

Decimal Number System

- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Radix-10 positional number system. The radix is also called the base of the number system.

 $12304 = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 4 \times 10^0$

Quintinary Number System

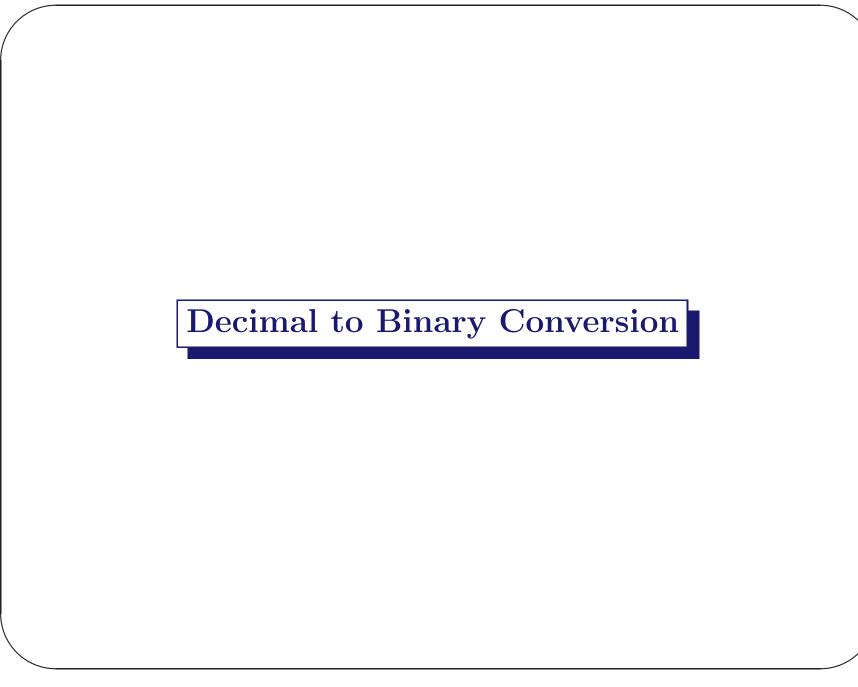
- Digits^a: 0, 1, 2, 3, 4
- Radix-5 positional number system.
- $12304 = 1 \times 5^4 + 2 \times 5^3 + 3 \times 5^2 + 0 \times 5^1 + 4 \times 5^0$ The value is 954 in decimal.

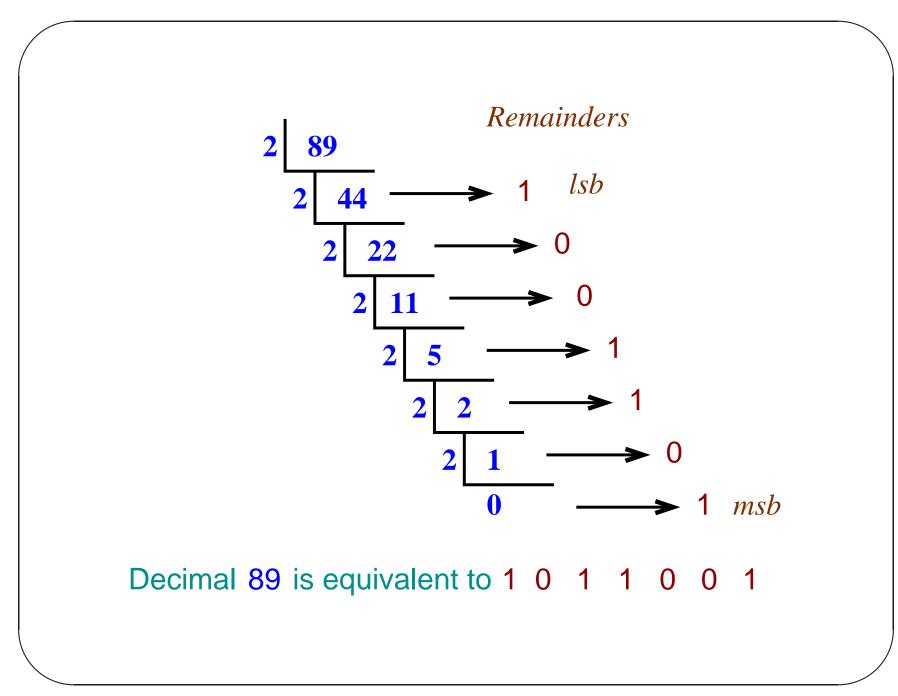
^aIs quintinary a English work?

