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✫

✩

✪

Quantum State Transformation II
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Quantum Computing 2✬

✫

✩

✪

State Transition in Multi-Qubit System

• We start with a 2-qubit systems in standard

or computational basis.

• The basis of such system is the tensor
product of two 1-qubit bases -

{|0〉 , |1〉} ⊗ {|0〉 , |1〉}
= {|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉}
= {|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 [|1〉}
= {|00〉 , |01〉 , |10〉 , |11〉}

.
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✫

✩

✪

2-Qubit Representation

• If we represent |0〉 =
[

1

0

]

and |1〉 =
[

0

1

]

,

|00〉 =
[

1

0

]

⊗
[

1

0

]

=







1





1

0





0





1

0










=







1

0

0

0
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✫

✩

✪

2-Qubit Representation

• Similarly,

|01〉 =







0

1

0

0






, |10〉 =







0

0

1

0






, |11〉 =







0

0

0

1






.
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✫

✩

✪

2-Qubit Unitary Transformation

• One may think of a 2-qubit unitary

transformation as a tensor product of two

1-qubit unitary transformations.

• As an example consider

X⊗Y =





0 1

1 0



⊗





0 −i

i 0



 =

















0





0 −i

i 0



 1





0 −i

i 0





1





0 −i

i 0



 0





0 −i

i 0
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✫

✩

✪

2-Qubit Unitary Transformation

X ⊗ Y =















0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0















The effect of X ⊗ Y on a two qubit state |pq〉
is same as |(Xp)⊗ (Y q)〉.
We consider an example where p =

[

0

1

]

and

q =
[

1

0

]

.
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✫

✩

✪

2-Qubit Unitary Transformation

(X ⊗ Y ) |10〉 =





0 1

1 0



⊗





0 −i

i 0













0

1



⊗





1

0









=





0 1

1 0









0

1



⊗





0 −i

i 0









1

0



 =





1

0



⊗





0

i





=















0

i

0

0















= i |01〉 = |0〉 ⊗ i |1〉

Negation of the 1st qubit and Y on the second qubit.
This is same as -
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✫

✩

✪

2-Qubit Unitary Transformation

(X ⊗ Y ) |10〉 =















0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0





























0

0

1

0















=















0

i

0

0















.
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✫

✩

✪

2-Qubit Unitary Transformation

In general, if p =
[

a

b

]

and q =
[

c

d

]

,

(X ⊗ Y ) |pq〉 =















0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0





























ac

ad

bc

bd















=















−ibd

ibc

−iad

iac















=





b

a



⊗





−id

ic



 = (Xp)⊗ (Y q).
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✫

✩

✪

Note

• This type of transformations do not create

any new dependency (entanglement) of

qubits.

• But there are 2-qubit transformations that

cannot be expressed as a tensor product of

two 1-qubit transformations.
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✫

✩

✪

CNOT Gate

One of the most important of such
transformations is CNOT. We have already
shown (Boolean) that it cannot be expressed as
a tensor product of two 1-qubit
transformations.





a b

c d



⊗





p q

r s



 =















ap aq bp bq

ar as br bs

cp cq dp dq

cr cs dr ds















6=















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















dp = 0 implies that either d = 0 or p = 0. If
d = 0, then dq = 0 - not possible. If p = 0, then
ap = 0 - also not possible; so a contradiction.
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✫

✩

✪

CNOT Gate

The CNOT transformation can be expressed as

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =





1 0

0 0



⊗





1 0

0 1



+





0 0

0 1



⊗





0 1

1 0





=















1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0















+















0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0















=















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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✫

✩

✪

CNOT Gate

We have p =
[

a

b

]

and q =
[

c

d

]

.

CNOT |pq〉 =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





























ac

ad

bc

bd















=















ac

ad

bd

bc















.





























1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0















+















0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0











































ac

ad

bc

bd















=















ac

ad

0

0















+















0

0

bd

bc















=















ac

ad

bd

bc
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✫

✩

✪

Note

• We have seen that the effect of X ⊗ Y on a

pair of qubits is an application of X on the

first qubit and an application of Y on the

second qubit. One action does not influence

the other.

