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✫

✩

✪

Birth of a Qubit

✞

✝

☎

✆
{0,1} = B versus a |0〉+ b |1〉 ∈ C

2
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✫

✩

✪

✞

✝

☎

✆I believe · · ·
Quantum Physics is not a prerequisite of
quantum computing unless one wants to build a
quantum computer.
Nevertheless we start with an experiment of
Physics to show that the Nature supports
qubit.
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✫

✩

✪

Stern-Gerlach Experiment
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✫

✩

✪

Image Source:
https://upload.wikimedia.org/wikipedia/
commons/2/29/Stern-Gerlach experiment.PNG
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✫

✩

✪

The result of Stern-Gerlach experiment
(1921-22) indicates the requirement of a radical
change not only from classical mechanics (space
quantization) but also from old quantum theory
of Bohr and Sommerfeld (intrinsic spin etc.).
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✫

✩

✪

• The physics of the experiment is not of much

relevance for our purpose.

• But it shows the existence of a 2-state

quantum mechanical system, the spin of an

electron.

• This cannot be modelled by a bit. And it is

necessary to introduce a mathematical

object called quantum bit (qubit).
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✫

✩

✪

A Brief Description

• A narrow beam of silver atom is passed

through a strong non-uniform magnetic field

with a gradient along the z-axis. Finally the

beam hits the screen.

• A silver atom has 47 electrons. In the

accepted view the inner 46 electrons are

forming a sphere of electron cloud with no

magnetic moment. [Electron configuration of

Ag: 2, 8, 18, 18, 1].
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✫

✩

✪

• The magnetic moment of the atom is due to

the intrinsic spin of the 47th outer electron.

• The experiment measures the z-component

of the magnetic moment of the atom, which

is proportional to the spin of the 47th

electron.
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✫

✩

✪

Note

The concept of spin (intrinsic angular
momentum) of an electron was not known when
Stern and Gerlach performed the experiment.
So people tried to explain the outcome of the
experiment using the classical electrodynamics
or using Bohr-Sommerfeld model of atom
(quantized orbital angular momentum of
electrons).
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✫

✩

✪

You may Read

Stern and Gerlach: How a Bad Cigar Helped
Reorient Atomic Physics
https://physlab.lums.edu.pk/images/c/c4/Cigar.pdf
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✫

✩

✪

Classical Prediction

• Silver atoms come out of the furnace with

random orientations of their magnetic

moments with a random distribution of their

z-components.

• So the image on the screen should have a

continuous band of silver atoms.

Lect 1 Goutam Biswas
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✫

✩

✪

Prediction of Bohr-Sommerfeld Model

According to Bohr-Sommerfeld model, orbits of
electron should assume certain discrete spacial
orientations under the influence of an external
magnetic field. If one assumes a circular orbit,
there are two possibilities of the projection of
orbital angular momentum. And in a strong
non-uniform magnetic field the silver beam can
be split in two parts.

Lect 1 Goutam Biswas
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✫

✩

✪

Actual Image and Interpretation

Stern and Gerlach could manage to split the
bean and get two localised spots of silver. They
incorrectly interpreted it as an outcome of
Bohr-Sommerfeld space quantization.
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✫

✩

✪

Actual Image and Interpretation

• The correct interpretation had to wait until

the discovery of the intrinsic spin of an

electron by George Uhlenbeck and Samuel

Goudsmit (studying spectral lines of

anomalous Zeeman effect).

• We shall see that the postulates of quantum

mechanics are also required for proper

explanation of the experiment.
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✫

✩

✪

Two State System

The Stern-Gerlach experiment was performed
on may other elements including hydrogen
atom. Now it is known that the splitting of the
beam in two parts is due to two orientations
(up and down) of the intrinsic spin of the
outermost single electron (the 47th electron in
case silver), along the z-axis. The inner core of
46-electrons has zero angular momentum.
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✫

✩

✪

Simplified Physics

µ ∝ S, where µ is the magnetic moment of the

atom and S is the electron spin. If B is the

magnetic field, the force along the z-direction is

Fz =
∂
∂z
(µ · S) = µz

∂Bz

∂z
.

