
Quantum Computing 1✬

✫

✩

✪

Boolean State Transformation

Lect 3 Goutam Biswas

Quantum Computing 2✬

✫

✩

✪

Boolean Gates

• Boolean gates transform the state of a

Boolean system.

• Conventionally a Boolean gate is a map

f : {0, 1}n → {0, 1}, where n is the number

of input lines and there is only one output

line.

For a large n, an n-input gate may be

decomposed in smaller realisable gates.

Lect 3 Goutam Biswas

Quantum Computing 3✬

✫

✩

✪

Boolean Gates

• But if the system state is represented by

n-bits then a state transition map is

g : {0, 1}n → {0, 1}n.

• The map g may be viewed as an n input and

n output gate. This also may be realised

using smaller gates.

• Following diagram is an example.

Lect 3 Goutam Biswas

Quantum Computing 4✬

✫

✩

✪

Boolean Gate Array

O1

O2

O3

O4

G4

G1

G2

G3 G5

I1

I2

I3

I4

si sos1 s2 s3

Lect 3 Goutam Biswas

Quantum Computing 5✬

✫

✩

✪

Note

• si is the input state, so is the output state.

• s1, s2, s3 are intermediate states.

• Transition from s0 to s1 is through the gates

G1, I, I, G2, where I may be viewed as

identity map.

• This transition may be viewed as a 4-bit

transformation G1 ⊗ I ⊗ I ⊗G2.

• Other transitions are similar.

Lect 3 Goutam Biswas

Quantum Computing 6✬

✫

✩

✪

1-bit Boolean Gates

There are four one variable Boolean functions.

• Two constant functions: c0 : 0 7→ 0, 1 7→ 0,

c1 : 0 7→ 1, 1 7→ 1,

• the identity map i1 : 0 7→ 0, 1 7→ 1, and

• the not gate ¬ : 0 7→ 1, 1 7→ 0.

Lect 3 Goutam Biswas

Quantum Computing 7✬

✫

✩

✪

1-bit Linear Algebra

If we encode Boolean 0 as
[

1

0

]

and 1 as
[

0

1

]

,

the following transformation matrices represent

the four gates.

c0 =

[

1 1

0 0

]

, c1 =

[

0 0

1 1

]

, i1 =

[

1 0

0 1

]

,¬ :

[

0 1

1 0

]

The i1 and ¬ gate are invertible, but other two
are not.

Lect 3 Goutam Biswas

Quantum Computing 8✬

✫

✩

✪

1-bit Linear Algebra

c0(0) =

[

1 1

0 0

][

1

0

]

=

[

1

0

]

= 0,

c1(0) =

[

0 0

1 1

][

1

0

]

=

[

0

1

]

= 1,

¬0 =

[

0 1

1 0

][

1

0

]

=

[

0

1

]

= 1,

¬1 =

[

0 1

1 0

][

0

1

]

=

[

1

0

]

= 0.

Lect 3 Goutam Biswas

Quantum Computing 9✬

✫

✩

✪

1-Bit Boolean Transformation Matrix

• A 2× 2 matrix over F2 is a valid

transformation matrix for a single-bit if

every column has exactly one 1.

• This restriction is due to our encoding of 0

and 1.

• We get 2× 2 = 4 valid transformation

matrices corresponding to c0, c1, i1 and ¬.

• Only two of them are reversible.

Lect 3 Goutam Biswas

Quantum Computing 10✬

✫

✩

✪

Reversibility

• Reversibility of computation or invertibility

of an operator is an issue even in classical

computation.

• It is known from thermodynamics that there

is no increase in entropy in a reversible

process.

• But completely isentropic circuits are

impossible to design.

Lect 3 Goutam Biswas

Quantum Computing 11✬

✫

✩

✪

Reversibility

• There are adiabatic circuits that use

reversible logic to reduce power consumption

during switching.

• Landauer’s principle claims that any

“logically irreversible” change in information

causes more change in entropy.

• A physical reversibility demands logical

reversibility.

Lect 3 Goutam Biswas

Quantum Computing 12✬

✫

✩

✪

Reversibility

• We shall see that state transition in a

quantum mechanical system is reversible.

