  
 
Entities 
 
 Entities are PRIMARY THINGS of a problem domain about which users need to 
record data. Ross (1988) provides a list of candidate entity types which could be included 
in the model. 
 
(1) People: humans who carry out some function 
 Employees, Students, Customers 
(2) Places: sites or locations 
 Cities, Offices, Routes 
(3) Things: tangible physical objects 
 Equipment, Products, Buildings 
(4) Organizations 
 Teams, Suppliers, Departments 
(5) Events: things that happen to some other entity at a given date and time or as  steps 
in an ordered sequence 
 Employee promotions, Project phases, Account payments 
(6) Concepts: intangible ideas used to keep track of business or other activities 
 Projects, Accounts, Complaints 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 215

 
 These candidate entity types need to be evaluated against a particular domain 
being modeled.  Some decision rules are discussed in a later section of this paper. 
 
Attributes 
 
 Attributes are properties of entities or relationships. Entities have two types of 
properties: identifying attributes and descriptive attributes. Identifying attributes uniquely 
determine each instance of an entity type. They are called entity identifiers or keys. For 
example, the attribute social security number  would uniquely identify each member or 
instance of the entity type student. Descriptive attributes of student  might include year, 
advisor, and grade point average. Each instance of an entity has a value for each 
attribute. Values for grade point average  might include 2.5, 3.45, and 4.0. Values for 
year might include 1991, 1992, 1993, and 1994.  Only attributes that are meaningful in 
terms of modeling the problem under consideration are included in the ERD. For 
example, we would not include eye color in a student database. 
 
Relationships 
 
 Relationships are another basic component of the ERD. A relationship is an 
association between or among things or entities. A relationship describes a meaningful 
interaction that needs to be remembered by the system. The degree of a relationship 
indicates how many entities are participating in the relationship. A unary  relationship 
describes an association of an entity with itself. A binary  relationship, the most common 
instance, describes an association between two entities. A ternary (or n-ary ) relationship 
is an association between three or more entities. The ER methods that allow only unary 
and binary relationships are called binary models, while ER methods that allow any type 
of relationship are called n-ary models.  For more thorough treatment of ternary 
relationships, see Jones and Song (1995, 1996) and Song and Jones (1995). 
 
Cardinality and Participation Constraints 
 
 Cardinality is a constraint on the relationship between two entities. Specifically, 
the cardinality constraint expresses the maximum number of entities that can be 
associated with another entity via a relationship. For example, in a binary relationship (a 
relationship with two participating entities), we can have three possible cardinalities: one-
to-one (1:1), one-to-many (1:N), or many-to-many (M:N). One-to-one cardinality says 
that, for entities customer and account, one customer can have at most one account and 
one account cannot be owned by more than one customer. One-to-many cardinality says 
that one customer can have many accounts, but one account cannot be owned by more 
than one customer. Many-to-many cardinality says that one customer can have many 
accounts  and one account may be owned by many customers.  
 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 216

 Participation is also a relationship constraint. Participation expresses the minimum 
number of entities that can be associated with another entity via a relationship. There are 
two values for participation: total or mandatory  participation and partial  or optional  
participation. If every instance of an entity must participate in a given relationship then 
that entity has total participation in the relationship. But if every instance need not 
participate in a given relationship then the participation of that entity in the relationship is 
partial. Given the relationship employee works for department, an employee has partial 
participation in that relationship if he or she need not work for a department. An 
employee has total participation in the relationship if he or she must work for at least one 
department. Similarly, a department  has partial participation in the relationship if it can 
exist without having any employees. A department has total participation in the 
relationship if it must have at least one employee.  
 
 Cardinality and participation constraints are business rules in the problem domain 
being modeled.  These constraints represent the way one entity type is associated with 
another entity type.  These constraints are also integrity constraints because they help to 
ensure the accuracy of the database. These constraints limit the ways in which data from 
different parts of the database can be associated. For example, let's say the cardinality of 
the relationship between Customer and Account is one-to-one, as in Figure 1(a) below. If 
customer C1 is associated with account A3, then C1 cannot be associated with any other 
accounts and A3 cannot be associated with any other customers. 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 217

Customer Account

One - to - One (1:1):

One customer can have at most one account. 
One account cannot be owned by more than one customer.