The field must be non-uniform to make ∂Bz

∂z

non-zero (potential energy must change in the
z-direction).
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✫

✩

✪

Two State System

• Let us call the two spin states of an electron

along z-axis as Sz+ and Sz−. It is an

example of a 2-state (observable) quantum

mechanical system.

• There is nothing special about the z-axis.

We can orient the magnetic field along x or

y-axis and split the beam coming from the

furness in {Sx+, Sx−} or {Sy+, Sy−}
respectively.

Lect 1 Goutam Biswas
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✫

✩

✪

Other SG Apparatus

Let SGz be the Stern-Gerlach apparatus with
magnetic field oriented along the z-axis.
Similarly the field of SGx is along the x-axis.
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✫

✩

✪

Apparatus in Cascade

Gedankenexperiment with Stern-Gerlach

apparatus in cascade.

1. The Sz+ beam coming out of SGz apparatus

is passed through another SGz apparatus.

2. The Sz+ beam of SGz apparatus is passed

through an SGx apparatus.

3. The Sx+ beam of the previous experiment is

passed through another SGz apparatus.
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✫

✩

✪
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✫

✩

✪

Experiment 1

In the first experiment, the Sz+ beam is passed
through another Stern-Gerlach apparatus with
the magnetic field along the z-axis. The final
output is a Sz+ beam.
A simple-minded interpretation may be the
absence of any Sz− atom in the incoming Sz+
beam.
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✫

✩

✪

Experiment 2

In the second experiment, the Sz+ beam is
passed through a Stern-Gerlach apparatus
where the non-uniform magnetic field is along
the x-axis. The incoming Sz+ beam is split into
two beams Sx+ and Sx− of equal intensity.

Lect 1 Goutam Biswas



Quantum Computing 23✬

✫

✩

✪

Note

According to classical physics the Sz+ silver

atoms does not have any magnetic moment in x

or y directions. So experiment 2 should have

produced one spot.

One may think that the incoming Sz+ beam is
a mixture of Sz+ + Sx+ and Sz+ + Sx− in equal
proportion (due to some reason).
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✫

✩

✪

Experiment 3

In the third experiment, the Sx+ beam of the
experiment 2 is passed through a Stern-Gerlach
apparatus where the no-uniform magnetic field
is again oriented along the z-axis. The final
outcome is two beams of Sz+ and Sz− of equal
intensity.
None of the interpretations of the previous two
experiments can explain this result.
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✫

✩

✪

A Qubit

• The spin state of an electron cannot be

modelled as a binary digits (bit) with two

discrete states.

• It is modelled as a quantum bit (qubit), a

unit vector of a 2-dimensional vector space

over a complex field (for some purpose real

subfield may be used). This is simply an

element of C
2 with norm 1.
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✫

✩

✪

A Qubit

• Two basis states of a qubit are denoted by

|0〉 and |1〉 - ket 0 and ket 1.

• A qubit is a linear combination or

superposition of the basis states: a |0〉+ b |1〉,
where in general a, b ∈ C, and |a|2 + |b|2 = 1.

A qubit has uncountably many states,
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✫

✩

✪

Measurement

In a measurement of a qubit, we can only
observe the basis states characteristic of the
device. If |0〉 and |1〉 are the basis states of a
measurement and the state of a qubit is
a |0〉 + b |1〉, then we observe |0〉 with the
probability |a|2 or |1〉 with the probability |b|2.
This explains the requirement of |a|2+ |b|2 = 1.
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✫

✩

✪

Stern-Gerlach and Qubit

Let the state of a silver atom in Sz+ be |0〉 and
the state of Sz− be |1〉.
Note that there is nothing special about the
z-direction. Only requirement is that |0〉 and
|1〉 should be orthonormal (orthogonal and unit
length).