• On the other hand in case of CNOT, the

first qubit influences the action on the

second qubit - it is either identity or NOT.
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✫

✩

✪

Note

• If p =
[

a

b

]

=
[

1

0

]

, the new state comes from






ac

ad

0

0






, and no change in the order of c, d.

• If p =
[

a

b

]

=
[

0

1

]

, the new state comes from






0

0

bd

bc






, and the order of c, d are reversed.
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✫

✩

✪

CNOT versus X ⊗ Y

Consider the state |x〉 = 1√
2
(|00〉+ |10〉).

• (X ⊗ Y )
(

1√
2
(|00〉+ |10〉)

)

= i√
2
(|11〉+ |01〉).

• CNOT |x〉 = CNOT
(

1√
2
(|00〉+ |10〉)

)

=
1√
2
(|00〉+ |11〉).

The initial state was not entangled. The state
after the transformation X ⊗ Y is also not
entangled, but CNOT creates an entangled
state.
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✫

✩

✪

CNOT versus X ⊗ Y

If we start with 1√
2
(|00〉+ |11〉), we get

• (X ⊗ Y )
(

1√
2
(|00〉+ |11〉)

)

= i√
2
(− |00〉+ |11〉).

• CNOT ( 1√
2
(|00〉+ |11〉) = 1√

2
(|00〉+ |10〉)

The input state was entangled. The
entanglement remains after the transformation
X ⊗ Y , but it is not there after CNOT.
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✫

✩

✪

Graphical Notation: CNOT

CNOT

c c

d c⊕ d
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✫

✩

✪

Controlled U Gate

For every 1-qubit transformation U we can have

a controlled-U gate, U c.

U c |ab〉 =







|ab〉 if a = 0,

|a(Ub)〉 if a = 1.

So U c = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U .
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✫

✩

✪

Controlled-U Transformation

• Let U =

[

u11 u12

u21 u22

]

be a 1-qubit unitary

transformation.

• The transformation matrix for

Uc =















1 0 0 0

0 1 0 0

0 0 u11 u12

0 0 u21 u22















.
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✫

✩

✪

Zc, H and CNOT

We know that

H = 1√
2

[

1 1

1 −1

]

= 1√
2
(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|)

and I = |0〉 〈0|+ |1〉 〈1|. So,

I ⊗H = (|0〉 〈0|+ |1〉 〈1|)⊗
1√
2
(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|)

=
1√
2
(|00〉 〈00|+ |00〉 〈01|+ |01〉 〈00| − |01〉 〈01|+

|10〉 〈10|+ |10〉 〈11|+ |11〉 〈10| − |11〉 〈11|
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✫

✩

✪

Zc, H and CNOT

I ⊗H =
1√
2















1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1















, Zc =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1















So (I ⊗H)Zc(I ⊗H) is

1

2















1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1





























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1





























1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1
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✫

✩

✪

Zc, H and CNOT

So we have

(I ⊗H)Zc(I ⊗H) =
1

2















1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1





























1 1 0 0

1 −1 0 0

0 0 1 1

0 0 −1 1















=
1

2















2 0 0 0

0 2 0 0

0 0 0 2

0 0 2 0















=















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















= CNOT
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✫

✩

✪

CNOT and Basis

• The 2-qubit CNOT gate behaves very similar

to 2-bit Boolean gate, where the control bit

remains unchanged and the other bit flips

when the control bit is |1〉. This happens
when the input state is in standard basis.

• But if the input state is not in standard

basis, CNOT behaves differently.
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✫

✩

✪

CNOT On Hadamard Basis

The bases of a 2-qubit state space in Hadamard basis is

{|++〉 , |+−〉 , |−+〉 , |−−〉}, where |+〉 = 1√
2
(|0〉+ |1〉)

and |−〉 = 1√
2
(|0〉 − |1〉).

|++〉 =
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1

2

[

1

1

]

⊗
[

1

1

]

=
1

2









1

1

1

1









.
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✫

✩

✪

CNOT On Hadamard Basis

Similarly,

|+−〉 = 1

2









1

−1

1

−1









, |−+〉 = 1

2









1

1

−1

−1









, |−−〉 = 1

2









1

−1

−1

1









.
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✫

✩

✪

CNOT On Hadamard Basis

CNOT |++〉 =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





























1

1

1

1















=















1

1

1

1















= |++〉 .

