

 $\overline{}$

2

4

Lect 5 Goutam Biswas

2-Qubit Unitary Transformation

$$
X \otimes Y = \left[\begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{array} \right]
$$

 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ The effect of $X \otimes Y$ on a two qubit state $|pq\rangle$ is same as $|(Xp) \otimes (Yq)\rangle$. We consider an example where $p = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $q=\left[\begin{smallmatrix} &1\ &0& \end{smallmatrix}\right]$.

Lect 5 Goutam Biswas

 \int

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Negation of the 1st qubit and Y on the second qubit. This is same as -

2-Qubit Unitary Transformation

$$
(X \otimes Y) |10\rangle = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 \\ i \\ 0 \\ 0 \end{bmatrix}.
$$

 \int

 $\overline{}$

- This type of transformations do not create any new dependency (entanglement) of qubits.
- $\overline{}$ • But there are 2-qubit transformations that cannot be expressed as ^a tensor product of two 1-qubit transformations.

 $\overline{}$

CNOT Gate

One of the most important of such transformations is CNOT. We have already shown (Boolean) that it cannot be expressed as ^a tensor product of two 1-qubit transformations.

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap & aq & bp & bq \\ ar & as & br & bs \\ cp & cq & dp & dq \\ cr & cs & dr & ds \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}
$$

 $d = 0$, then $dq = 0$ - not possible. If $p = 0$, then $ap = 0$ - also not possible; so a contradiction. $dp = 0$ implies that either $d = 0$ or $p = 0$. If $ap = 0$ - also not possible; so a contradiction.

11

- We have seen that the effect of $X \otimes Y$ on a pair of qubits is an application of X on the first qubit and an application of Y on the second qubit. One action does not influence the other.
- $\overline{}$ • On the other hand in case of CNOT, the first qubit influences the action on the second qubit - it is either identity or NOT.

 $\overline{}$

\n- \n If
$$
p = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}
$$
, the new state comes from\n $\begin{bmatrix} ac \\ ad \\ 0 \\ 0 \end{bmatrix}$, and no change in the order of *c*, *d*.\n
\n- \n If $p = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, the new state comes from\n $\begin{bmatrix} 0 \\ 0 \\ bd \\ bc \end{bmatrix}$, and the order of *c*, *d* are reversed.\n
\n

CNOT versus $X \otimes Y$

Consider the state $|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle).$

- $(X \otimes Y) \left(\frac{1}{\sqrt{2}} (\vert 00 \rangle + \vert 10 \rangle) \right) = \frac{i}{\sqrt{2}} (\vert 11 \rangle + \vert 01 \rangle).$
- CNOT $|x\rangle = CNOT \left(\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)\right) =$ $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$

St \int The initial state was not entangled. The state after the transformation $X \otimes Y$ is also not entangled, but CNOT creates an entangled state.

CNOT versus $X \otimes Y$

If we start with $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, we get

- $(X \otimes Y) \left(\frac{1}{\sqrt{2}} (\vert 00 \rangle + \vert 11 \rangle) \right) = \frac{i}{\sqrt{2}} (- \vert 00 \rangle + \vert 11 \rangle).$
- $CNOT(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$

The input state was entangled. The entanglement remains after the transformation $X \otimes Y$, but it is not there after CNOT.

 $\overline{}$

 \int

20

 $\overline{}$

 \int

Quantum Computing

23

CNOT and Basis

- The 2-qubit CNOT gate behaves very similar to 2-bit Boolean gate, where the control bit remains unchanged and the other bit flips when the control bit is $|1\rangle$. This happens when the input state is in standard basis.
- $\overline{}$ • But if the input state is not in standard basis, CNOT behaves differently.

 $\overline{}$

CNOT On Hadamard Basis

The bases of ^a 2-qubit state space in Hadamard basis is $\{|++\rangle, |+-\rangle, |-+\rangle, |--\rangle\}$, where $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$

$$
|++\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)
$$

= $\frac{1}{2}\begin{bmatrix} 1 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$

 \int

25

$$
CNOT|++\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = |++\rangle.
$$

Similarly,

 $CNOT \ket{+-} = \ket{--}, \, CNOT \ket{-+} = \ket{-+}, \, CNOT \ket{--} = \ket{+-}.$

 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ \int The second qubit remains unchanged, the first qubit flips when the second one is $|-\rangle$.

Alice can transmit two classical bits of information to Bob by sending only one qubit.