Lect 1 Goutam Biswas
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✫

✩

✪

Experiment 2

We take the state of a silver atom in Sx+ as a

superposition |0〉+|1〉√
2

and that of a silver atom in

Sx− as the |0〉−|1〉√
2

. Note that these two are basis

states w.r.t. SGx apparatus.

We get |Sx+〉√
2

+ |Sx−〉√
2

= |0〉 = |Sz+〉.
So the probability of an Sz+ qubit to be in state
Sx+ or in state Sx− are both (1/

√
2)2 = 1/2.
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✫

✩

✪

Experiment 3

As |Sx+〉 = |0〉√
2
+ |1〉√

2
, the output of the 3rd

experiment is as we have observed - the |Sx+〉
beam is split in two beams, |Sz+〉 and |Sz+〉, as
they are equally probable.
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✫

✩

✪

Note

Following assignments also give the same result:

|Sx+〉 ← |0〉
|Sx−〉 ← |1〉

|Sz+〉 ←
|0〉√
2
+
|1〉√
2

|Sz−〉 ←
|0〉√
2
− |1〉√

2
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✫

✩

✪

Conclusion

This funny vector qubit captures the spin state
of an electron and explains the outcome of
Stern-Gerlach experiment - on the other hand
we know how to implement a qubit!
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✫

✩

✪

Probabilistic Bit and Qubit

• In a probabilistic model a bit may have a

value 0 with a probability p or a value 1 with

a probability 1− p. We associate a vector

(p, 1− p), p ∈ [0, 1] with the bit.

• When a qbit a |0〉 + b |1〉 is measured, then

the probability of getting |0〉 is |a|2 and the

probability of getting |1〉 is |b|2. Here we

associate a vector (a, b) ∈ C
2, so that

|a|2 + |b|2 = 1.
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✫

✩

✪

Vector Space

A vector space V over a field F satisfies a set of
axioms.
As an example any point on a 2-dimensional
Euclidean plane may be viewed as a vector
(position vector). The collection of these
vectors form a vector space over the field of
reals(R).
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✫

✩

✪

Note

Euclidean vectors are usually taken as a column

vectors. A column vector will be written as,

−→v =











v1

· · ·
vn











= (v1, · · · , vn)

A row vector will be written as←−u = [u1, u2, · · · , un].
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✫

✩

✪

Vector Space

• In the space R
n the origin is the null vector

(0, · · · , 0).

• Two vectors can be added and addition

satisfies usual properties e.g. associativity,

commutativity, inverse etc.

• The null vector is the identity element of

addition.
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✫

✩

✪

Vector Space

• A vector can be multiplied by an element of

the field, known as scalar.

• In case of Euclidean vectors, a scalar

multiplication scales the Euclidean norm or

length of the vector.

k(v1, · · · , vn) = (kv1, · · · , kvn), where k ∈ R,

and |k(v1, · · · , vn)| = k|(v1, · · · , vn)|.

Lect 1 Goutam Biswas
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✫

✩

✪

Vector Space

• Standard basis of an n-dimensional

Euclidean vector space is a set n unit vectors

along n axes. But any set of n orthogonal

unit vectors may form a basis.

• The whole n-dimensional vector space can

be generated by linear combination of the

basis vectors - for n = 3, any vector
−→v = a~i+ b~j + c~k, where a, b, c ∈ R.

Lect 1 Goutam Biswas
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✫

✩

✪

Vector Space

It is easy to visualise this 2 or 3-dimensional
vector space over reals. But the visualisation of
the space of qubits which is a 2-dimensional
vector space over complex is difficult.