1 1

Figure 1. CARDINALITY:  The expression of the maximum 
number of entities that can be associated to another entity via a 
relationship.  Occurrence Diagrams show the relationships between 
occurrences or instances of each entity.

C1 
C2 
C3

A1 
A2 
A3

ER Diagram

Occurrence 
Diagram

CA

Customer Account

One - to - Many (1:n):

One customer can have many accounts. 
One account cannot be owned by more than one customer.

1 n

C1 
C2 
C3

A1 
A2 
A3 
A4 
A5

ER Diagram

Occurrence 
Diagram

CA

Customer Account

Many - to - Many (n:m):

One customer can have many accounts. 
One account may be owned by many customers.

n m

C1 
C2 
C3 
C4 
C5

A1 
A2 
A3 
A4 
A5

ER Diagram

Occurrence 
Diagram

CA

(a)

(b)

(c)

 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 218

Taxonomy in ER Modeling 
 
 In an ER model, an entity is represented as a rectangle  containing the name of the 
entity. The names of attributes are enclosed in an oval  connected to the rectangle of the 
entity they describe. Attributes may be omitted from the diagram to avoid cluttering it and 
also in the early stages of development. Relationships are represented by diamonds  
between entities. The notation of the ERD, however, varies according to the modeling 
approach used. Binary models do not use the diamond to indicate a relationship, do not 
represent attributes of relationships, and do not allow ternary relationships, that is, 
relationships between three or more entities. Martin (1989), Bachman (1992), ERWin and 
IDEF1X (Bruce, 1992) use the binary modeling approach. Most text books use n-ary 
modeling, including Elmasri and Navathe (1994), Hawryszkiewycz (1991), Teorey 
(1994), Batini, Ceri and Navathe (1992), and McFadden and Hoffa (1994). A few 
notations are illustrated below.  
 

Employee Department

Employee Department

Employee Department

Employee Department

Employee Department

Employee Department

Employee Department

b) Teorey

d) MERISE

e) IE

f) Bachman

g) IDEF1X

h) Shlaer & Mellor

a) Chen

n

c

1

(0,1) (1,n)

---------------------
p

works_for

is_worked_for

works_for

works_for

has

Employee Department c) Elmasri & Navathe

n 1

 
Figure 2.  Various notations for ER Diagram representing "one employee 
works for zero or one department and one department has one or more 
employees". 

 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 219

 Each diagram in Figure 2 contains two entities: employee  and department. In 
diagrams a, b, c, and d, the diamond indicates the relationship between the entities. These 
diagrams use n-ary modeling. Diagrams e through h are examples of binary modeling. 
They do not represent the relationship with the diamond shape. Instead, diagrams e, f, and 
h label the line between the entities with the relationship name. Attributes were not 
represented in the diagrams for simplicity. The various circles, lines, arrows, and letters 
on the diagram indicate cardinality and participation constraints. For a more complete 
treatment of various ER modeling methods, see Song, Evans, and Park (1995). 
 
ER Modeling 
 
 How does one begin creating an entity relationship diagram? In this paper, we 
present step-by-step guidelines to build an ERD using n-ary modeling using Elmasri and 
Navathe's notation (see 2.c). In Table 1, we summarize a sequence of steps of database 
design using an ER model.  Note that these steps are iterative. 
 
1. Understand the problem domain.  Analyze database requirements. 
 • Write a summary specification in English, if not created yet. 
 • What do we need to store into the database? 
 • What queries and reports do we need to generate? 

• What are important  people, places, physical things, organizations, events and 
abstract concepts in the organization? 

2. Design a conceptual schema by creating an ER diagram. 
 (a) Identify entity types.  Assign a singular noun to each entity type. 

(b) Identify relationships between (among) entities.  Use a meaningful verb for a 
relationship name. 