- Initially, Alice has the first qubit and Bob has the second qubit of an entangled pair of qubits - $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$
- $\overline{}$ • Alice (Bob) can only transform her (his) qubit.

 $\overline{}$

Superdense Coding: An Application

 $\bigg($ Alice encodes her classical bit pairs 00, 01, 10, 11 as follows and sends to Bob. $00 \mapsto (I \otimes I) \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$ $01 \mapsto (X \otimes I) \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle),$ $10 \mapsto (Z \otimes I) \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle),$ $11 \mapsto (iY \otimes I) \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (-|10\rangle + |01\rangle).$ Note that the second qubit is not touched. These transformations do not affect the entanglement.

 $\overline{}$

Superdense Coding: An Application

After receiving the first qubit from Alice, Bob performs the following transformation on the entangled qubit pairs.

1. Applies CNOT that transformations the pair as follows:

$$
\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \mapsto \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle),
$$

\n
$$
\frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \mapsto \frac{1}{\sqrt{2}}(|11\rangle + |01\rangle),
$$

\n
$$
\frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \mapsto \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle),
$$

\n
$$
\frac{1}{\sqrt{2}}(-|10\rangle + |01\rangle) \mapsto \frac{1}{\sqrt{2}}(-|11\rangle + |01\rangle).
$$

 \int

2. Applies
$$
H \otimes I
$$
:
\n
$$
\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \mapsto |00\rangle,
$$
\n
$$
\frac{1}{\sqrt{2}}(|11\rangle + |01\rangle) \mapsto |01\rangle,
$$
\n
$$
\frac{1}{\sqrt{2}}(|00\rangle - |10\rangle) \mapsto |10\rangle,
$$
\n
$$
\frac{1}{\sqrt{2}}(-|11\rangle + |01\rangle) \mapsto |11\rangle.
$$

 $\overline{}$ \int 3. Bob measures the pair and recovers the two classical bits.

Superdense Coding: An Application

- The four qubit states produced by Alice are the orthonormal Bell basis - $\{\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),\}$ $\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle),\,\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle),$ $\frac{1}{\sqrt{2}}(-\ket{10}+\ket{01})\}.$
- $\overline{}$ • So Bob can perform suitable measurement and identify them directly.

 \int

- Two qubits are involved, but Alice does not use the other qubit.
- Any third party may supply the entangled qubits to Alice and Bob.

 $\overline{}$

 \int

Teleportation: An Application

Teleportation in ^a sense is reverse of superdense coding. Alice has ^a qubit in some unknown state $|x\rangle = a |0\rangle + b |1\rangle$, where $|a|^2 + |b|^2 = 1$. She wishes to transmit the state information to Bob using two Boolean bits through ^a classical channel, so that Bob can reconstruct the qubit.

 $\overline{}$

 \int

Teleportation: An Application

- To start with, the First qubit of an entangled pair $|y\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ is with Alice and the second qubit is with Bob.
- Alice starts with the 3-qubit state

$$
|x\rangle \otimes |y\rangle = (a|0\rangle + b|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)
$$

=
$$
\frac{1}{\sqrt{2}}(a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)
$$

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ • She can transform the first two qubits and Bob can transform the third qubit.

36

Teleportation: An Application

- 3. Alice measures the first two qubits in standard basis. The outcomes of measurement are $|00\rangle$, $|01\rangle$, $|10\rangle$, or $|11\rangle$ with equal probability.
- $\overline{}$ 4. Alice transmits two Boolean bits 00, 01, 10, 11 to Bob on classical channel, depending on the outcome of previous measurement.

 \int

Teleportation: An Application

As ^a result of Alice's measurement, the projected state of the third qubit of Bob is $(a |0\rangle + b |1\rangle), (a |1\rangle + b |0\rangle), (a |0\rangle - b |1\rangle),$ or $(a |1\rangle - b |0\rangle).$

 $\overline{}$

 \int

Teleportation: An Application

1. Bob receives the pair of bits and applies the following transformations on his qubit to bring it to the state of Alice's unknown qubit.

Controlled-U Transformation

- For every 1-qubit unitary transformation U , it is possible to implement ^a 2-qubit, controlled-U transformation, U^c , using CNOT gates and single qubit gates.
- $\overline{}$ • We know that any single-qubit unitary transformation U can be decomposed as $e^{i\alpha}AXBXC$, where $ABC = I$.

