SHRIHARI BHAT

shrihariabhat@gmail.com

22nd August 2013

RMN WORKSHOP THEORY

NUMBER THEORY

Division Algorithm: Given Integers a and b with $b > 0$ \exists unique integers q and r satisfying $a = ab + r, 0 \le r < b$

Euclidean Algorithm:

Let us denote Greatest Common Divisor of a and b by $gcd(a, b)$. Euclidean Algorithm states that $gcd(a, b) = gcd(b, r)$ where r is the remainder as described in Division algorithm.

Bezout's Identity:

 $\forall a, b \in N$ $\exists s, t \in Z$ such that $gcd(a, b) = sa + tb$

 Theorem: $gcd(a, b)$ *lcm* $(a, b) = ab$

The Linear Diophantine Equation

 $ax + by = c$ has solution iff $d \mid c$ where $d = \gcd(a, b)$. If x_{0} and y_{0} is any particular solution of this equation then other solutions are given by

 $\mathbf{0}$ *b* $x = x_0 + \frac{b}{t}t$ *d* $=x_0 + \frac{b}{l}t$ and $y = y_0$ *a* $y = y_0 - \frac{a}{t}t$ *d* $y_0 - \frac{u}{J}t$ where t is an arbitrary integer.

Fundamental Theorem of Arithmetic:

Every positive integer greater than 1 can be expressed as a product of primes and this representation is unique ignoring the order in which the factors appear.

Theorem (Euclid):

There are infinitely many primes.

Theorem(Dirichlet):

If a and b are relatively prime positive integers then the arithmetic progression a, a+b, a+2b, a+3b,….. contains infinitely many primes.

Congruences:

Let n be a positive integer. We say that $a \equiv b \pmod{n}$ (read as a congruent to b mod n) iff $n|(a-b)$.

Theorem:

The linear congruence $ax \equiv b \pmod{n}$ has a solution iff $d \mid b$ where d is gcd(a,n). If $d | b$ then it has d mutually incongruent solutions modulo n.

Chinese Remainder Theorem:

Let n_1, n_2, \ldots, n_r be positive integers such that $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of r equations $x \equiv a_i \pmod{n_i}$, $1 \le i \le r$ has a simultaneous solution which is unique modulo the integer \int ^{*r*} 1 $\prod n_i$. *i* \overline{a}

Fermat's Little Theorem:

Let p be a prime number and if p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$.

Wilson's Theorem:

If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Number Theoretic Functions:

 $\tau(n)$ is the number of all positive divisors of n.

 $\sigma(n)$ is the sum of all these divisors.

 $\phi(n)$ is the number of positive integers not exceeding n that are relatively prime to n.

Computing Number Theoretic Functions:

If
$$
n = \prod_{i=1}^{r} p_i^{\alpha_i}
$$
 then
\n
$$
\tau(n) = \prod_{i=1}^{r} (k_i + 1)
$$
\n
$$
\sigma(n) = \prod_{i=1}^{r} \left(\frac{p_i^{k_i+1} - 1}{p_i - 1} \right)
$$
\n
$$
\phi(n) = N \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)
$$

- **Euler's Generalisation of Fermat's Theorem:** Let n be a natural number and $gcd(a, n) \equiv 1$ then $a^{\phi(n)} \equiv 1 \pmod{n}$.
- **•** Fermat's Last Theorem(Proof is very Easy \circledcirc) The Diophantine equation $a^n + b^n = c^n, n > 2$ has no solutions.

Problems

- Find $gcd(12378, 3054)$ using Euclidean Algorithm. Also write the gcd as a combination of a and b.
- Solve the Diophantine Equation $172x + 20y = 1000$.
- If all the terms of the arithmetic progression $p, p+d, p+3d, \ldots, p+(n-1)d$ are primes then prove that the common difference d is divisible by every prime q<n.
- Find the remainder when 100 1 ! *i i* $\sum_{i=1}$ *i*! is divided by 12.
- Prove that if a is an odd number and n is a natural number we have $a^{2^n} \equiv 1 \pmod{2^{n+2}}$.
- If a, b, c are natural numbers and $a | b^3$, $b | c^3, c | a^3$ then prove that $abc \left[(a+b+c)^{13} \right]$.
- Solve the system of equations simultaneously using Chinese Remainder Theorem.

$$
x \equiv 2 \pmod{3}
$$

$$
x \equiv 3 \pmod{5}
$$

$$
x \equiv 2 \pmod{7}
$$

- Find $\phi(n)$ given that 1 *i k i i* $n = \prod p_i^{\alpha}$ $=\prod_{i=1}p_i^{\alpha_i}$ where all p_i are prime numbers. Thus find $\phi(2013), \phi(36000)$.
- Characterize all solutions to the Pythagorean Diophantine Equation $a^2 + b^2 = c^2$

BOOK FOR REFERENCE:

Elementary Number Theory by David M Burton

Introduction to the Theory Of Numbers by Niven & Zuckerman