(c) Draw an ERD without attributes. 
(d) Identify relationship cardinalities. 
 • Mapping constraint (1:1, 1:N, N:M) 
 • Participation constraint (Total, Partial) 
(e) Assign attributes to entity types and relationship types.  Usually attributes come 

from nouns, adjectives or adverbs. 
(f) Select identifiers (primary keys) for entity types. 
 • Weak entity: composite primary key. 
 • Regular entity: choose/create a single attribute primary key. 
(g) Select the PKs of relationships. 
 • If 1:1, then the PK of either side entity type may be selected. 
 • If 1:N, then the PK of N-side entity type must be selected. 

• If M:N, then a composite PK consisting of PKs of two entity types must be 
used. 

• If ternary, then a composite PK consisting of the PKs of at least two entity 
types. The actual PKs selected will vary depending on the cardinality. 

3. Design a logical schema. 
(a) Translate the ERD into a relational schema 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 220

 • If a relationship cardinality is likely to be changed; use stable method. 
 • If a relationship cardinality is not likely to be changed; use mapped method. 
 • If a relationship cardinality is not likely to be changed and null values of foreign 

keys are significant; use mapped with total/partial method. 
(b) Check normalization (at least 3NF). 
(c) Create data dictionaries. 
 • A schema table 
 • One table for each relation created in step (a) 
  - Assign a domain type for each attribute. 
  - Explain the meaning of attributes, if not intuitive. 
  - Note other values such as range, null, PK, FK, indexed, source, owner 
(d) Do database prototyping & modify the design if necessary. 
(e) Summarize the design assertion (integrity, security). 

4. Verify the design with users.  Iterate the steps, if necessary. 
 

Table 1.  Steps to DB Design Using ER Modeling 
 

 
 
 
 First, it is important to study the problem domain at hand. Analyze database 
requirements.  Write a summary paragraph for the problem domain, considering what 
data need to be stored and what queries and reports need to be processed.  All the 
information necessary for the identified queries and reports must be included in the 
summary paragraph.  Revise the summary paragraph considering database requirements.  
Second, from the summary paragraph, find nouns.  They are candidates for entity types. 
To determine whether a noun should be designated as an entity, the following decision 
rules may be applied.  
 
 
Rule 1 

Every entity type should be important in its own right within the problem domain. 
 
Rule 2  

IF an object type (noun) has only one property to store 
THEN it is an attribute of another entity type 
ELSE it is an entity type. 

 
Rule 3  

IF an object type has only one data instance 
THEN do not model as an entity type. 

 
Rule 4  

IF a relationship needs to have a unique identifier 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 221

THEN model it as an entity type. 
 
The first three rules are used to evaluate object types or nouns, and the fourth rule is used 
to evaluate relationships or verbs.  
 
Example 1 
 Address  is usually a property of another object type, like customer, vendor, or 
company. Its existence is less important and not meaningful in its own right within the 
problem domain.  Address should be modeled as an attribute. 
 
Example 2 
 Suppose we are modeling the customers of a company and we want to include the 
city  where each customer  resides. If the name of the city  is its only attribute, then, 
following Rule 2, model city  as an attribute not an entity. Similarly, consider the case of 
modeling employees  and their departments. If the only important property of the 
department  is its name, then Rule 2 tells us to model it as an attribute. However, if we 
need to store additional properties of each department such as projects or total sales, then 
we should consider modeling it as an entity. 
 
Example 3 
 Consider modeling the activities of a trucking company.  Since there is only one 
instance of the trucking company, then, according to Rule 3, it is not necessary to 
represent it in our model as an entity.  We note that it is not wrong to model this single 
instance noun as an entity type.  We simply do not model it as an entity type at the 
conceptual level because it does not add any modeling power. 
 
 We need the fourth rule because one fact can be stated in many different ways in 
English. In the fourth rule, distinguishing between entities and relationships depends on 
the function the component plays in the problem domain and how data will be stored 
about it.  
 