• Only the reversible classical logical gates

may have quantum mechanical counterpart.

• So we explore the classical Boolean gates

that are reversible as well as universal.

Lect 3 Goutam Biswas

Quantum Computing 13✬

✫

✩

✪

Tensor Product

We define the tensor product of two

2-dimensional vectors −→x =
[

a

b

]

and −→y =
[

c

d

]

over some field F as

[

a

b

]

⊗

[

c

d

]

=

a

c

d

b

c

d

=

ac

ad

bc

bd

.

This can be generalised to higher dimensions.

Lect 3 Goutam Biswas

Quantum Computing 14✬

✫

✩

✪

2-Bit Boolean Data

1-bit Boolean data is encoded as 0 =
[

1

0

]

and

1 =
[

0

1

]

. Two bit Boolean data may be viewed
as the tensor product of two 1-bit vectors.

Lect 3 Goutam Biswas

Quantum Computing 15✬

✫

✩

✪

2-Bit Boolean Data

[

1

0

]

⊗

[

1

0

]

=

1

1

0

0

1

0

=

1

0

0

0

.

[

1

0

]

⊗

[

0

1

]

=

1

0

1

0

0

1

=

0

1

0

0

.

Lect 3 Goutam Biswas

Quantum Computing 16✬

✫

✩

✪

2-Bit Boolean Data

[

0

1

]

⊗

[

1

0

]

=

0

1

0

1

1

0

=

0

0

1

0

.

[

0

1

]

⊗

[

0

1

]

=

0

0

1

1

0

1

=

0

0

0

1

.

Lect 3 Goutam Biswas

Quantum Computing 17✬

✫

✩

✪

2-bit Boolean Data

Four possible combinations of inputs,

00,01,10,11 are encode as four 4-vectors.

00 :

1

0

0

0

, 01 :

0

1

0

0

, 10 :

0

0

1

0

, 11 :

0

0

0

1

.

This can be generalised for n-bits.

Lect 3 Goutam Biswas

Quantum Computing 18✬

✫

✩

✪

2-bit Boolean Gates

• There are sixteen 2-variable conventional

Boolean functions e.g. and, nand, or, nor etc.

• They correspond to maps from

{0, 1}2 → {0, 1}.

• But we are interested about state transition

maps from {0, 1}2 → {0, 1}2 that are

reversible.

• There are total 44 = 256 such maps.

Lect 3 Goutam Biswas

Quantum Computing 19✬

✫

✩

✪

2-Bit Boolean Transformation Matrix

• Similar to 1-bit transformations, a 2-bit

transformation is a 4× 4 matrix over F2. It is

a valid if every column has exactly one 1.

• There are 4× 4 = 256 valid transformations

corresponding to 256 maps {0, 1}2 → {0, 1}2.

• But only 4! among them are reversible,

where every column has exactly one 1.

Lect 3 Goutam Biswas

Quantum Computing 20✬

✫

✩

✪

Universality and Reversibility

• But is there any universal gate out these 24

reversible gates?

• One possibility is to consider the tensor

products of 1-bit reversible gates e.g. ¬ ⊗ i1

or ¬ ⊗ ¬ - but they cannot be universal.

• Another temptation is to try with a pair of

conventional gates and see what happens.

Lect 3 Goutam Biswas

Quantum Computing 21✬

✫

✩

✪

Xor-And Transformation

Here is an example of a 2-bit transformation
matrix of a pair of conventional gates.

1 0 0 0

0 0 0 1

0 1 1 0

0 0 0 0

0

1(01)

0

0

=

0

0

1(10)

0

Xor

And 0

1

1

0

Lect 3 Goutam Biswas

Quantum Computing 22✬

✫

✩

✪

Note

• The transformation matrix of Xor-And pair

is not invertible - the 4th-row has all zeros.

• An invertible transformation matrix

correspond to a permutation of rows of 4× 4

identity matrix.

Lect 3 Goutam Biswas

Quantum Computing 23✬

✫

✩

✪

CNOT Gate

• A controlled not (CNOT) gate, has

invertible transition matrix.