Lect 1 Goutam Biswas
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✫

✩

✪

Dirac Vectors

Traditionally a quantum state is represented by
a ket vector |x〉, where x is any name. We shall
us this Dirac notation of ket vectors for all our
subsequent definitions. But most of them are
general enough for any vector space with inner
product.
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✫

✩

✪

Linear Combination

Given a set of vectors {~v1, · · · , ~vn} over a field

F , and a set of scalars a1, · · · , an ∈ F , a linear

combination or superposition is a vector ~v

defined as

~v = a1~v1 + · · ·+ an ~vn.
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✫

✩

✪

Span

Given a set of vectors S over a field F , the
collection of all possible F -vectors V that can
be generated by linear combinations of elements
of S is called the span of S.
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✫

✩

✪

Linearly Dependent and Independent

A set S = {~v1, · · · , ~vn} vectors over F is

linearly dependent if there are n scalars

a1, · · · , an ∈ F , not all zeros, such that

a1~v1 + · · ·+ an ~vn = ~0,

where ~0 is the null vector. If no such set of
scalars is there, then S is called linearly
dependent.
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✫

✩

✪

Linearly Dependent and Independent

In 2 or 3-dimensional vector space over reals,

1. {(0, 0), (a, b)} is a linearly dependent set.

2. {(1, 2, 2), (1, 1, 2), (2,−1, 4)} is a linearly

dependent set as

3(1, 2, 2)+(−5)(1, 1, 2)+(2,−1, 4) = (0, 0, 0).

3. {(1, 0), (0, 1)} is linearly independent.

4. {(1, 1, 3), (3, 1, 5), (2, 1, 6)} is also linearly

independent.
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✫

✩

✪

Basis

If S is a set of linearly independent vectors and
V is the span of S, then the set S is called a
basis of V .
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✫

✩

✪

Basis

The standard basis for 2-dimensional Euclidean

space is {(1, 0), (0, 1)}. Another basis may be

{(1/
√
2, 1/
√
2), (−1/

√
2, 1/
√
2)}.

Consider a vector (1, 2), we can write

• 1 · (1, 0) + 2 · (0, 1) = (1, 2), and

• 3/
√
2·(1/

√
2, 1/
√
2)+1/

√
2(−1/

√
2, 1/
√
2) =

(1, 2).
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✫

✩

✪

Inner Product

Given two n-dimensional Euclidean vectors−→u = (u1, · · · , un) and −→v = (v1, · · · , vn) we
define a map from R

n × R
n → R called an inner

product or dot product. Its value is
∑n

i=1 uivi
and is written as −→u · −→v .
As a matrix product it may be viewed as the
product of a row and a column vector.
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✫

✩

✪

Inner Product of Ket Vector

Given two ket vectors |u〉 and |v〉, the inner
product of them is a map from V × V → C,
where V is the inner product space where the
ket vectors live. It is written as 〈u|v〉, which is
a complex number.
People use bra vector 〈u| as the dual vector of
|u〉. If |u〉 = (a+ ib, c + id) then [a− ib, c− id]
the adjoint |u〉.
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✫

✩

✪

Properties of Inner Product of Ket

• 〈u|u〉 ≥ 0 (non-negative real). It is 0 if and

only if |u〉 is null.

• 〈u|v〉 = 〈v|u〉, where 〈v|u〉 is the complex

conjugate of 〈u|v〉.

• 〈u|(a |v〉 + b |w〉)〉 = a 〈u|v〉+ b 〈u|w〉 - it is
linear on its second argument.
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✫

✩

✪

Properties of Inner Product of Ket

Let |u〉 = (a+ ib, c+ id).
〈u|u〉 = [a− ib, c− id](a+ ib, c + id) =
(a2 + b2 + c2 + d2). This is a real number. It is
zero if and only if a = b = c = d = 0.

Lect 1 Goutam Biswas



Quantum Computing 51✬

✫

✩

✪

Properties of Inner Product of Ket

Let |u〉 = (a+ ib, c+ id) and

|v〉 = (p+ iq, r + is).