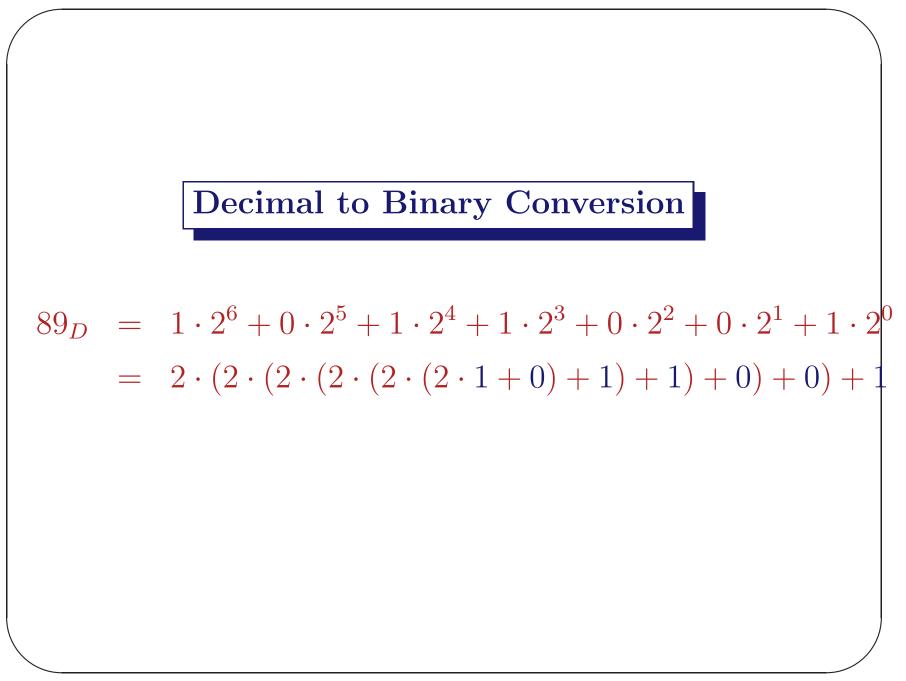

```
• Digits: 0, 1
```

• Radix-2 positional number system.

 $10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ The value is 22 in decimal.







Fixed and Finite Word

Every CPU can process (*add, subtract* etc.) a fixed length binary number by its machine instruction. Typical sizes of this data for a modern CPU are 16-bit, 32-bit, 64-bit etc. This is called the word size of a CPU. It is 32-bit for a Pentium processor^a.

^aThere are 64-bit versions and it can also process 8 and 16-bits data.

An Example with 4-bit Word

$$b_3$$
 b_2 b_1 b_0

The Range of unsigned integer stored in 4-bits is:

$$0 \text{ to } 2^4 - 1 = 15$$

Summer School 2015

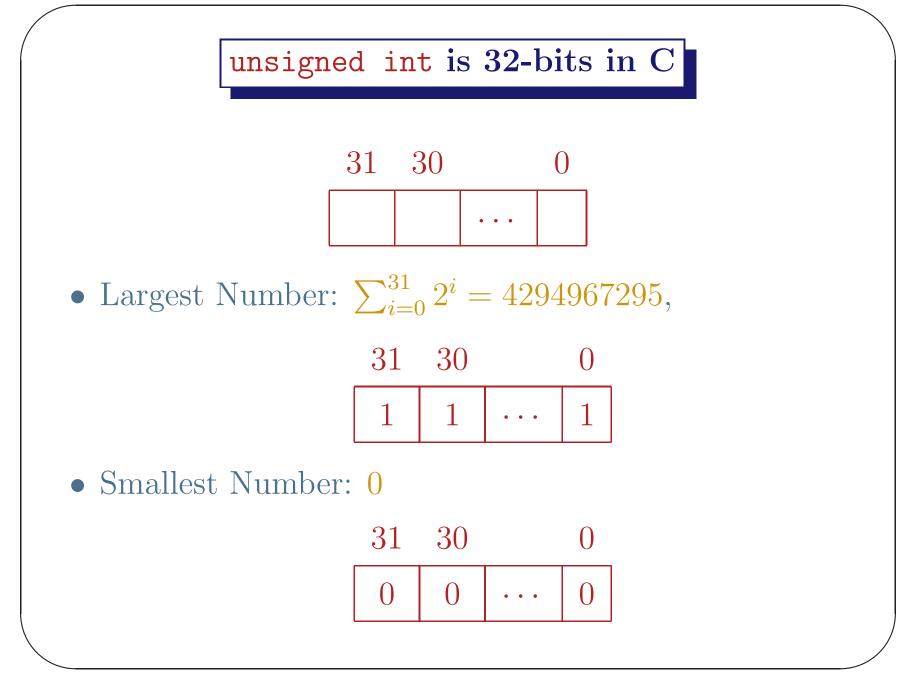
ĺ	Bit S	Strin	g	Decimal
b_3	b_2	b_1	b_0	Value
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

