SHRIHARI BHAT

shrihariabhat@gmail.com

22nd August 2013

RMO WORKSHOP THEORY

NUMBER THEORY

• Division Algorithm: Given Integers a and b with b >0 \exists unique integers q and r satisfying $a = qb + r, 0 \le r < b$.

• Euclidean Algorithm:

Let us denote Greatest Common Divisor of a and b by gcd(a,b). Euclidean Algorithm states that gcd(a,b) = gcd(b,r) where r is the remainder as described in Division algorithm.

Bezout's Identity:

 $\forall a, b \in N \quad \exists s, t \in Z \text{ such that } gcd(a, b) = sa + tb$

Theorem:
 gcd(a,b)lcm(a,b) = ab

• The Linear Diophantine Equation

ax + by = c has solution iff d | c where d = gcd(a,b). If x_0 and y_0 is any particular solution of this equation then other solutions are given by

 $x = x_0 + \frac{b}{d}t$ and $y = y_0 - \frac{a}{d}t$ where t is an arbitrary integer.

• Fundamental Theorem of Arithmetic:

Every positive integer greater than 1 can be expressed as a product of primes and this representation is unique ignoring the order in which the factors appear.

• Theorem (Euclid):

There are infinitely many primes.

• Theorem(Dirichlet):

If a and b are relatively prime positive integers then the arithmetic progression a, a+b, a+2b, a+3b,.... contains infinitely many primes.

• Congruences:

Let n be a positive integer. We say that $a \equiv b \pmod{n}$ (read as a congruent to b mod n) iff $n \mid (a-b)$.

• Theorem:

The linear congruence $ax \equiv b \pmod{n}$ has a solution iff $d \mid b$ where d is gcd(a,n). If $d \mid b$ then it has d mutually incongruent solutions modulo n.

• Chinese Remainder Theorem:

Let n_1, n_2, \dots, n_r be positive integers such that $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of r equations $x \equiv a_i \pmod{n_i}, 1 \le i \le r$ has a simultaneous solution which

is unique modulo the integer $\prod_{i=1}^{i} n_i$.

• Fermat's Little Theorem:

Let p be a prime number and if p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$.

• Wilson's Theorem:

If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

• Number Theoretic Functions:

 $\tau(n)$ is the number of all positive divisors of n.

 $\sigma(n)$ is the sum of all these divisors.

 $\phi(n)$ is the number of positive integers not exceeding n that are relatively prime to n.

• Computing Number Theoretic Functions:

If
$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$
 then

$$\tau(n) = \prod_{i=1}^{r} (k_i + 1)$$

$$\sigma(n) = \prod_{i=1}^{r} \left(\frac{p_i^{k_i + 1} - 1}{p_i - 1}\right)$$

$$\phi(n) = N \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)$$

- Euler's Generalisation of Fermat's Theorem: Let n be a natural number and $gcd(a,n) \equiv 1$ then $a^{\phi(n)} \equiv 1 \pmod{n}$.
- Fermat's Last Theorem(Proof is very Easy ☺)
 The Diophantine equation aⁿ + bⁿ = cⁿ, n > 2 has no solutions.

Problems

- Find gcd(12378,3054) using Euclidean Algorithm. Also write the gcd as a combination of a and b.
- Solve the Diophantine Equation 172x + 20y = 1000.
- If all the terms of the arithmetic progression p,p+d,p+3d,....,p+(n-1)d are primes then prove that the common difference d is divisible by every prime q<n.
- Find the remainder when $\sum_{i=1}^{100} i!$ is divided by 12.
- Prove that if a is an odd number and n is a natural number we have $a^{2^n} \equiv 1 \pmod{2^{n+2}}$.
- If a, b, c are natural numbers and $a | b^3$, $b | c^3$, $c | a^3$ then prove that $abc | (a+b+c)^{13}$.
- Solve the system of equations simultaneously using Chinese Remainder Theorem. $x \equiv 2 \pmod{3}$

$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$

- Find $\phi(n)$ given that $n = \prod_{i=1}^{k} p_i^{\alpha_i}$ where all p_i are prime numbers. Thus find $\phi(2013), \phi(36000)$.
- Characterize all solutions to the Pythagorean Diophantine Equation $a^2 + b^2 = c^2$

BOOK FOR REFERENCE:

Elementary Number Theory by David M Burton

Introduction to the Theory Of Numbers by Niven & Zuckerman