〈u|v〉 = [a− ib, c− id](p+ iq, r + is)

= (a− ib)(p+ iq) + (c− id)(r + is)

= (a− ib)(p+ iq) + (c− id)(r + is)

= (a+ ib)(p− iq) + (c+ id)(r − is)
= 〈v|u〉.
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✫

✩

✪

Properties of Inner Product of Ket

Let |u〉 = (a+ ib, c+ id), |v〉 = (p+ iq, r + is),

|w〉 = (e+ if, g + ih) and α, β ∈ C.

〈u|(α |v〉+ β |w〉)〉
= 〈u|(α |v〉)〉+ 〈u|(β |w〉)〉
= [a− ib, c− id](α(p + iq, r + is) + β(e+ if, g + ih))

= α 〈u|v〉+ β 〈u|w〉
Linear on the second component.
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✫

✩

✪

Properties of Inner Product of Ket

Let |u〉 = (a+ ib, c+ id), |v〉 = (p+ iq, r + is),

|w〉 = (e+ if, g + ih) and α, β ∈ C.

〈(αu+ βv)| |w〉)〉
= 〈(αu)|w〉+ 〈(βv)|w〉
= α[a− ib, c− id](e+ if, h+ ih) +

β[p− iq, r − is](e + if, h+ ih)

= α 〈u|w〉+ β 〈v|w〉 .
Anti-linear on the first component.
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✫

✩

✪

Note

• Inner product of a Euclidean vector ~v ∈ R
n

with itself gives the square of its length,

|~v| =
√
~v · ~v. It is 0 if and only if

~v = (0, · · · , 0), the null vector.

• The the inner product of Euclidean vector is

commutative i.e. ~u · ~v = ~v · ~u.

• But the inner product of ket vectors is

non-commutative.
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✫

✩

✪

Note

In case of complex vector space, C
n, the inner

product of two vectors ~u = (u1, · · · , un) and
~v = (v1, · · · , vn), where ui, vi ∈ C is defined as

~u · ~v =
∑n

i=1 uivi, where ui is the complex

conjugate of ui.

The definition of inner product of ket vectors
satisfies the properties of inner product of
complex vector space.
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✫

✩

✪

Note

So we get

• ~u · ~u =
∑n

i=1 uiui =
∑n

i=1 |ui|2.

• ~v · ~u =
∑n

i=1 viui =
∑n

i=1 viui

=
∑n

i=1 viui = ~u · ~v.
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✫

✩

✪

Orthogonal Vectors

Two vectors ~u and ~v are said to be orthogonal
if ~u · ~v = 0. In ket notation 〈u|v〉 = 0.
A set of vectors are said to be orthogonal if
they are pairwise orthogonal.
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✫

✩

✪

Orthonormal Vectors

The natural length or norm of a vector ~v in an

inner product space is
√
~u · ~u. For ket vector |u〉

it is
√

〈u|u〉.
A set of ket vectors {|u1〉 , · · · , |un〉} is said to

be orthonormal if they are orthogonal and

lengths of each ui is one i.e 〈ui|uj〉 = δij, where

δij =







1 if i = j,

0 if i 6= j.
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✫

✩

✪

Representation of Qubit

The basis of the state space of a qubit is a pair

of 2-dimensional complex vectors that are

orthonormal and spans C
2.

We may view

|0〉 =





1

0



 or (1, 0) and |1〉 =





0

1



 or (0, 1)
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✫

✩

✪

Representation of Qubit

It is clear that they are orthonormal -

[1, 0] · (1, 0) = 1 + 0 = 1 = [0, 1] · (0, 1),

[1, 0] · (0, 1) = 0 + 0 = 0 = [0, 1] · (1, 0),
And linear combination of them generates any

element of C
2.

a |0〉+ b |1〉 = (a, 0) + (0, b) = (a, b),

where a, b ∈ C.
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✫

✩

✪

Basis is not Unique

As it is well known, the set of orthonormal
basis is not unique. We may take any
{(cos θ, sin θ), (− sin θ, cos θ)} as an orthonormal
basis for C

2.
Two examples are -
{(1/2,

√
3/2), (−

√
3/2, 1/2))} and

{(1/
√
2, 1/
√
2), (−1/

√
2, 1/
√
2)},
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✫

✩

✪

Measurement Axiom

• Interaction of silver atoms with a

Stern-Gerlach apparatus is viewed as a

measurement on a 2-state quantum system.