Example 4 
 Consider the three statements customer orders products, customer pays bills, and 
reviewer reviews papers. Even though orders  and pays  appear to represent relationships, 
we model them as entities since each instance would need a unique number for 
identification in real-world situations. Information would be stored in the database for 
each order  and payment. Each review  is not likely to need a unique identification 
number. Instead, we identify each review activity by a combination of Paper# and 
Reviewer#.  Thus, by Rule 4, we model reviews  as a relationship type.  
 
 Once entities have been assigned, we proceed to identify relationship types 
between those entities. Verbs are useful candidates for relationships. The following 
question is useful for identifying relationships:  "What sentences can be constructed of 
the form Entity Verb Entity?"  For example,  



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 222

 • Employee has children (Existence relationship) 
 • Professor teaches students (Functional relationship) 
 • Customer places order (Event relationship) 
 
Note that a relationship is not an action of a flow of data as in data flow diagrams.  They 
are important interactions, between two or more entities, that need to be remembered by 
the system.  In the above examples, we want to remember the facts that who is a child of 
which employee, which professor teaches which students, and which customer places 
which order.  Also keep in mind that all relationships are bi-directional. We should be 
able to state the relationship in both directions. Expressing the relationships above in the 
opposite direction yields the following statements: 

• Children belong to  employee 
• Students are taught by  professor 
• Order is placed by  customer 

 
After an ERD has been built, the following rule can aid in validating the diagram. 
 
Rule 5 

IF any verb refers to nouns which are not selected as entity types 
THEN do not model it as a relationship type. 
 

 If any verb in the ERD fails to follow Rule 5, then consider it again carefully 
before including it in the diagram. 
 
 When entities and relationships have been identified, then the cardinality and 
participation constraints of the relationships can be analyzed. The following rules can 
help determine the cardinality and participation constraints for a given binary 
relationship. 

A B

 
 
Rule 6 

For each A, what is the maximum number of Bs  that may be related to it? 
 
Rule 7 

IF A can exist without being associated with a B 
THEN A has partial (optional) participation 
ELSE A has total (mandatory) participation. 

 
 
 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 223

Example 5 
 Consider the relationship Supplier Supplies Account.  For each Supplier, what is 
the maximum number of Accounts that may be related to it? Let's say that in our problem 
domain, each Supplier may have many Accounts but each Account may have only one 
Supplier. By Rule 6, the cardinality constraint for Supplier:Account is 1:N or one to 
many. Figure 1 illustrates the cardinality constraints. 
 
Example 6 
 In determining the participation constraint of Supplier Supplies Account, we 
follow Rule 7: If Supplier can exist without being associated with Account, THEN 
Supplier has partial participation, ELSE Supplier has total participation. In our problem 
domain, Supplier may exist without being associated with Account. Therefore, Supplier 
has partial participation in the Supply relationship. However, since Account cannot exist 
without a Supplier; Account has total participation in the Supply relationship. 
 
 Some basic naming conventions have been established to maintain accuracy and 
consistency in the database and to avoid redundancy. All entity names should be unique. 
Use singular nouns in the diagram for both entity and attribute names. Use verbs in the 
present tense for relationship names. Verbs should be meaningful. For example, avoid 
verbs like is, has, and do whenever possible. Additionally, well-defined ERDs should 
satisfy the following basic rules:  

• All entities and relationships should be connected.  
• All entity names should be unique. 
• Each entity must have at least one relationship. 
• A relationship cannot be directly connected to another relationship. 
• Every entity must have at least one unique attribute, which serves to 

identify each instance of that entity. 
 

Case Study 
 
 The following example will illustrate our guidelines for modeling requirements of 
the problem domain with entity-relationship diagrams. Using the summary paragraph of 
the problem description below, we will progress through the steps described above. The 
nouns in the problem description appear in boldface and the verbs are italicized to aid in 
the following analysis. 
 