41

 $\overline{}$

Lect 5 Goutam Biswas

 \int

Observe that

$$
e^{i\pi/2} R_z(0) R_y(\pi/2) R_z(\pi)
$$

= $i \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{bmatrix} \begin{bmatrix} e^{-i\pi/2} & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$
= $i \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$
= $i \frac{1}{\sqrt{2}} \begin{bmatrix} -i & -i \\ -i & i \end{bmatrix} = H.$

43

Hadamard Gate an Example

So we have
$$
H = e^{i\pi/2} AXBXC
$$
, where

$$
A = R_y(\pi/4), \nB = R_y(-\pi/4)R_z(-\pi/2), \nC = R_z(\pi/2),
$$

such that $ABC = I$.

Lect 5 Goutam Biswas

 \int

44

Controlled-Phase Shift

If $U = e^{i\alpha} A X B X C$, where $ABC = I$, then in U^c the first operation is controlled phase shift, $(e^{i\alpha})^c$.

C-Phase-shift

 $\sqrt{\frac{10}{a}}$ $|00\rangle \mapsto |00\rangle, |01\rangle \mapsto |01\rangle, |10\rangle \mapsto |1\rangle \otimes e^{i\alpha} |0\rangle,$ and $|11\rangle \mapsto |1\rangle \otimes e^{i\alpha} |1\rangle.$

 \int

Controlled-Phase Shift

- We observe that $|1\rangle \otimes e^{i\alpha} |x\rangle = e^{i\alpha} |1\rangle \otimes |x\rangle$, where $x \in \{0,1\}$.
- $\overline{}$ • We need a 1-qubit transform U_1 so that $U_1 |0x\rangle = |0x\rangle$ and $U_1 |1x\rangle = e^{i\alpha} |1\rangle \otimes |x\rangle$. So $(e^{i\alpha})^c$ is implemented as $U_1 \otimes I$, where $U_1 = \begin{vmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{vmatrix} = e^{i\alpha/2} IR_z(\alpha).$

 $\overline{}$

 \int

Controlled-U Transformation

- If the control bit is $|1\rangle$, the state of the data bit is $U d = (e^{i\alpha} A X B X C) d$.
- If the control bit is $|0\rangle$, the state of the data bit is $Id = (ABC)d$.
- The circuit is as follows:

 $\overline{}$

 \int

Controlled-H Transformation: H^c

As we know $H = e^{i\pi/2}R_z(0)R_y(\pi/2)R_z(\pi) = e^{i\pi/2}AXBXC.$ So we can construct controlled-H (H^c) gate.

 \int

Multi-qubit Control

- We can generalise the single-control 2-qubit unitary transformation to multiply-controlled multi-qubit unitary transformation.
- $\overline{}$ \int • We have seen 3-bit reversible Boolean gates e.g. Toffoli gate and Fredkin gate, with two control-bits.

Multi-qubit Control

- Let U be a k-qubit unitary operator and there are *n*-control qubits.
- So we have a $(n + k)$ -qubits unitary operator $C^n(U)$ controlled by *n*-qubits.

$$
C^{n}(U) |x_{n+k-1} \cdots x_k\rangle |x_{k-1} \cdots x_0\rangle
$$

= $|x_{n+k-1} \cdots x_k\rangle U^{x_{n+k-1} \cdots x_k} |x_{k-1} \cdots x_0\rangle$,
U is applied on $|x_{k-1} \cdots x_0\rangle$ if
 $x_{n+k-1} = \cdots = x_k = 1$.

Multi-qubit Control

- We shall consider $k = 1$ and $n \geq 1$.
- The circuit for $n = 1$ can be used for $n = 2$ by replacing the 1-qubit gates A, B, C and U_1 by the corresponding control gates.

 $\overline{}$

 \int

Each single-qubit control gate require two CNOT and four single-qubit unitary gates. So all together the requirement is $4^2 = 16$. single-qubit gates and $2 + 2 \cdot 4 = 10$, CNOT gates.

 \int

56

$C^{k}(U)$ Gate count

The number of 1-qubit gates are 4^k and the number of CNOT gates are $2+2\cdot 4+\cdots+2\cdot 4^{k-1}=\frac{2}{3}(4^k-1).$

 $\overline{}$

 \int

 $C^2(U)$ where $U = V^2$

If the 1-qubit unitary operator $U = V^2$ where V is also unitary, then

 $C^2(U) = (SWAP \otimes I)(I \otimes V^c)(SWAP \otimes I)(X^c \otimes I)$ $(I \otimes (V^{\dagger})^c)(X^c \otimes I)(I \otimes V^c)$

This scheme uses $3 \times 4 = 12$ single-qubit gates and $3 \times 2 + 2 = 8$ CNOT gates.