• A particular set of basis vectors (two

elements) of the qubit space is associated

with a measuring device.
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✫

✩

✪

Measurement Axiom

• A measurement transforms a qubit state to

one of the basis states of the device with

appropriate probability.

• If {|0〉 , |1〉} are the orthonormal basis

vectors associated with a measurement, and

a qubit state |u〉 = a |0〉+ b |1〉, then after the

measurement the qubit will be in |0〉 or |1〉
with probabilities |a|2 and |b|2 respectively.
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✫

✩

✪

Measurement Axiom and SG-Device

Let us associate the basis vectors {(1, 0), (0, 1)}
with the SGz device and the basis vectors

{(1/
√
2,−1/

√
2), (1/

√
2, 1/
√
2)} with the SGx

device.

• State of a silver atom entering a SGz device

may be viewed as

1/
√
2(1, 0) + 1/

√
2(0, 1) = (1/

√
2, 1/
√
2) So

each atom will either be in |0〉 = (1, 0) or in

|1〉 = (0, 1) with equal probability.
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✫

✩

✪

Measurement Axiom and SG-Device

In experiment-2, when a silver atom in state
|0〉 = (1, 0) enters the SGx device, its state is a
superposition of
{(1/
√
2,−1/

√
2), (1/

√
2, 1/
√
2)} i.e.

|0〉 = (1, 0) =

1/
√
2(1/
√
2,−1/

√
2) + 1/

√
2(1/
√
2, 1/
√
2). So

the incoming atoms will either be in
(1/
√
2,−1/

√
2) or in (1/

√
2, 1/
√
2) with equal

probability.
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✫

✩

✪

Measurement Axiom and SG-Device

Finally in experiment-3 when atom in state
(1/
√
2,−1/

√
2) enters the SGz device, its state

is a superposition of {(1, 0), (0, 1)} i.e.
(1/
√
2,−1/

√
2) = 1/

√
2(1, 0)− 1/

√
2(0, 1). It

explains the result of the experiment.
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✫

✩

✪

Redundancy

• Every distinct unit vectors of C
2 is not a

distinct qubit state.

• |u〉 = a |0〉 + b |1〉 and |v〉 = c |0〉+ d |1〉
represent the same qubit state if |v〉 = α |u〉,
where α ∈ C and |α| = 1.

So a |0〉 + b |1〉 and eiθ(a |0〉 + b |1〉)
represents the same qubit state.
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✫

✩

✪

Global Phase

A multiplier of the form α = cos θ + i sin θ = eiθ

is known as global phase of the state and
cannot be detected by any measurement.

Let |a〉 = α |0〉+ β |1〉 and
|b〉 = eiθ(α |0〉+ β |1〉), where |α|2 + |β|2 = 1.
Let the orthonormal basis for a measurement
M be B = {|x〉 , |y〉}.
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✫

✩

✪

Global Phase

After the measurement we have
|a〉 = (α, β) = p |x〉+ q |y〉 so that the qubit will
be in state |x〉 with a probability |p|2 or in state
|y〉 with a probability |q|2.
If the same measurement is performed on
|b〉 = (eiθα, eiθβ) = eiθp |x〉+ eiθq |y〉, the
probabilities of outcomes remain unchanged as
|eiθp|2 = |eiθ|2|p|2 = |p|2.
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✫

✩

✪

Global Phase

• The equality |a〉 = eiθ |a〉 = |b〉 induces an
equivalence relation |a〉 ∼ |b〉 over vectors of
C
2.

• The quotient space is called complex

projective space of dimension one (CP1).

The state of a qubit has one to one

correspondence with CP1
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✫

✩

✪

Relative Phase

• Let |u〉 = a |0〉+ b |1〉, where a = r1e
iθ1 and

b = r2e
iθ2, so that a

b
= r1

r2
ei(θ1−θ2).

