RMO Workshop : Algebra

Anand Degwekar

- 1. Prove that $2^{3^n} + 1$ is divisible by 3^{n+1} for all integers $n \ge 0$.
- 2. Prove that f(n) = g(n) For all $n \in \mathbb{N}$ where $f(n) = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \ldots + \frac{1}{2n-1} \frac{1}{2n}$ and $g(n) = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{2n-1} + \frac{1}{2n}$.
- 3. Let $n = 2^k$. Prove that : we can select n numbers from a set of any (2n 1) numbers, such that the sum of the selected numbers is divisible by n.
- 4. Let α , β be roots of the equation $y^2 my + 1 = 0$ where m is and odd integer. Let $\lambda_n = \alpha^n + \beta^n \ \forall n \ge 0$. Prove that
 - (a) λ_n is an integer.
 - (b) $gcd(\lambda_n, \lambda_{n+1}) = 1 \ \forall n \ge 0$
- 5. If r is an approximation of $\sqrt{5}$. Prove that $\frac{2r+5}{r+2}$ is a better approximation. Generalize it for \sqrt{a} where $a \in \mathbb{N}$.
- 6. Find S_n where $S_n = \frac{1}{1.2.3.4} + \frac{1}{2.3.4.5} + \frac{1}{3.4.5.6} + \ldots + \frac{1}{n(n+1)(n+2)(n+3)}$
- 7. Prove that :

$$\sum_{k=0}^{n} \binom{n+k}{k} \times \frac{1}{2^{-k}} = 2^n$$

- 8. If $x^3 + px^2 + qx + 1 = 0$ has 3 real zeros then prove that $p^2 \ge 3q$.
- 9. Let f(x) be a polynomial with integer coefficients. Prove that it has no integral zeros if f(0) and f(1) are both odd.
- 10. Let $p(x) = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + 1$ and $\forall i, a_i \ge 0$ has n real roots. Prove that $P(2) \ge 3^n$
- 11. Prove that $1 < \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{3n} + \frac{1}{3n+1} < 2$
- 12. Let P(x) be a polynomial of degree n so that $P(k) = \frac{k}{k+1} \quad \forall k = 0, 1, \dots, n$. Find P(n+1).
- 13. Let a, b, c be distinct integers. P is an integral polynomial. Show that : P(a) = b, P(b) = c, P(c) = a cannot all be true.
- 14. Prove that $P(x) = 1 + \frac{x}{1} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}$ has no multiple roots.
- 15. Does there exist a sequence of positive reals $\{a_n\}$ such that both $\sum a_n$ and $\sum \frac{1}{n^2 a_n}$ are convergent.