Summary Paragraph of Problem Description 
 
 A database specialist wants to design a part of the database for a small drug store 
owner as follows:  
 
The owner wants to keep track  of all the suppliers who supply  anything to the store. 
For each supplier, the owner assigns  a unique supplier number, and wants to keep  the 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 224

company name, address (number, street, city, state, zip), contact person's name, 
phone number, fax number, and a comment for each supplier. For each supply activity, 
an account is established  to keep track  of the date incurred, the total cost of the 
activity, due date for payment, outstanding balance after some payments, and any 
special comments related to the account. For each account, the owner may pay  at several 
different times and in different ways (e.g., cash, check, credit card). For each payment 
activity, the owner wants to keep  the date of payment, amount of payment, method of 
payment (check: check number; credit card: credit card name, type, and number). 
Note that one supplier can supply many times and one payment can pay for several 
accounts of the same supplier. 
 
Entity Analysis 
 
 After reading and understanding the problem statement, our first step is to identify 
entities for the ERD. To do that we examine the nouns in the problem statement. Nouns 
appear in boldface. We test each noun against our four criteria to determine whether or 
not it should be included as an entity type. Our first noun is owner. Recall that an entity 
type has more than one instance and more than one property. Since there is only one 
instance of owner, we do not model it as an entity type. Similarly, there is only one store,  
so we need not represent store as an entity type.  
 
The next noun, supplier, can be classified as an entity type. Several properties of supplier  
are listed in the problem statement. The statement also refers to more than one supplier. 
Therefore, according to Rules 1, 2, and 3, we model supplier as an entity. For each 
supplier, the owner wants to store the following properties in the database: supplier 
number, company name, contact person, address, phone number, fax number, and 
comment. Each of these attributes except address has only one property to store so we 
model them as attributes. Address  has its component properties number, city, state, and 
zip so one might be tempted to model it as an entity type. However, the role of address as 
a property of supplier supersedes the fact that address has properties of its own. In other 
words, address itself without supplier  is not important in its own right. Therefore, by 
Rule 1, we model address  as an attribute.  
 
Account is the next noun. Account has several properties to be stored in the database: date 
incurred, total cost, due date, account balance, and comments; and we will store 
information about numerous accounts. Therefore, we designate account  as an entity. Its 
properties are modeled as attributes of account.  
 
Payment is clearly an entity, with multiple instances and various properties. The 
properties of payment: date of payment, amount of payment, and method of payment, are 
modeled as its attributes. Cash, check, and credit card  appear to be attributes of 
payment, but actually, they are not attributes themselves, but simply different values for 
the attribute method of payment. This distinction becomes clearer if we think about 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 225

storing data in the database. For each payment, one of the values cash, check, or credit 
card will be stored in the location containing data about the method of payment. Check 
number  and credit card name, type  and number  may be modeled as attributes of 
Payment.  
 

Supplier Account Payment

 
Figure 3. Entities to be included in the ERD. 
 
Relationship Analysis 
 
Our analysis of nouns in the problem statement has produced three entities: Supplier, 
Account, and Payment  (Figure 3). Keep these entities in mind as we identify 
relationships between them. Let's examine the verbs in the problem statement as 
candidates for relationships in the diagram. Verbs appear in italics. Of the verbs in the 
problem statement: keep track, assigns, supply, established, and pay, only supply and pay 
are possible candidates for relationships between the entities account, supplier, and 
payment. Keep track  and keep  appear several times in the problem statement. These 
terms refer, not to a relationship between entities, but generally to storing data in the 
database. In other words, they are used to describe the problem domain, not an interaction 
that needs to be remembered by the system.  Therefore, we do not model them as 
relationships.  
 
Established, in the statement an account is established, is an activity performed by the 
owner or the system itself. Similarly, owner assigns a unique supplier number reflects an 
activity by the owner. These two verbs do not represent relationships between any of our 
three entities. Thus, we are left with the verbs supply and pay.  
 
A supplier  performs a supply activity. The result of a supply activity is an account. 
Therefore, a good candidate for the relationship between supplier  and account  is supply. 
Stated in both directions, the relationship is Supplier supplies account  and account is 
supplied by supplier.  Rule 4 states that if a relationship needs to have a unique identifier, 
then model it as an entity. Each supply activity is unique, so we may be tempted to model 
supply  as an entity. However, the data for each activity is stored using the entity account, 
so it is not necessary to create another entity which stores the same information. 
 