• Its inputs are (c, d), where c is the control

input and d is the data input.

• The mapping is (c, d) 7→ (c, c⊕ d).

CNOT (c, d) =

(0, d) if c = 0,

(1,¬d) if c = 1.

Lect 3 Goutam Biswas

Quantum Computing 24✬

✫

✩

✪

CNOT Transition Matrix

•

CNOT (1, 0) =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

0

1

0

=

0

0

0

1

= (1, 1)

• CNOT is inverse of itself.

• CNOT(CNOT(c, d)) = CNOT(c, c⊕ d) =

(c, c⊕ (c⊕ d)) = (c, d).

Lect 3 Goutam Biswas

Quantum Computing 25✬

✫

✩

✪

Diagram

CNOT

c c

d c⊕ d

Lect 3 Goutam Biswas

Quantum Computing 26✬

✫

✩

✪

CNOT can Copy a Bit

We can copy (clone) a bit using CNOT:

(a, 0) 7→ (a, a⊕ 0) = (a, a).

a

CNOT

0

a

0⊕ a = a

This is actually creating a FANOUT.

Lect 3 Goutam Biswas

Quantum Computing 27✬

✫

✩

✪

Note

• Tensor products of 1-bit reversible gate are

i1 ⊗ i1, i1 ⊗ ¬, ¬ ⊗ i1, ¬ ⊗ ¬.

• CNOT cannot be realised using them.

• It is

[

1 0

0 0

]

⊗

[

1 0

0 1

]

+

[

0 0

0 1

]

⊗

[

0 1

1 0

]

,

where

[

1 0

0 0

]

=

[

1

0

]

⊗ [1 0] and
[

0 0

0 1

]

=

[

0

1

]

⊗ [0 1].

Lect 3 Goutam Biswas

Quantum Computing 28✬

✫

✩

✪

2-bit Universal Gate is Impossible

The truth-table for a 2-bit reversible gate is as
follows:

i1 i0 o1 o0

0 0 x0 y0

0 1 x1 y1

1 0 x2 y2

1 1 x3 y3

Lect 3 Goutam Biswas

Quantum Computing 29✬

✫

✩

✪

2-bit Universal Gate is Impossible

• The output of a reversible gate is a

permutation of {00, 01, 10, 11}.

• It has exactly two 0’s and two 1’s per output

column of the truth table.

• But i1 ∧ i0 has three 0’s and i1 ∨ i0 has three

1’s in their output.

• None of them can be produced by a two bit

reversible gate.

Lect 3 Goutam Biswas

Quantum Computing 30✬

✫

✩

✪

Reversible and Universal Boolean Gates

• The 2-bit CNOT gate is reversible.

• There are 24 reversible 2-Bit Boolean

transformations. But that set cannot

generate all logic function.

• 3-bit transformations are map from

{0, 1}3 → {0, 1}3. There are 88 = 16777216

such transformations. But out of which

8! = 40320 are reversible.

Lect 3 Goutam Biswas

Quantum Computing 31✬

✫

✩

✪

Universal Reversible Gates

• One 3-bit reversible transformation is Toffoli

gate or CCNOT gate. It was invented by

Tommaso Toffoli from Italy.

• The Toffoli gate or CCNOT gate is known to

be universal.

Lect 3 Goutam Biswas

Quantum Computing 32✬

✫

✩

✪

Toffoli or CCNOT Gate

Following is the map of CCNOT gate:

(x, y, c) 7→ (x, y, c⊕ (x ∧ y)), where x, y remains

unchanged,

c =

¬c if x = 1 = y,

c otherwise.

If c = 0, the 3rd output is 0⊕ (x ∧ y) = x ∧ y.

Lect 3 Goutam Biswas

Quantum Computing 33✬

✫

✩

✪

CCNOT Gate Transition Matrix

CCNOT transition matrix is its own inverse.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

Lect 3 Goutam Biswas

Quantum Computing 34✬

✫

✩

✪

Diagram

a

b

c

a

b

c⊕ (a ∧ b)

CCNOT

Lect 3 Goutam Biswas

Quantum Computing 35✬

✫

✩

✪

NOT, NAND and FANOUT from CCNOT

CCNOT gate can implement NOT, NAND and

COPY/FANOUT operations if logic ‘0’ and ‘1’

are available.