Similarly,

CNOT |+−〉 = |−−〉 , CNOT |−+〉 = |−+〉 , CNOT |−−〉 = |+−〉 .

The second qubit remains unchanged, the first
qubit flips when the second one is |−〉.
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✫

✩

✪

Superdense Coding: An Application

Alice can transmit two classical bits of

information to Bob by sending only one qubit.

• Initially, Alice has the first qubit and Bob

has the second qubit of an entangled pair of

qubits - 1√
2
(|00〉+ |11〉).

• Alice (Bob) can only transform her (his)

qubit.
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✫

✩

✪

Superdense Coding: An Application

Alice encodes her classical bit pairs
00, 01, 10, 11 as follows and sends to Bob.
00 7→ (I ⊗ I) 1√

2
(|00〉+ |11〉) = 1√

2
(|00〉+ |11〉),

01 7→ (X ⊗ I) 1√
2
(|00〉+ |11〉) = 1√

2
(|10〉+ |01〉),

10 7→ (Z ⊗ I) 1√
2
(|00〉+ |11〉) = 1√

2
(|00〉 − |11〉),

11 7→ (iY ⊗ I) 1√
2
(|00〉+ |11〉) = 1√

2
(− |10〉+ |01〉).

Note that the second qubit is not touched.
These transformations do not affect the
entanglement.
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✫

✩

✪

Superdense Coding: An Application

After receiving the first qubit from Alice, Bob performs

the following transformation on the entangled qubit pairs.

1. Applies CNOT that transformations the pair as

follows:
1√
2
(|00〉+ |11〉) 7→ 1√

2
(|00〉+ |10〉),

1√
2
(|10〉+ |01〉) 7→ 1√

2
(|11〉+ |01〉),

1√
2
(|00〉 − |11〉) 7→ 1√

2
(|00〉+ |10〉),

1√
2
(− |10〉+ |01〉) 7→ 1√

2
(− |11〉+ |01〉).
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✫

✩

✪

Superdense Coding: An Application

2. Applies H ⊗ I:
1√
2
(|00〉+ |10〉) 7→ |00〉,

1√
2
(|11〉+ |01〉) 7→ |01〉,

1√
2
(|00〉 − |10〉) 7→ |10〉,

1√
2
(− |11〉+ |01〉) 7→ |11〉.

3. Bob measures the pair and recovers the two classical

bits.
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✫

✩

✪

Superdense Coding: An Application

• The four qubit states produced by Alice are

the orthonormal Bell basis - { 1√
2
(|00〉+ |11〉),

1√
2
(|10〉+ |01〉), 1√

2
(|00〉 − |11〉),

1√
2
(− |10〉+ |01〉)}.

• So Bob can perform suitable measurement

and identify them directly.
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✫

✩

✪

Superdense Coding: Note

• Two qubits are involved, but Alice does not

use the other qubit.

• Any third party may supply the entangled

qubits to Alice and Bob.
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✫

✩

✪

Teleportation: An Application

Teleportation in a sense is reverse of superdense
coding.
Alice has a qubit in some unknown state
|x〉 = a |0〉+ b |1〉, where |a|2 + |b|2 = 1. She
wishes to transmit the state information to Bob
using two Boolean bits through a classical
channel, so that Bob can reconstruct the qubit.
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✫

✩

✪

Teleportation: An Application

• To start with, the First qubit of an entangled pair

|y〉 = 1√
2
(|00〉+ |11〉) is with Alice and the second

qubit is with Bob.