Each payment  credits an account  so pay is the relationship between payment and 
account. Expressing the relationship pay in both directions, we can say account is paid by 
payment  and payment pays account. 
 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 226

Now we can draw the basic ERD (Figure 4). We include the entities Supplier, Account, 
and Payment, and the relationships Supply and Pay. Attributes may be added to the 
diagram at this point or omitted to avoid clutter.  
 
 
 

Supplier Account

Payment

Supply

Pay

 
Figure 4. ERD without attributes and constraints 
 
Analysis of Cardinality and Participation Constraints 
 
 In order to identify the cardinality and participation constraints of each 
relationship in the ERD, we follow Rules 6 and 7 looking at the relationship first from the 
point of view of one entity and then from the other entity. In our ERD above, to 
determine the cardinality constraint of the relationship Supply, we begin by asking, "For 
each Supplier, what is the maximum number of Accounts that may be created?" From the 
problem statement, we know that one supplier can supply many times and an account  is 
established for each supply activity. Viewing the relationship in the other direction, we 
ask, "What is the maximum number of Suppliers for which each Account  may contain 
information?" From the problem statement we can assume that each account  carries 
information for a single supplier, since accounts  are established for individual supply 
activities. Thus, for each supplier, there may be many accounts and each account may 
have only one supplier. The relationship Supplier Supplies Account  is a one-to-many 
relationship. The diagram is marked with a 1  on the side of the relationship Supply  
nearer to Supplier, and an N  (for many) on the side nearer to Account  (see Figure 5).  
 
 To identify the cardinality of the relationship Payment Pays Account, we look at 
the relationship from both directions. We ask, "What is the maximum number of 
Payments we can accept for each Account?" The answer is clearly stated in the problem 
statement: For each account, the owner may pay at several different times and in different 
ways. From the opposite direction, "For each Payment, what is the maximum number of 
Accounts for which it may pay?" Again, we find the answer in the problem statement: 
One payment can pay for several accounts of the same supplier. In sum, each account 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 227

may receive many payments and each payment may pay for many accounts. Therefore, 
the relationship Payment Pays Account  is many-to-many. This time, we mark our 
diagram with an M  on one side of the relationship Pay  and an N  on the other side. (Note 
that the use of M or N is completely arbitrary.) 
 
 We go through a similar process to determine the participation constraint of each 
relationship, looking at the relationship from each direction. For the Supply relationship 
we ask, "Can a Supplier exist without generating Accounts?" In the other direction, "Can 
an Account exist without having Suppliers supply merchandise?" The answers to these 
questions are not explicit in the problem statement. In a real world situation, the database 
designers would clarify questions like these with the owner. In this case, we will make 
assumptions from what we understand about the problem domain. Suppliers are generally 
fairly stable entities. A company maintains relationships with several regular suppliers 
regardless of whether they have outstanding accounts. On the other hand, an account  is 
only created when a supplier  supplies merchandise. Since suppliers  can exist without 
having current accounts, Supplier  has partial participation in the Supply  relationship. 
Accounts, however, depend on suppliers  for their existence. Thus, Account  has total 
participation in the Supply  relationship.  
 
 To determine the participation of the entities Payment  and Account  in the Pay 
relationship, we ask, "Can a Payment  exist without paying for an Account ?" and "Can an 
Account  exist without receiving Payments  against it?" A payment which pays for 
nothing is absurd. It cannot exist without an account. An account, however, may exist 
without receiving payments against it. Therefore, Payment  has total participation and 
Account  has partial participation in the relationship Pay.  
 
 In representing the cardinality and participation constraints described above in our 
ERD, we will employ Elmasri and Navathe's (1994) notation. If an entity has partial 
participation in the relationship, then a single line is drawn on the line between that entity 
and the relationship. A double line indicates total participation. The cardinality constraint 
is represented by Look Across convention, while participation constraint is represented 
by Look Here convention. Figure 5 illustrates the final ERD with cardinality and 
participation constraints. 
 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 228

Supplier Account

Payment

Supply

Pay

1 N

M

N

 
Figure 5. ERD with cardinality and participation constraints. 
 