• ei(θ1−θ2) is called the relative phase of the

amplitudes a and b.
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✫

✩

✪

Relative Phase

• Two superpositions |u〉 = a |0〉+ b |1〉 and
|v〉 = c |0〉 + d |1〉 with same magnitudes of

amplitudes (|a| = |c|, |b| = |d|) but different
relative phases, represents different states.

• So a |0〉 + b |1〉 and a |0〉+ eiθb |1〉 may

represent different states, though |b| = |eiθb|.
A simple example is 1√

2
|0〉+ 1√

2
|1〉 and

1√
2
|0〉 − 1√

2
|1〉 where θ = π.
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✫

✩

✪

Relative Phase

Consider |+〉 = 1√
2
(|0〉+ |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉). If the basis for the

measurement be {|+〉 , |−〉}, then the states can
be detected.
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✫

✩

✪

A Few Important States

|+〉 =
1√
2
(|0〉+ |1〉)

|−〉 =
1√
2
(|0〉 − |1〉)

|i〉 =
1√
2
(|0〉+ i |1〉)

|−i〉 =
1√
2
(|0〉 − i |1〉)

{|+〉 , |−〉} is known as Hadamard basis.
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✫

✩

✪

Qubit Visualisation

A qubit |ψ〉 = a |0〉+ b |1〉 can be represented as
rae

iθa |0〉+ rbe
iθb |1〉, where a = rae

iθa, b = rbe
iθb

and r2a + r2b = 1.
Let ra = cos(θ/2), rb = sin(θ/2) and
θb − θa = φ.
We get |ψ〉 = eiθa(cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉).
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✫

✩

✪

On Bloch Sphere

We have already argued that the global phase is

not observable, so we can ignore it and get

|ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉.
We keep 0 ≤ θ ≤ π and −π ≤ φ ≤ π. and
identify every qubit as a point on the surface of
a 3-dimensional unit sphere known as Bloch
sphere.
Note that the coefficient of |0〉 is positive real.
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✫

✩

✪
Image Source:
https://commons.wikimedia.org/wiki/
File:Sphere bloch.jpg
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✫

✩

✪

Note

Given the angles the position of |0〉 is the north
pole of the sphere (where the z+-axis meets the
sphere). So θ = 0. And |1〉 is at the south pole.
Other axial points on the sphere are the
following :
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✫

✩

✪

Other Axial Points

• x+: θ = π/2, φ = 0, vector: |0〉+|1〉√
2

= |+〉

• x−: θ = π/2, φ = π, vector: |0〉−|1〉√
2

= |−〉

• y+: θ = π/2, φ = π/2, vector: |0〉+i|1〉√
2

= |i〉

• y−: θ = π/2, φ = −π/2, vector:
|0〉−i|1〉√

2
= |−i〉
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✫

✩

✪

Bloch Vector

The point corresponding to the qubit state
cos θ/2 |0〉 + eiφ sin θ/2 |1〉 has the Cartesian
coordinates (sin θ cosφ, sin θ sinφ, cos θ) on the
Bloch sphere.
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✫

✩

✪

C∪ {∞}

There is a bijection between the qubit space

and C ∪ {∞}. The map is

|1〉 7→ ∞

|u〉 = a |0〉+ b |1〉 7→ b

a
, a 6= 0,
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✫

✩

✪

C∪ {∞}

If we consider the Bloch sphere representation
of a qubit state, then
|u〉 = cos

(

θ
2

)

|0〉+ eiφ sin
(

θ
2

)

|1〉 is mapped to
eiφ sin( θ

2)
cos( θ

2)
= eiφ tan

(

θ
2

)

, except for θ = π. This

mapping is clearly one-to-one. This is also
surjective as tan

(

θ
2

)