(1, 1, c) 7→ (1, 1,¬c),

(a, b, 1) 7→ (a, b, 1⊕ (a ∧ b)) = (a, b,¬(a ∧ b)),

(1, a, 0) 7→ (1, a, 0 ⊕ (1 ∧ a)) = (1, a, a).

Lect 3 Goutam Biswas

Quantum Computing 36✬

✫

✩

✪

OR using only CCNOT

We know that ¬(¬a ∧ ¬b) = a ∨ b.

1. a and b are actual input. We use several

‘ancilla’ input.

2. Use two CCNOT gates to create a copies of

a and b.

3. Use two CCNOT gates to compute ¬a and

¬b.

Lect 3 Goutam Biswas

Quantum Computing 37✬

✫

✩

✪

OR using only CCNOT

4. Finally another CCNOT gate to compute

¬(¬a ∧ ¬b).

5. We are not taking care of crossovers.

Lect 3 Goutam Biswas

Quantum Computing 38✬

✫

✩

✪

OR using CCNOT

1

0

0

a

b

1

a

a

1 1

1

¬a

b

1

b ¬b

1

1

1

¬b

¬a

1

b

a

a ∨ b

Lect 3 Goutam Biswas

Quantum Computing 39✬

✫

✩

✪

Note

Note that we have not taken care of cross-over
of bits in the diagram. There are several
‘ancilla’ inputs in state ’0’ and ’1’. Also there
are several useless outputs.

Lect 3 Goutam Biswas

Quantum Computing 40✬

✫

✩

✪

Note

It is not very difficult to create a 3-bit
reversible transformation that will compute a
2-bit function e.g. or when the 3rd-bit has a
fixed value. Look at the following truth table.

Lect 3 Goutam Biswas

Quantum Computing 41✬

✫

✩

✪

Truth Table

a b c o1 o2 o3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 0 1 0

1 0 0 1 0 1

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 1 1 0

When c = 0, o3 = a ∨ b. Other bits are filled to
maintain reversibility.

Lect 3 Goutam Biswas

Quantum Computing 42✬

✫

✩

✪

Transition Matrix

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

There are three permutations
(2, 3), (4, 5), (6, 7).

Lect 3 Goutam Biswas

Quantum Computing 43✬

✫

✩

✪

OR using CCNOT and NOT

• Another way of getting OR using CCNOT

and NOT are as follows.

• We negate the input a, b and keep c

unchanged.

• This can be done by applying the

transformation
[

0 1

1 0

]

⊗

[

0 1

1 0

]

⊗

[

1 0

0 1

]

to a 3-bit vector.

Lect 3 Goutam Biswas

Quantum Computing 44✬

✫

✩

✪

Tensor Product of Matrices

a11 a12

a21 a22

⊗

b11 b12

b21 b22

 =

a11

b11 b12

b21 b22

 a12

b11 b12

b21 b22

a21

b11 b12

b21 b22

 a22

b11 b12

b21 b22

=

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22.

Lect 3 Goutam Biswas

Quantum Computing 45✬

✫

✩

✪

Tensor Product ¬ ⊗ ¬ ⊗ I

0 1

1 0

⊗

0 1

1 0

⊗

1 0

0 1

=

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⊗

1 0

0 1

 =

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Lect 3 Goutam Biswas

Quantum Computing 46✬

✫

✩

✪

Tensor Product ¬ ⊗ ¬ ⊗ I

We encode (x, y, c) : (0, 0, 0), · · · , (1, 1, 1) as an
8-dimensional Boolean vectors
000 ≡ (1, 0, · · · , 0), · · · , 111 ≡ (0, · · · , 0, 1).
Operator ¬ ⊗ ¬ ⊗ I gives the desired result.

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0

0

0

0

1

0

0

0

=

0

0

1

0

0

0

0

0

: (1, 0, 0) 7→ (0, 1, 0).