• Alice starts with the 3-qubit state

|x〉 ⊗ |y〉 = (a |0〉+ b |1〉)⊗ 1√
2
(|00〉+ |11〉)

=
1√
2
(a |000〉+ a |011〉+ b |100〉+ b |111〉)

• She can transform the first two qubits and Bob can

transform the third qubit.
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✫

✩

✪

Teleportation: An Application

1. Alice applies CNOT ⊗ I on |x〉 ⊗ |y〉
(CNOT ⊗ I)(|x〉 ⊗ |y〉)

=
1√
2
(CNOT ⊗ I)(a |000〉+ a |011〉+ b |100〉+ b |111〉)

=
1√
2
(a |000〉+ a |011〉+ b |110〉+ b |101〉).
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✫

✩

✪

Teleportation: An Application

2. Then she applies H ⊗ I ⊗ I on

(CNOT ⊗ I)(|x〉 ⊗ |y〉) i.e.
(H ⊗ I ⊗ I)(CNOT ⊗ I)(|x〉 ⊗ |y〉)

=
1√
2
(H ⊗ I ⊗ I)(a |000〉+ a |011〉+ b |110〉+ b |101〉)

=
1

2
(a(|000〉+ |100〉+ |011〉+ |111〉) +

b(|010〉 − |110〉+ |001〉 − |101〉))

=
1

2
(|00〉 (a |0〉+ b |1〉) + |01〉 (a |1〉+ b |0〉)

+ |10〉 (a |0〉 − b |1〉) + |11〉 (a |1〉 − b |0〉)).
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✫

✩

✪

Teleportation: An Application

3. Alice measures the first two qubits in

standard basis. The outcomes of

measurement are |00〉 , |01〉 , |10〉, or |11〉
with equal probability.

4. Alice transmits two Boolean bits

00, 01, 10, 11 to Bob on classical channel,

depending on the outcome of previous

measurement.
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✫

✩

✪

Teleportation: An Application

As a result of Alice’s measurement, the
projected state of the third qubit of Bob is
(a |0〉 + b |1〉), (a |1〉 + b |0〉), (a |0〉 − b |1〉), or
(a |1〉 − b |0〉).
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✫

✩

✪

Teleportation: An Application

1. Bob receives the pair of bits and applies the following

transformations on his qubit to bring it to the state of

Alice’s unknown qubit.

Boolean bits Transformation

00 I(a |0〉 + b |1〉) = a |0〉 + b |1〉
01 X(a |1〉+ b |0〉) = a |0〉+ b |1〉
10 Z(a |0〉 − b |1〉) = a |0〉+ b |1〉
11 iY (a |1〉 − b |0〉) = a |0〉+ b |1〉
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✫

✩

✪

Controlled-U Transformation

• For every 1-qubit unitary transformation U ,

it is possible to implement a 2-qubit,

controlled-U transformation, U c, using

CNOT gates and single qubit gates.

• We know that any single-qubit unitary

transformation U can be decomposed as

eiαAXBXC, where ABC = I.
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✫

✩

✪

Rotation gates

We know that

Rx(α) =

[

cos
(

α
2

)

−i sin
(

α
2

)

−i sin
(

α
2

)

cos
(

α
2

)

]

Ry(α) =

[

cos
(

α
2

)

− sin
(

α
2

)

sin
(

α
2

)

cos
(

α
2

)

]

Rz(α) =

[

cos
(

α
2

)

− i sin
(

α
2

)

0

0 cos
(

α
2

)

+ i sin
(

α
2

)

]

.

=

[

e−iα

2 0

0 ei
α

2

]

.
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✫

✩

✪

Hadamard Gate an Example

Observe that

eiπ/2Rz(0)Ry(π/2)Rz(π)

= i

[

1 0

0 1

][

cosπ/4 − sinπ/4

sinπ/4 cosπ/4

][

e−iπ/2 0

0 eiπ/2

]

= i
1√
2

[

1 −1

1 1

][

−i 0

0 i

]

= i
1√
2

[

−i −i

−i i

]

= H.
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✫

✩

✪

Hadamard Gate an Example

So we have H = eiπ/2AXBXC, where

A = Ry(π/4),

B = Ry(−π/4)Rz(−π/2),

C = Rz(π/2),

such that ABC = I.
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✫

✩

✪

Controlled-Phase Shift

If U = eiαAXBXC, where ABC = I, then in

U c the first operation is controlled phase shift,

(eiα)c.

c c

d c⊕ eiαd

C-Phase-shift

eiα

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |1〉 ⊗ eiα |0〉,
and |11〉 7→ |1〉 ⊗ eiα |1〉.
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✫

✩

✪

Controlled-Phase Shift

• We observe that |1〉 ⊗ eiα |x〉 = eiα |1〉 ⊗ |x〉,
where x ∈ {0, 1}.