Lect 4

Summer School 2015

ĺ	Bit S	Strin	g	Decimal
b_3	b_2	b_1	b_0	Value
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Lect 4



Signed Decimal Number

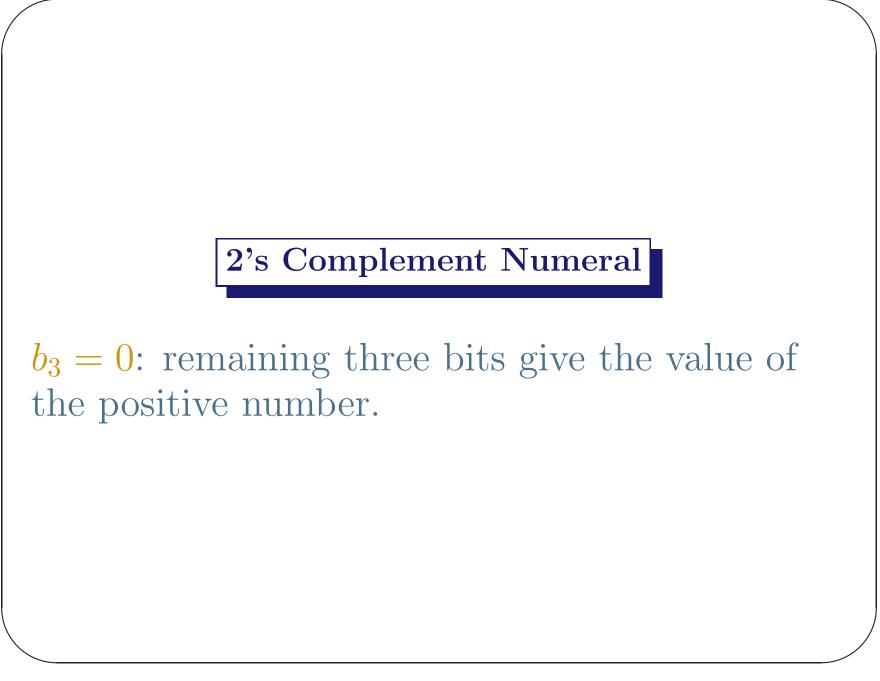
In mathematics we use '+' and '-' symbols to indicate sign of a number. But within a computer only two symbols $\{0, 1\}$ are available to represent any information. So one extra bit is required to indicate the sign of a number.

2's Complement Method

Consider a 4-bit word as an example.

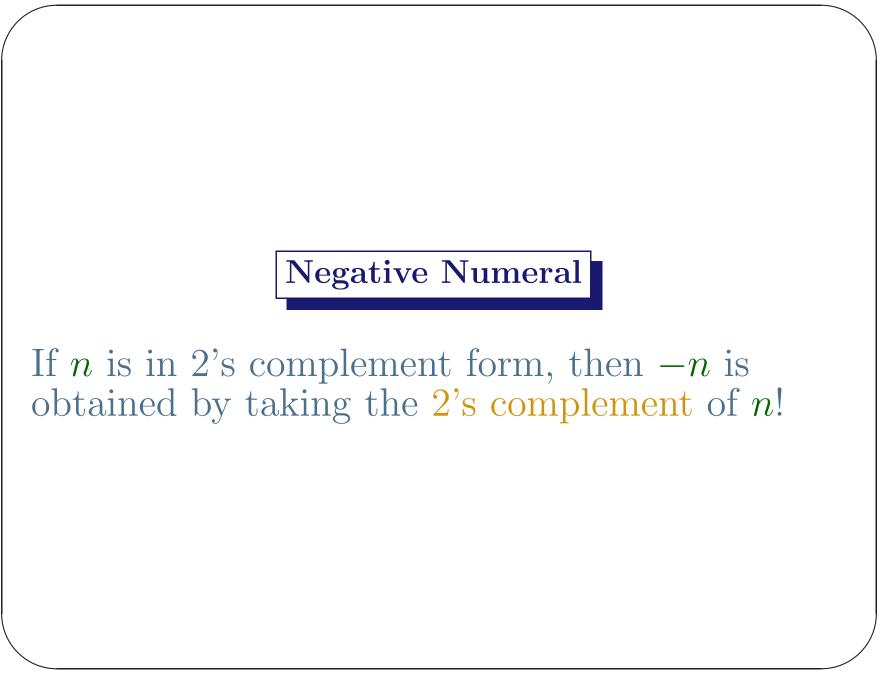
$$b_3$$
 b_2 b_1 b_0

 b_3 is zero (0) for a positive number and it is one (1) for a negative number. For an *n*-bit representation, the bit b_{n-1} represents the sign of the number.