∈ [0,∞) when θ ∈ [0, π) -

every complex number can be written as reiφ

where r ∈ [0,∞) and φ ∈ [0, 2π].
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✫

✩

✪

C∪ {∞}

The inverse mapping is

z 7→ 1
√

1 + |z|2
|0〉+ z

√

1 + |z|2
|1〉 .
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✫

✩

✪

BB84

An early quantum protocol for symmetric key
sharing between two parties Alice and Bob is
due to Charles Bennett and Gilles Brassard
proposed in 1984.
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✫

✩

✪

BB84

The goal of the protocol is to generate a shared
key, a random sequence of bits, known only to
Alice and Bob. The protocol uses properties of
qubit and ensures that, if Alice and Bob cannot
detect any problem of eavesdropping, then with
high probability, the key is secret. But it does
not guarantee about the success in key sharing.
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✫

✩

✪

A B
e

classical

quantum

channel

channel
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✫

✩

✪

BB84

Alice and Bob are connected by two
communication channels - a bidirectional
classical channel to transmit bits and an Alice
→ Bob quantum channel to transmit qubits.
An eavesdropper may listen to both the
channels.
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✫

✩

✪

BB84 Protocols

1. Alice generates a random sequence of bits.

2. She encodes each bit to a qubit by randomly

selecting one of the two different agreed

upon bases of qubit space e.g.

B1 : {0 7→ |0〉 , 1 7→ |1〉} or
B2 : {0 7→ |+〉 , 1 7→ |−〉}.
She sends the qubit to Bob through the

quantum channel.
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✫

✩

✪

BB84 Protocols

3. Bob measures the state of the received qubit

by choosing a base at random.

• If the base chosen by Bob is identical to

the encoding base used by Alice, the

measured value of the bit is correct.

• Otherwise, the probability that Bob gets

the correct bit is 1
2 .
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✫

✩

✪

BB84 Protocols

4. Bob sends an acknowledgement on classical

channel after receiving each qubit.

5. Once the transfer of one qubit is ensured,

both Alice and Bob exchanges on classical

channel the bases they used to encode and

decode.

6. They retains the bit if the corresponding

bases are identical, otherwise it is discarded.
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✫

✩

✪

BB84 Protocols

7. To detect any eavesdropping, they compare

a fraction of accepted bits over the classical

channel. These bits are also discarded and if

they are convinced about no eavesdropping,

remaining accepted bits are used as the key.
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✫

✩

✪

Eve Listening CC

Alice and Bob exchanges acknowledgement,
base information and a fraction of bits finally
discarded, on the classical channel. So Eve
cannot get the values of the key by listening to
classical channel.
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✫

✩

✪

Eve Listening QC

When Eve gets the qubit, she has no clue about
the base of encoding and she picks up a base at
random. So she will pickup a correct (incorrect)
base with a probability 1

2.
The probability that both Eve and Bob choose
the correct base for measurement of a qubit is
1
2 · 12 = 1

4 . So the probability that Eve gets
access to n bit secret key without being
detected by Alice and Bob is 1

4n .
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✫

✩

✪

Wrong Base by Eve

The probability that Eve chooses the wrong
base for a qubit she measures is 1

2. Eve
eventually can detect that the base was
incorrect, but importantly she has changed the
state of the qubit sent to Bob.
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✫

✩

✪

Wrong Base by Eve

Now even if Bob chooses the correct base, he
may get a wrong bit value with the probability
1
2.

So in presence of Eve, 1
4 of the bits retained by

Alice and Bob should have mismatch. This
they can detect by comparing sufficient number
of bits over the classical channel.
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✫

✩

✪

No-Cloning Principle

There is no method consistent with the
permissible transformations (unitary) of
quantum mechanics, that can create two
separate copies of an input.
So Eve cannot store a qubit and also pass a
copy to Bob without knowing its base.
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✫

✩

✪

Man-in-the-Middle-Attack

The protocol is vulnerable if Eve pretends to
Alice as Bob and as Alice to Bob.
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✫

✩
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