Errors in Modeling 
 
 A common error that novice designers make is failing to recognize the boundaries 
of a problem domain. They fail to make a distinction between elements that comprise the 
content of the database and elements that are outside the scope of the database. For 
example, in the problem statement above, a novice might want to model the verbs keep 
track or assigns  or established  as relationships (see Figure 6(a)). These verbs refer to 
implementing the database and not to its content. Keep track  refers to storing data in the 
database, established  refers to adding an instance of an entity to the database, and 
assigns  refers to giving a value to an attribute of an entity. In deciding which elements to 
model, it is valuable to keep in mind the real world situation.  
 
 Novice designers also frequently confuse entities with their attributes or 
properties, as in Figure 6(b). Occasionally, if properties are complex and play a 
significant role in the problem domain, then they may be modeled as entities. More often, 
however, properties of an entity should be modeled as attributes. In our problem 
statement, a novice user may decide to model address, a property of the entity supplier, 
as an entity. Modeling Address  follows Rules 2 and 3 about identifying entities: it has 
more than one property and it has more than one occurrence. However, address does not 
follow Rule1 in that it is not important in its own right. The role of address in the 
database is more accurate as an attribute of supplier, than as an entity with its own 
relationships. 
 
 Other errors are modeling indirect or redundant relationships and inappropriately 
modeling object types as relationships rather than as entities. Given our problem 
statement, one may be tempted to model the relationship Payment Pays Supplier as in 
Figure 6(c) or Supplier Pays Account  as in Figure 6(d) rather than Payment Pays 
Account.  Figure 6(c) represents the association between payment  and account  
indirectly.  This indirect relationship can only exist after we have all the direct 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 229

relationships as in Figure 5.  In this case, the indirect relationship simply becomes 
redundant.  Without the direct relationships, the indirect relationship cannot be added, 
because it cannot explain how a particular payment is distributed to multiple accounts.  
Figure 6(d) represents the relationship Pay rather than the entity Payment. In either of 
these two cases, it is difficult to explicitly represent the fact that one payment  can pay  
for several accounts  of the same supplier. We can only tell implicitly by reading the 
check number for the various payments. If the payment  is made in cash, there is no way 
to identify that it paid for more than one account. 
 
 If the representation used in Figure 6(d) is used, then the attributes related to 
payments: date of payment, amount of payment, and method of payment, are now 
attributes of the relationship Pay. This representation can add unnecessary complexity to 
the model. Ordinarily, a relationship is uniquely represented by the identifiers of one or 
more of the entities which participate in it. If the relationship includes a time-dependent 
attribute like date of payment, then that attribute must also be included in the primary key 
for that relationship. Additionally, instances of date of payment and amount of payment 
will require redundant representation because they will have to be included for each 
account  covered by a payment. Finally, in business practice, each payment activity 
usually requires a unique identifier. Therefore, following Rule 4, it is more appropriate to 
model payment  as an entity than as a relationship. As an entity, the representation is 
more straightforward and less likely to include redundant or inaccurate information. 
 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 230

Account

Establishes

Supplier AddressLocated_at

(b)   Attribute as entity    

Owner PaymentKeeps_track

(a)   Selection of wrong verb as relationship 

Payment SupplierPays

(c)   Indirect relationship   

Supplier Account

Establishes

Pays

(d)   Payment as relationship instead of entity  

 
Figure 6. Errors in ERD Modeling. 
 
Limitations of Guidelines and Rules 
 
 Two limitations of our guidelines are that they don't account for incomplete 
requirements analysis or for ambiguity in the problem description. If the problem 
description is incomplete, then the resulting analysis based on this approach will also be 
incomplete. We assume that the analysis is complete. If the problem specification is 
modified, the analysis and resulting ERD should be modified as well. In English, one 
concept can be represented in many different ways. For example, we can say that 
customer orders products  or customer places an order to buy products.  Order  is used 



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 231

as a verb in the first sentence and as a noun in the second. We minimize this problem by 
adopting Rule 4, which states that if a verb needs to have a unique identifier, we model it 
as an entity type rather than a relationship type.  
 