Ì	Bit S	Strin	g	Decimal
b_3	b_2	b_1	b_0	Value
0	0	0	0	0
0	0	0	1	+1
0	0	1	0	+2
0	0	1	1	+3
0	1	0	0	+4
0	1	0	1	+5
0	1	1	0	+6
0	1	1	1	+7

Goutam Biswas

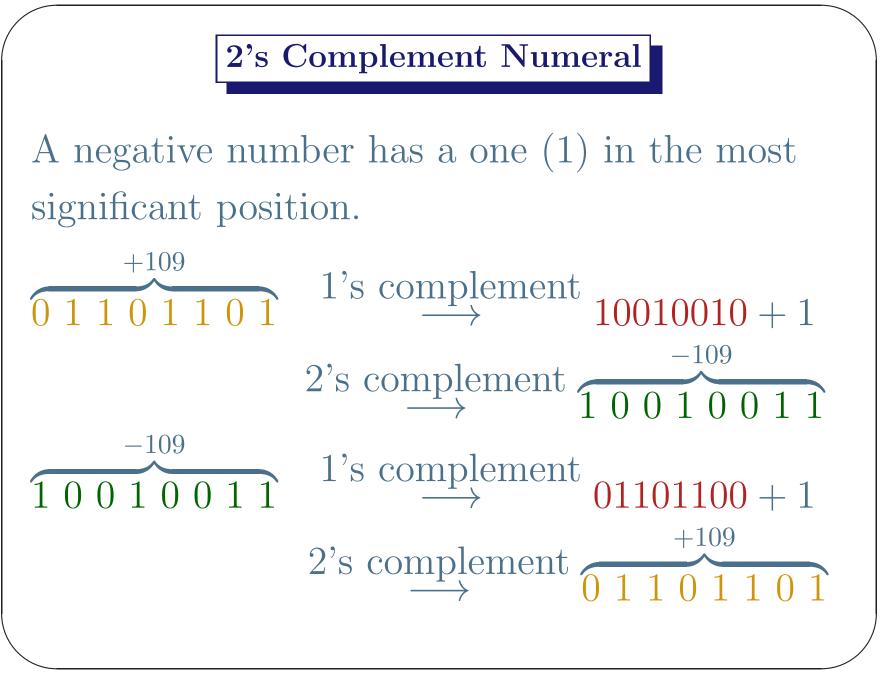


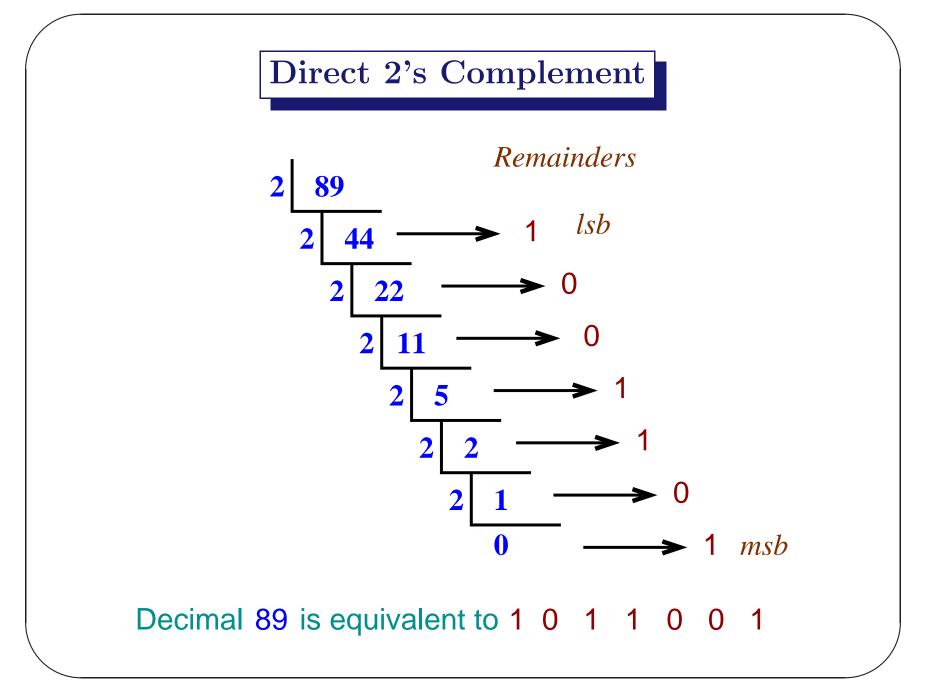
2's Complement of n

The 2's complement of n is obtained by changing every bit of n to its complement (1's complement) and finally adding 1 to the number. Summer School 2015