• We need a 1-qubit transform U1 so that

U1 |0x〉 = |0x〉 and U1 |1x〉 = eiα |1〉 ⊗ |x〉.
So (eiα)c is implemented as U1 ⊗ I, where

U1 =

[

1 0

0 eiα

]

= eiα/2IRz(α).
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✫

✩

✪

Controlled-Phase Shift

c c

d c⊕ eiαdeiα

C-Phase-shift

≡
c cU1

d d
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✫

✩

✪

Controlled-U Transformation

• If the control bit is |1〉, the state of the data

bit is Ud = (eiαAXBXC)d.

• If the control bit is |0〉, the state of the data

bit is Id = (ABC)d.

• The circuit is as follows:
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✫

✩

✪

Controlled-U Gate

C B A

U1

Controlled-U (Uc)

In-state
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✫

✩

✪

Controlled-H Transformation: Hc

As we know
H = eiπ/2Rz(0)Ry(π/2)Rz(π) = eiπ/2AXBXC.
So we can construct controlled-H (Hc) gate.
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✫

✩

✪

Multi-qubit Control

• We can generalise the single-control 2-qubit

unitary transformation to

multiply-controlled multi-qubit unitary

transformation.

• We have seen 3-bit reversible Boolean gates

e.g. Toffoli gate and Fredkin gate, with two

control-bits.
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✫

✩

✪

Multi-qubit Control

• Let U be a k-qubit unitary operator and

there are n-control qubits.

• So we have a (n+ k)-qubits unitary operator

Cn(U) controlled by n-qubits.

Cn(U) |xn+k−1 · · ·xk〉 |xk−1 · · · x0〉
= |xn+k−1 · · · xk〉Uxn+k−1···xk |xk−1 · · ·x0〉 ,

U is applied on |xk−1 · · · x0〉 if
xn+k−1 = · · · = xk = 1.
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✫

✩

✪

Multi-Qubit Controlled Circuit

n

k U

Cn(U)

Uxn+k−1···xk |xk−1 · · · x0〉
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✫

✩

✪

Multi-qubit Control

• We shall consider k = 1 and n ≥ 1.

• The circuit for n = 1 can be used for n = 2

by replacing the 1-qubit gates A,B,C and

U1 by the corresponding control gates.
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✫

✩

✪

C2(U) Gate: Diagram

C B A

In-state
U1

Controlled-Controlled-U (C2(U))
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✫

✩

✪

C2(U) Gate count

Each single-qubit control gate require two
CNOT and four single-qubit unitary gates. So
all together the requirement is 42 = 16,
single-qubit gates and 2 + 2 · 4 = 10, CNOT
gates.
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✫

✩

✪

C3(U) Gate: Diagram

C B A

U1

In-state

Controlled3-U (C3(U))
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✫

✩

✪

Ck(U) Gate count

The number of 1-qubit gates are 4k and the
number of CNOT gates are
2 + 2 · 4 + · · ·+ 2 · 4k−1 = 2

3(4
k − 1).
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✫

✩

✪

C2(U) where U = V 2

If the 1-qubit unitary operator U = V 2 where V
is also unitary, then

C2(U) = (SWAP ⊗ I)(I ⊗ V c)(SWAP ⊗ I)(Xc ⊗ I)

(I ⊗ (V †)c)(Xc ⊗ I)(I ⊗ V c)

This scheme uses 3× 4 = 12 single-qubit gates
and 3× 2 + 2 = 8 CNOT gates.
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✫

✩

✪

C2(U) where U = V 2: Diagram

V V
†

V

a

In-state

b

d

I ⊗ V
c

C2(U) where U = V 2

X
c ⊗ I

I ⊗ V
†

X
c ⊗ I

(SWAP ⊗ I)(I ⊗ V
c)(SWAP ⊗ I)
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✫

✩

✪

C2(U) where U = V 2

We apply the given sequence of transformations
on |00d〉 , |01d〉 , |10d〉 and |11d〉, where
d ∈ {0, 1}.