Conclusion 
 
 We have discussed a set of decision rules which are useful in building ERDs and 
have illustrated the application of these rules using a single example. ERD constructs 
discussed here include Entities, Relationships, Attributes, Cardinality constraints and 
Participation constraints. To simplify our discussion, we didn't include other constructs 
such as Weak Entity, Ternary Relationship, and Generalization/ Specialization. Our rules 
are heuristics which we have found useful for most cases to build ERDs in the early 
stages of analysis. However, these rules may need some refinement in some problem 
domains and the rules should be adapted to the problem domain under consideration. 
 
 
References 
 
Ahrens, J. and Song, I.Y. (1991). "EER Data Modeling Aids for Novice Database 
Designers". Proceedings of the 2nd International Conferences of the Information 
Resources Management, Memphis, TN, May 19-22, 1991, pp. 99-114. 
 
Bachman (1992). Bachman Analyst, Bachman Information Systems Incorporated. 
 
Batini, C., Ceri, S., and Navathe, S. (1992). Conceptual Database Design: An Entity-
Relationship Approach, Redwood City, CA: Benjamin/Cummings Publishing Company, 
Inc. 
 
Bruce, T. (1992). Designing Quality Databases with IDEF1X Information Models. New 
York, New York: Dorset House Publishing. 
 
Chen, P.P. (1976). "The Entity Relationship Model - Toward a Unified View of Data". 
ACM Transactions on Database Systems, 1 :1, pp. 9-36. 
 
Elmasri, R. and Navathe, S. (1994). Fundamentals of Database Systems, 2nd ed., 
Redwood City, CA: Benjamin/ Cummings Publishing Company, Inc. 
 
Hawryszkiewycz, I.T. (1991). Database Analysis and Design, 2nd ed., MacMillan 
Publishing Company. 
 
Jones, T.H. and Song, I.-Y., (1995). "Binary Representation of Ternary Relationships in 
ER Conceptual Modeling," in 14th Int'l Conf. on Object-Oriented and Entity-
Relationship Approach, December 12-15, 1995, Australia, pp. 216-225. (Object-



Appendix A: A Practical Guide to Entity-Relationship Modeling 

 232

Oriented and Entity-Relationship Approach, Lecture Notes in Computer Science, 
Springer-Verlag, Vol. 1021). 
 
Jones, T.H. and Song, I.-Y., (1996). "Analysis of Binary/ternary Cardinality 
Combinations in Entity-Relationship Modeling," Data & Knowledge Engineering  Vol 
19, No. 1, pp. 39-64. 
 
Martin, J. (1989). Information Engineering: Book II: Planning and Analysis, Englewood 
Cliffs, NJ: Prentice Hall. 
 
McFadden, F., and Hoffa, J. (1994). Modern Database Management, 4th Ed., Redwood 
City, CA: Benjamin/Cummings Publishing Company, Inc. 
 
Ross, R.G. (1988). Entity Modeling: Techniques and Application, Database Research 
Group, Inc. 
 
Shaler, S. and Mellor, S.J. (1988). Object-Oriented Systems Analysis: Modeling the 
World in Data, Englewood Cliffs, NJ: Yourdon Press.  
 
Song, I-Y., Evans, M., and Park, E.K. (1995). "A Comparative Analysis of Entity-
Relationship Diagrams," Journal of Computer and Software Engineering, Vol. 3, No.4 
(1995), pp. 427-459. 
 
Song, I.Y. and Jones, T.H. (1995). "Ternary Relationship Decomposition Strategies 
Based on Binary Imposition Rules," in 11th Int'l Conf. on Data Engineering, March 6-
10, 1995, Taipei, Taiwan, pp. 485-492. 
 
Teorey, T.J. (1994). Database Modeling & Design: The Fundamental Principles,  2nd. 
ed., Morgan Kauffman Publishers, Inc. 
 
Teorey, T.J., Yang, D., and Fry, J.P., (1986). "A Logical Design Methodology for 
Relational Databases Using the Extended Entity-Relationship Model". Computing 
Surveys, 18:12, June, pp. 197-222. 