Í	Bit S	Strin	g	Decimal
b_3	b_2	b_1	b_0	Value
1	1	1	1	-1
1	1	1	0	-2
1	1	0	1	-3
1	1	0	0	-4
1	0	1	1	-5
1	0	1	0	-6
1	0	0	1	-7
1	0	0	0	-8

Lect 4



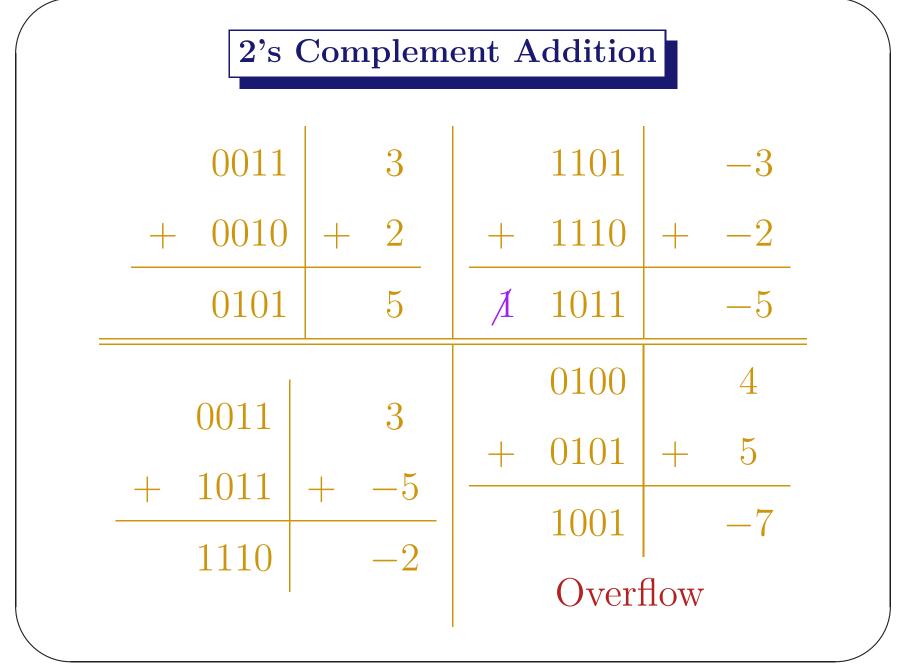


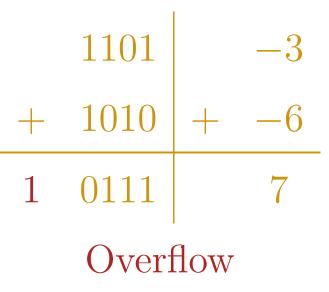
2's Complement Numeral

- Unique representations of zero: 0000.
- The range is $[-8 \cdots + 7]$ for 4-bits.
- For *n*-bits, the range is $[-(2^{n-1})\cdots+(2^{n-1}-1)].$

int, short int

- The range of data of type int (32-bits) is
 -2147483648 to 2147483647.
- 2. The range of short int (16-bits) is -32768 to 32767.
- 3. The range of long long int (64-bits) is -9223372036854775808 to 9223372036854775807.





Lect 4

int of C in Your Machine

The int in your machine (gcc-Linux on Pentium) is a 32-bit 2's complement number. Its range is -2147483648 to +2147483647. If one (1) is added to the largest positive number, the result is the smallest negative number.

0111 1111 1111 1111 1111 1111 1111 1111	2147483647
+1	
1000 0000 0000 0000 0000 0000 0000 0000	-2147483648

Fibonacci Numbers

A Fibonacci number is an infinite sequence of integers where the 0^{th} element is 0, 1^{st} element is 1, and any i^{th} element F_i , i > 1 is $F_{i-1} + F_{i-2}$. A few initial terms of the sequence are,

Write a Python program that reads a non-negative integer n and computes the n^{th} Fibonacci number.

Write a Python program that reads a positive integer n and draws a square whose each side has n *'s. As an example, if n = 4, then the output is

Write a Python program that reads a positive integer *n* and prints its binary representation. Input: 13 Output: 1101 Note: str(x) makes a string when x is a number.

Write a Python program that reads a string of decimal digits and converts it to an integer corresponding to the reverse of the digit string. Input: "18763653" Output: 35636781 Note: A string of decimal digits x can be converted to integer using int(x).