
Combinatorics

Biswajit Paria

Problems
1. Find the number of integer solutions to the equation

x1 + x2 + · · ·+ xn = k (1)

such that the following properties hold.

xi ≥ i− 1 ∀i = 1, 2, . . . , n. (2)

2. Find the number of positive integer solutions to the equation

(x1 + x2 + · · ·+ xn)(y1 + y2 + · · ·+ yn) = p, (3)

where n ∈ N and p is a prime.

3. Vandermonde’s Identity
r∑
i=0

(
m

i

)(
n

r − i

)
=

(
m+ n

r

)
(4)

4. Prove the following identities

(a)

n∑
i=1

i

(
n

i

)
= n · 2n−1

(b)

n∑
i=1

i2
(
n

i

)
= n(n+ 1) · 2n−2

5. (IMO 1981) Let 1 ≤ r ≤ n and consider all r-element subsets of {1, 2, . . . , n}. Each of these subsets has a
smallest number. Let F (n, r) denote the arithmetic mean of these numbers. Prove that

F (n, r) =
n+ 1

r + 1
(5)

6. A monotonic path is defined as a sequence of Up and Down steps only. The number of monotonic paths from
one corner to the opposite corner of an n × n grid which lie on or below the main diagonal is denoted by the
nth Catalan number Cn. Show that

Cn =
1

n+ 1

(
2n

n

)
(6)

7. (AHSME 1991) If A,B,C are sets for which

n(A) + n(B) + n(C) = n(A ∪B ∪ C) and |A| = |B| = 100 (7)

then what is the minimum value of |A ∩B ∩ C| ?

8. A basketball team consists of 12 pairs of twin brothers. In how many ways can all 24 players stand in a circle
such that all pairs of twin brothers are neighbours?

9. Let n be an integer with n ≥ 3. Let P1P2 . . . Pn be a regular n-sided polygon inscribed in a circle ω. Three
points Pi, Pj and Pk are randomly chosen, where i, j, k are distinct integers between 1 and n, inclusive. What
is the probability that the 4PiPjPk is obtuse.

10. Let A1A2 . . . A12 be the vertices of a regular dodecagon. How many distinct squares in the plane have at least
two vertices in the set {A1, A2, . . . , A12}?

11. A triangular grid is obtained by tiling an equilateral triangle of side length n by n2 equiateral triangles of side
length 1. Determine the number of parallelograms bounded by the line segments of the grid.
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12. There are n envelopes each with an letter assigned to it. Let Dn denote the number of ways in which the letters
can be reinserted in the envelopes such that no envelope contains the letter assigned to it. Show that

Dn = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)
(8)

13. We draw all diagonals of a convex n-gon. Suppose no three diagonals pass through a point. Find the number
of regions into which the polygon is divided.

14. Find the smallest positive integer k such that if k squares of a n × n chessboard are colored, then there will
exist three colored squares which form a right angled triangle with sides parallel to the edges of the chessboard.

15. There are 6n points on a line segment, of which any 3n points are colored Blue and the other 3n points are
colored Red. Show that there exist 2n consecutive points with n points colored blue and n points colored red.

16. There are 1982 persons in a party. Among any group of four persons there is a person who knows the other
three. What is the minimum number of people who know everyone else.

17. The 20 members of a local tennis club have scheduled exactly 14 two person games among themselves, with
each member playing atleast one game. Prove that within this schedule there must be a set of 6 games with
12 distinct players.

18. Sixty students took AIME at PEA in 2003. The possible scores on the AIME are integers between 0 t 15
inclusive. Let a1, a2, . . . , a60 denote the students score on the AIME. For k = 0, 1, . . . , 15, let bk denote the
number of students with a score of at least k. Show that

a1 + a2 + · · ·+ a60 = b1 + b2 + · · ·+ b15 (9)

19. There are n points in a plane such that no three of them are collinear. Show that there are atleast

(
n− 3

2

)
convex quadrilaterals with the vertices at these points.

20. Prove that among any 16 distinct positive integers not exceeding 100 there are distinct positive integers a, b, c, d,
such that a+ b = c+ d.