 $\overline{}$

 \int

$$
C^2(U) \text{ where } U = V^2
$$

We apply the given sequence of transformations on $|00d\rangle$, $|01d\rangle$, $|10d\rangle$ and $|11d\rangle$, where $d \in \{0, 1\}.$

- 0. $|00d\rangle \stackrel{I\otimes V^c}{\rightarrow} |00d\rangle \stackrel{X^c\otimes I}{\rightarrow} |00d\rangle \stackrel{I\otimes (V^{\dagger})^c}{\rightarrow} |00d\rangle \stackrel{X^c\otimes I}{\rightarrow} |00d\rangle$ $\overset{SWAP \otimes I}{\rightarrow} |00d\rangle \overset{I \otimes V^c}{\rightarrow} |00d\rangle \overset{SWAP \otimes I}{\rightarrow} |00d\rangle$
- $\overline{}$ \int 1. $|01d\rangle \stackrel{I\otimes V^c}{\rightarrow} |01\rangle V |d\rangle \stackrel{X^c\otimes I}{\rightarrow} |01\rangle V |d\rangle \stackrel{I\otimes (V^{\dagger})^c}{\rightarrow} |01\rangle V^{\dagger}V |d\rangle$ $\mathcal{L} = |01d\rangle \stackrel{X^c \otimes I}{\rightarrow} |01d\rangle \stackrel{SWAP \otimes I}{\rightarrow} |10d\rangle \stackrel{I \otimes V^c}{\rightarrow} |10d\rangle \stackrel{SWAP \otimes I}{\rightarrow} |01d\rangle$

2.
$$
|10d\rangle \stackrel{I \otimes V^c}{\rightarrow} |10d\rangle \stackrel{X^c \otimes I}{\rightarrow} |11d\rangle \stackrel{I \otimes (V^{\dagger})^c}{\rightarrow} |11\rangle V^{\dagger} |d\rangle \stackrel{X^c \otimes I}{\rightarrow} |10\rangle V^{\dagger} |d\rangle \stackrel{SWAP \otimes I}{\rightarrow} |01\rangle V^{\dagger} |d\rangle \stackrel{I \otimes V^c}{\rightarrow} |01\rangle VV^{\dagger} |d\rangle = |01d\rangle \stackrel{SWAP \otimes I}{\rightarrow} |10d\rangle
$$

3.
$$
|11d\rangle \stackrel{I \otimes V^c}{\longrightarrow} |11\rangle V |d\rangle \stackrel{X^c \otimes I}{\longrightarrow} |10\rangle V |d\rangle \stackrel{I \otimes (V^{\dagger})^c}{\longrightarrow} |10\rangle V |d\rangle
$$

\n $\stackrel{X^c \otimes I}{\longrightarrow} |11\rangle V |d\rangle \stackrel{SWAP \otimes I}{\longrightarrow} |11\rangle V |d\rangle \stackrel{I \otimes V^c}{\longrightarrow} |11\rangle V V |d\rangle =$
\n $|11\rangle U |d\rangle \stackrel{SWAP \otimes I}{\longrightarrow} |11\rangle U |d\rangle$

 $\overline{}$

 \int

An important 2-qubit gate is ^a SWAP gate. Its transition matrix is

 \int

 $\overline{}$

65

The following gate is known as \sqrt{NOT} such that $\sqrt{NOT} \cdot \sqrt{NOT} = NOT$.

$$
\sqrt{NOT} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}.
$$

This gate can be used to implement CCNOT or Toffoli gate.

 $\overline{}$

 \int

67

Note that in Boolean logic, ^a Toffoli gate cannot be constructed using one-bit or two-bit gates. But ^a quantum Toffoli gate can be constructed using 2-qubit gates.

 \int

68

≡

FREDKIN or Controlled-SWAP

 \int

Quantum Computing

72
Fredkin Gate using CNOT and CCNOT

$$
|c_1a_1b_1\rangle = |c, a, b \oplus a\rangle
$$

\n
$$
|c_2a_2b_2\rangle = |c, a \oplus c(b \oplus a), b \oplus a\rangle
$$

\n
$$
|c_3a_3b_3\rangle = |c, a \oplus c(b \oplus a), (b \oplus a) \oplus (a \oplus c(b \oplus a))\rangle.
$$

•
$$
c = 0
$$
, $|c_3a_3b_3\rangle = |0, a, b\rangle$.
\n• $c = 1$, $|c_3a_3b_3\rangle = |1, b, a\rangle$ as $a \oplus (b \oplus a) = b$ and
\n $(b \oplus a) \oplus (a \oplus (b \oplus a)) = a$.