0. |00d〉 I⊗V c

→ |00d〉 Xc⊗I→ |00d〉 I⊗(V †)c→ |00d〉 Xc⊗I→ |00d〉
SWAP⊗I→ |00d〉 I⊗V c

→ |00d〉 SWAP⊗I→ |00d〉
1. |01d〉 I⊗V c

→ |01〉V |d〉 Xc⊗I→ |01〉V |d〉 I⊗(V †)c→ |01〉V †V |d〉
= |01d〉 Xc⊗I→ |01d〉 SWAP⊗I→ |10d〉 I⊗V c

→ |10d〉 SWAP⊗I→ |01d〉
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✫

✩

✪

C2(U) where U = V 2

2. |10d〉 I⊗V c

→ |10d〉 Xc⊗I→ |11d〉 I⊗(V †)c→ |11〉V † |d〉 Xc⊗I→
|10〉V † |d〉 SWAP⊗I→ |01〉V † |d〉 I⊗V c

→ |01〉V V † |d〉 =
|01d〉 SWAP⊗I→ |10d〉

3. |11d〉 I⊗V c

→ |11〉V |d〉 Xc⊗I→ |10〉V |d〉 I⊗(V †)c→ |10〉V |d〉
Xc⊗I→ |11〉V |d〉 SWAP⊗I→ |11〉V |d〉 I⊗V c

→ |11〉V V |d〉 =
|11〉U |d〉 SWAP⊗I→ |11〉U |d〉
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✫

✩

✪

SWAP Gate

An important 2-qubit gate is a SWAP gate. Its
transition matrix is















1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
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✫

✩

✪

SWAP Gate: Diagram

a b

b a

a

b

b

a
or

SWAP Gate
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✫

✩

✪

SWAP Gate using CNOT

a

b

b

a

≡

a⊕ b

a

a⊕ b

b

a⊕ (a⊕ b) = b, b⊕ (a⊕ b) = a
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✫

✩

✪

√
NOT Gate

The following gate is known as
√
NOT such

that
√
NOT ·

√
NOT = NOT .

√
NOT =

1

2

[

1 + i 1− i

1− i 1 + i

]

.

This gate can be used to implement CCNOT
or Toffoli gate.
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✫

✩

✪

Toffoli Gate using
√
NOT Gate

In-state

√
NOT

√
NOT

† √
NOT
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✫

✩

✪

Note

Note that in Boolean logic, a Toffoli gate
cannot be constructed using one-bit or two-bit
gates. But a quantum Toffoli gate can be
constructed using 2-qubit gates.
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✫

✩

✪

Fredkin or Controlled-Swap Gate

• We have already talked about the Fredkin or

controlled-SWAP gate in connection to

reversible Boolean logic.

• It is also known how a SWAP gate is

implemented using 3 CNOT gates.

• So a Fredkin gate can be implemented as

follows.
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✫

✩

✪

Fredkin or C-SWAP Gate using CCNOT

a

b

c c

a

b

≡

FREDKIN or Controlled-SWAP

c1

a1

b1

c2

a2

b2

c3

a3

b3
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✫

✩

✪

Fredkin or C-SWAP Gate using CCCNOT

The computation of the left-hand circuit is

|c1a1b1〉 = |c, a, b⊕ ca〉
|c2a2b2〉 = |c, a⊕ c(b⊕ ca), b⊕ ca〉
|c3a3b3〉 = |c, a⊕ c(b⊕ ca), (b⊕ ca)⊕ c(a⊕ c(b⊕ ca))〉

• c = 0, |c3a3b3〉 = |0, a, b〉.

• c = 1, |c3a3b3〉 = |1, b, a〉 as a⊕ (b⊕ a) = b and

(b⊕ a)⊕ (a⊕ (b⊕ a)) = a.
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✫

✩

✪

Fredkin or Controlled-Swap Gate

We can replace the first and the third CCNOT gates by

CNOT gates.

≡

FREDKIN or Controlled-SWAP

a

b

c

a1

b1

a2

b2

a3

b3

a

b

c
c1

a1

b1

c2

a2

b2

c3

a3

b3

c1 c2 c3

The computation of the new circuit is
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✫

✩

✪

Fredkin Gate using CNOT and CCNOT

|c1a1b1〉 = |c, a, b⊕ a〉
|c2a2b2〉 = |c, a⊕ c(b⊕ a), b⊕ a〉
|c3a3b3〉 = |c, a⊕ c(b⊕ a), (b⊕ a)⊕ (a⊕ c(b⊕ a))〉 .