21. For any positive integer n. Prove that

n∑
k=1

(−1)k−1

k

(
n

k

)
= 1 +

1

2
+ · · ·+ 1

n
(10)

22. Let Fn denote the nth Fibonacci number defined by F0 = F1 = 1, Fn = Fn−1 +Fn−1 (n ≥ 2). Prove that for
n ≥ 0

n∑
k=0

(
n− k + 1

k

)
= Fn+1 (11)

23. (USA-TST 2000, Kvant) Let n be a positive integer. Prove that

n∑
i=0

(
n

i

)−1

=
n+ 1

2n+1

n+1∑
i=1

2i

i
(12)

24. Show that (
n+ 1

k

)−1

+

(
n+ 1

k + 1

)−1

=
n+ 2

n+ 1

(
n

k

)−1

(13)

25. (Lucas Theorem) Let p be a prime, and let n be a positive integer with n = n0 + n1p + · · · + nmp
m, where

0 ≤ n0, n1, . . . , nm < p. Also, write i = i0 + i1p+ · · ·+ imp
m, where 0 ≤ i0, i1, . . . , im < p. Then(

n

i

)
≡

m∏
j=0

(
nj
ij

)
(mod p) (14)
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26. Let
1996∏
n=1

(
1 + nx3

n
)

= 1 + a1x
k1 + a2x

k2 + · · ·+ amx
km , (15)

where a1, a2, . . . , am are non-zero and k1 < k2 < · · · < km. Find a1234.

27. (A straightforward generalization of P. 26) Let b be a positive integer such that b > 1. Let∏
n≥1

(
1 + nxb

n
)

= 1 + a1x
k1 + a2x

k2 + · · ·+ aix
ki + · · · , (16)

where ai > 0 and ki < ki+1 for i > 0. Let t = t1 + t2 · 21 + · · ·+ tm · 2m−1, where 0 ≤ t1, t2, . . . , tm < 2. Let pi

be a positive integer such that for i = 1, 2, . . . ,m, pi =

{
i if ti > 0

1 otherwise.
.

Show that

at =

m∏
i=1

pi. (17)

28. (USAMO 1996) An ordered n-tuple (x1, x2, . . . , xn) in which each term is either 0 or 1 is called a binary sequence
of length n. Let an be the number of binary sequences of length n containing no three consecutive terms equal
to 0, 1, 0 in that order. Let bn be the number of binary sequences of length n which have no four consecutive
terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that bn+1 = 2an.

29. Let k and n be positive integers, and let S = 1, 2, . . . , n. A subset of S is called skipping if it does not contain
consecutive integers. How many k-element skipping subsets are there altogether?

30. (Tower of Hanoi) We are given a small board into which three rods have been inserted and a set of n disks of
different diameters with holes so that they can fit over the rods. Initially all disks are on the same rod, with
the largest disk on the bottom, the second largest disk above the largest disk, the third largest disk above the
second largest disk and so on. Adrian is asked to move the tower to one of the other rods in such a way that
during the entire process no disk is above a smaller disk on the same rod. What is the minimum number of
moves that Adrian has to make?1

31. Each unit square of a 2 × n unit square grid is to be colored blue or red such that no 2 × 2 red square is
obtained. Let cn denote the number of different colorings. Determine with proof, the greatest integer k such
that 3k|c2001.

32. Let S be a finite set of n elements, and let k be a positive integer. Determine the number of ordered k-tuples
(S1, S2, . . . , Sk) of subsets of S such that ∩ki=1Si = φ.

33. (Euler’s Phi function) Let φ(n) denote the number of positive integers less than n and relatively prime to n.
Show that

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
(18)

where
n = pα1

1 pα2
2 · · · p

αk

k , αi > 0 ∀ 1 ≤ i ≤ k (19)

34. A 15× 15 square is tiled with unit squares. Each vertex is colored either blue of red. There are 133 red points.
Two of those red points are corners of the original square, and another 32 red points are on the sides. The sides
of the unit squares are colored according to the following rule: If both endpoints are red, then it is colored red;
if the points are both blue, then it is colored blue; if one point is red and the other is blue, then it is colored
yellow. Suppose that there are 196 yellow sides. How many blue segments are there?

35. Let X be a finite set with |X| = n, and let A1, A2, . . . , Am be three-element subsets of X such that |Ai∩Aj | ≤ 1
for all i 6= j. Show that there exists a subset A of X with at least b

√
2nc elements containing none of the Ai.

36. (Sperner) Let S be a set with |S| = n. Assume that S1, S2, . . . , Sm are subsets of S such that Si * Sj for i 6= j.
Then

m ≤
(
n

bn2 c

)
(20)

1Search for ’Tower of Hanoi’ on the internet for a picture of it.
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