Lect 5 Goutam Biswas

 \int

 $\overline{}$

- The CCNOT gate can be replaced by two CNOT, two \sqrt{NOT} and one \sqrt{NOT} gate.
- So the Fredkin gate can be implemented using seven 2-qubit gates.
- $\overline{}$ • This was impossible in classical Boolean logic.

 $\overline{}$

 \int

sum Computing
\n
$$
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix},
$$
\nand\n
$$
CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}
$$

any unitary transformation. These four gates can be used to approximate

 \int

 $|abc\rangle \stackrel{1}{\rightarrow} |ab\rangle H |c\rangle \stackrel{2}{\rightarrow} \cdots \stackrel{8}{\rightarrow} |ab\rangle X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H |c\rangle,$

- \rightarrow $\langle |a\rangle T^{\dagger} |b\rangle TX^a T^{\dagger}X^b TX^a T^{\dagger}X^b H |c\rangle$
- \rightarrow $\ket{a} X^a T^{\dagger} \ket{b} HT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H \ket{c}$
- $\stackrel{11}{\rightarrow}$ $\ket{a} T^{\dagger} X^a T^{\dagger} \ket{b} HT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H \ket{c}$
- $\stackrel{12}{\rightarrow}$ $\ket{a} X^a T^{\dagger} X^a T^{\dagger} \ket{b} HT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H \ket{c}$
- $\stackrel{13}{\rightarrow}$ $T |a\rangle$ $SX^aT^{\dagger}X^aT^{\dagger} |b\rangle$ $HTX^aT^{\dagger}X^bTX^aT^{\dagger}X^bH |c\rangle$

77

 $\overline{}$

 \int

 $\overline{}$

- $a = 0$: $T |a\rangle = |0\rangle$, $SX^aT^{\dagger}X^aT^{\dagger} |b\rangle = S(T^{\dagger})^2 |b\rangle = |b\rangle$, $HT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H |c\rangle = |c\rangle.$ So, $|0bc\rangle \stackrel{1...12}{\rightarrow} |0bc\rangle$.
- $\overline{}$ \int • $a = 1, b = 0$: $T |a\rangle = e^{i\pi/4} |1\rangle$, if we take the phase-factor $e^{i\pi/4}$ with the second term, we get $e^{i\pi/4}SX^aT^{\dagger}X^aT^{\dagger}$ $|0\rangle = e^{i\pi/4}SXT^{\dagger}XT^{\dagger}$ $|0\rangle = |0\rangle$. $HT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H |c\rangle = HT X T^{\dagger} T X T^{\dagger} H |c\rangle =$ $|c\rangle$. So, $|10c\rangle \stackrel{1\cdots 12}{\rightarrow} |10c\rangle$.

 $\overline{}$

CCNOT using H, S, T and CNOT

• $a = 1 = b$: $T |a\rangle = e^{i\pi/4} |1\rangle$, if we take the phase-factor $e^{i\pi/4}$ with the second term, we get $e^{i\pi/4}SX^aT^{\dagger}X^aT^{\dagger}1\rangle = e^{i\pi/4}SXT^{\dagger}XT^{\dagger}1\rangle = i|1\rangle.$ Transferring the ^phase-factor i to the third qubit state we get, $iHT X^a T^{\dagger} X^b T X^a T^{\dagger} X^b H |c\rangle =$ $iH(TXT^{\dagger}X)(TXT^{\dagger}X)H|c\rangle = iH(-iZ)H|c\rangle =$ $HZH |c\rangle = X |c\rangle.$ So, $|11c\rangle \stackrel{1\cdots12}{\rightarrow} |11\overline{c}\rangle$.

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ • So the circuit behaves like a CCNOT gate. \int

79

- The 1-qubit transformation U may be applied on the data-qubit when the control qubit is $|0\rangle$.
- The corresponding transformation matrix is

$$
U_{|0\rangle}^c=\left[\begin{array}{cccc}u_{11}&u_{12}&0&0\\u_{21}&u_{22}&0&0\\0&0&1&0\\0&0&0&1\end{array}\right]
$$

 \int

 $\overline{}$

 $\overline{}$