Lect 3 Goutam Biswas

Quantum Computing 47✬

✫

✩

✪

Tensor Product CCNOT ◦ (¬ ⊗ ¬ ⊗ I)

• The transformation (¬ ⊗ ¬ ⊗ I) is clearly

reversible (universal property).

• CCNOT ◦ (¬ ⊗ ¬ ⊗ I) transforms

(x, y, c) 7→ (¬x,¬y, c⊕ (¬x ∧ ¬y)).

• We can apply ¬ ⊗ ¬ ⊗ ¬ on the result. This

gives us x ∨ y when c = 0.

Lect 3 Goutam Biswas

Quantum Computing 48✬

✫

✩

✪

Tensor Product (I ⊗ I ⊗ ¬)

(¬ ⊗ ¬ ⊗ ¬)

0

0

0

1

0

0

0

0

=

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0

0

1

0

0

0

0

0

=

0

0

0

0

0

1

0

0

(¬ ⊗ ¬ ⊗ ¬) : (0, 1, 0) 7→ (1, 0, 1)

Lect 3 Goutam Biswas

Quantum Computing 49✬

✫

✩

✪

Fredkin Gate

• Another important 3-input reversible gate is

the Fredkin gate.

• The input-output relation is

(x, y, c) 7→ (cy + cx, cx + cy, c) i.e.

(x, y, 0) 7→ (x, y, 0) and (x, y, 1) 7→ (y, x, 1).

• If c = 0, x, y remains unchanged. If c = 1,

the outputs are interchanged.

Lect 3 Goutam Biswas

Quantum Computing 50✬

✫

✩

✪

Fredkin Gate is Universal

• CROSSOVER: (a, b, 1) 7→ (b, a, 1),

• NOT and FANOUT: (1, 0, a) 7→ (a, a, a),

• AND: (0, b, a) 7→ (a ∧ b, a ∧ b, a),

Lect 3 Goutam Biswas

Quantum Computing 51✬

✫

✩

✪

Fredkin Gate Transition Matrix

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Clearly Fredkin gate is its own inverse.

Lect 3 Goutam Biswas

Quantum Computing 52✬

✫

✩

✪

Diagram

a

b

c c

Fredkin

α = cb+ ca

β = ca+ cb

Lect 3 Goutam Biswas

Quantum Computing 53✬

✫

✩

✪

Note

Both in case of Toffoli gate and in Fredkin gate
we need some ‘ancilla’ input bits in state ‘0’ or
‘1’ to make them universal. They also produce
useless outputs not used in subsequent stages.

Lect 3 Goutam Biswas

Quantum Computing 54✬

✫

✩

✪

Fredkin using CNOT & CCNOT

b

c

a
a

a⊕ b

a⊕ b

c

a⊕ (c ∧ (ab)) = cb+ ca

(a⊕ b)⊕ (a⊕ ((a⊕ b) ∧ c)))
= ca+ cb

Lect 3 Goutam Biswas

Quantum Computing 55✬

✫

✩

✪

NOT and FANOUT

a

b

c c

α = cb+ ca

β = ca+ cb

x

0

1

x

x · 1 + x · 0 = x

x · 0 + x· = x

Fredkin

NOT and FANOUT

Lect 3 Goutam Biswas

Quantum Computing 56✬

✫

✩

✪

AND and CCNOT

z

z

xy xy

z ⊕ (x ∧ y)

z ⊕ (x ∧ y)

0

y

x x

xy

xy

AND

CCNOT

Lect 3 Goutam Biswas

Quantum Computing 57✬

✫

✩

✪

CCNOT using Fredkin

1. c, x and y are actual input. We use several

‘ancilla’ input.

2. Use a Fredkin gate to create a copy of y.

3. Use the second Fredkin gate to compute

x ∧ y.

Lect 3 Goutam Biswas

Quantum Computing 58✬

✫

✩

✪

CCNOT using Fredkin

4. Use the third Fredkin gate to copy c.

5. Finally the fourth Fredkin gate computes

c⊕ (x ∧ y).

6. There are several output containing useless

data.