• c = 0, |c3a3b3〉 = |0, a, b〉.

• c = 1, |c3a3b3〉 = |1, b, a〉 as a⊕ (b⊕ a) = b and

(b⊕ a)⊕ (a⊕ (b⊕ a)) = a.
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✫

✩

✪

Fredkin Gate using Only 2-Qubit Gates

• The CCNOT gate can be replaced by two

CNOT, two
√
NOT and one

√
NOT

†
gate.

• So the Fredkin gate can be implemented

using seven 2-qubit gates.

• This was impossible in classical Boolean

logic.
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✫

✩

✪

H, S, T and CNOT

H =
1√
2

[

1 1

1 −1

]

, S =

[

1 0

0 i

]

, T =

[

1 0

0 eiπ/4

]

,

and

CNOT =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















These four gates can be used to approximate
any unitary transformation.
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✫

✩

✪

CCNOT using H, S, T and CNOT

1 8 9 10 11 12 13

In-state

H T † T †

T † T †

T T

T

H

S

c

a

b
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✫

✩

✪

CCNOT using H, S, T and CNOT

|abc〉 1→ |ab〉H |c〉 2→ · · · 8→ |ab〉XaT †XbTXaT †XbH |c〉 ,

9→ |a〉T † |b〉TXaT †XbTXaT †XbH |c〉
10→ |a〉XaT † |b〉HTXaT †XbTXaT †XbH |c〉
11→ |a〉T †XaT † |b〉HTXaT †XbTXaT †XbH |c〉
12→ |a〉XaT †XaT † |b〉HTXaT †XbTXaT †XbH |c〉
13→ T |a〉SXaT †XaT † |b〉HTXaT †XbTXaT †XbH |c〉
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✫

✩

✪

CCNOT using H, S, T and CNOT

• a = 0: T |a〉 = |0〉, SXaT †XaT † |b〉 = S(T †)2 |b〉 = |b〉,
HTXaT †XbTXaT †XbH |c〉 = |c〉.
So, |0bc〉 1···12→ |0bc〉.

• a = 1, b = 0: T |a〉 = eiπ/4 |1〉, if we take the

phase-factor eiπ/4 with the second term, we get

eiπ/4SXaT †XaT † |0〉 = eiπ/4SXT †XT † |0〉 = |0〉.
HTXaT †XbTXaT †XbH |c〉 = HTXT †TXT †H |c〉 =
|c〉.
So, |10c〉 1···12→ |10c〉.
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✫

✩

✪

CCNOT using H, S, T and CNOT

• a = 1 = b: T |a〉 = eiπ/4 |1〉, if we take the phase-factor
eiπ/4 with the second term, we get

eiπ/4SXaT †XaT † |1〉 = eiπ/4SXT †XT † |1〉 = i |1〉.
Transferring the phase-factor i to the third qubit

state we get, iHTXaT †XbTXaT †XbH |c〉 =
iH(TXT †X)(TXT †X)H |c〉 = iH(−iZ)H |c〉 =
HZH |c〉 = X |c〉.
So, |11c〉 1···12→ |11c〉.

• So the circuit behaves like a CCNOT gate.
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✫

✩

✪

Controlled-U on |0〉

• The 1-qubit transformation U may be

applied on the data-qubit when the control

qubit is |0〉.
• The corresponding transformation matrix is

Uc
|0〉 =















u11 u12 0 0

u21 u22 0 0

0 0 1 0

0 0 0 1
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✫

✩

✪

Controlled-U on |0〉

This can be achieved by (X ⊗ I) ◦U c ◦ (X ⊗ I).














0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0





























1 0 0 0

0 1 0 0

0 0 u11 u12

0 0 u21 u22





























0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0















=















u11 u12 0 0

u21 u22 0 0

0 0 1 0

0 0 0 1
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✫

✩

✪

Controlled-U on |0〉: Circuit

U

X Xc

a

Controlled-U on |0〉

cUa+ ca

c

Lect 5 Goutam Biswas