Lect 3 Goutam Biswas

Quantum Computing 59✬

✫

✩

✪

CCNOT using Fredkin

x

y

c

x

y

1

0
y

0

1

0
c

c

c⊕ (x ∧ y)

x ∧ y

Lect 3 Goutam Biswas

Quantum Computing 60✬

✫

✩

✪

Note

• We have several reversible and universal

classical gates.

• Their quantum mechanical counterpart can

be used to simulate classical computation.

Lect 3 Goutam Biswas

Quantum Computing 61✬

✫

✩

✪

Probabilistic Circuit

• The linear algebra formalism of classical bits

and gates can be generalised to probabilistic

circuits.

• Suppose a single-bit is at state 0 with

probability p and at state 1 with a

probability 1− p.

• It is represented as a 2-dimensional real

vector
[

p

1 − p

]

, where p ∈ [0, 1].

Lect 3 Goutam Biswas

Quantum Computing 62✬

✫

✩

✪

1-bit Probabilistic Circuit

Applying our old transformation matrices we

get,

c0

[

p

1− p

]

=

[

1 1

0 0

][

p

1− p

]

=

[

1

0

]

,

¬

[

p

1− p

]

=

[

0 1

1 0

][

p

1− p

]

=

[

1− p

p

]

Transformation matrix for probabilistic bits is
left stochastic (each column adds to 1).

Lect 3 Goutam Biswas

Quantum Computing 63✬

✫

✩

✪

2-bit Probabilistic Circuit

If we consider two bits so that

• the probability is p0 for the 0th-bit to be 0

and the probability is p1 for the 1st-bit to be

0.

• The probabilities of 00, 01, 10, 11 are

p1p0, p1(1− p0), (1− p1)q0, (1− p1)(1− p0)

respectively.

Lect 3 Goutam Biswas

Quantum Computing 64✬

✫

✩

✪

2-bit Probabilistic Circuit

The joint probabilities of two bits may be

represented as the following tensor product -

[

p1

1− p1

]

⊗

[

p0

1− p0

]

=

p1p0

p1(1− p0)

(1− p1)p0

(1− p1)(1− p0)

.

Lect 3 Goutam Biswas

Quantum Computing 65✬

✫

✩

✪

Xor-And on Probabilistic Bits

If we apply Xor-And transformation on two
probabilistic bits, we get

1 0 0 0

0 0 0 1

0 1 1 0

0 0 0 0

p1p0

p1(1− p0)

(1− p1)p0

(1− p1)(1− p0)

=

p1p0

(1− p1)(1− p0)

p1(1− p0) + (1− p1)p0

0

.

The interpretation of transformation makes
sense.

Lect 3 Goutam Biswas

Quantum Computing 66✬

✫

✩

✪

CNOT on Probabilistic Bits

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

p1p0

p1(1− p0)

(1− p1)p0

(1− p1)(1− p0)

=

p1p0

p1(1− p0)

(1− p1)(1− p0)

(1− p1)p0

.

Again it has meaningful interpretation.

Lect 3 Goutam Biswas

Quantum Computing 67✬

✫

✩

✪

References

[ERWP] Quantum Computing: A Gentle Introduction by Eleanor

Rieffel & Wolfgang Polak, Pub. MIT Press, 2011, ISBN

978-0-262-52667-8.

[MNIC] Quantum Computation and Quantum Information by

Michael A Nielsen & Isaac L Chuang, Pub. Cambridge University

Press, 2002, ISBN 81-7596-092-2.

[SA] Quantum Computing Since Democritus by Scott Aaronson,

Pub. Cambridge University Press, 2013, ISBN

978-0-521-19956-8.

[AAM] Classical and Quantum Computation by A Yu Kitaev, A H

Shen & M N Vyalyi, Pub. American Mathematical Society

(GSM vol 47) 2002, ISBN 978-1-4704-0927-2.

Lect 3 Goutam Biswas

Quantum Computing 68✬

✫

✩

✪

References

[PRM] An Introduction to Quantum Computing by Phillip Kaye,

Raymond Laflamme & Michele Mosca, Pub. Oxford University

Press, 2007, ISBN 978-0-19-923677-0.

Lect 3 Goutam Biswas

