Tutorial

Programming \& Data Structure: CS 11001

$$
\text { Section }-4 / D
$$

Department of Computer Science and Engineering
I.I.T. Kharagpur

Spring Semester: 2013-2014 (13.02.2014)

Download

Download the file tut130214.pdf from Programming \& Data Structures ... of
http://cse.iitkgp.ac.in/~goutam

View the file using the command acroread \& or xpdf \&

Radix-Complement

A 3-digit radix-complement decimal (rcd or 10's complement) numeral is defined as follows:

- A numeral is a sequence of three decimal digits.
- A +ve numeral has $0,1,2,3$, or 4 as the most significant digit. The denotation is usual.

Radix-Complement

- A -ve numeral has $5,6,7,8$, or 9 as the most significant digit.
- If a number n is represented as a 3-digit rcd numeral, $-n$ is represented as $1000-n$ in rcd.

Tutorial VI. 1

Answer the following questions:

1. What is the value of rcd 729 in standard decimal?
2. What is the range of decimal numbers represented as 3 -digit rcd?
3. What is the range of decimal numbers represented as n-digit rcd?
4. What is the range of decimal numbers represented as 3 -digit radix-6, 6-complement numeral. Answer the same question for n-digits.
5. Answer the previous question for radix-2, 2's
complement numerals.
6. What will be the results of addition in 3-digit red in the following cases (all numbers are in rcd): (i) $123+$ 234 , (ii) $123+877$, (iii) $403+311$, (iv) $900+800$, (v) $540+630$
7. What will be the representation of 301 and 825 (3-digit rcds) as 6 -digit rcds?

Tutorial VI. 2

1. Convert the decimal numeral 1234 to a binary numeral.
2. Convert the unsigned binary numeral 01101001 to a decimal numeral.
3. Convert the unsigned binary numeral 1011101000011110 to hexadecimal (Hex) and octal (Oct) numerals.
4. What is the range of unsigned integers that can be stored in 12-bits?

Tutorial VI. 3

1. Convert the decimal numeral -234 to a binary numeral.
2. Convert the 2's complement binary numeral 1110100 to a decimal numeral.
3. Perform 2's complement addition in 4-bits, (i) $0011+0010$, (ii) $1101+1110$, (iii) $0011+1011$, (iv) $0100+0101$, (v) $1101+1010$.

Floating-point Number

```
313029282726252423222120191817161514131211109887654B 2 1 0
S| exponent significand/mantissa
1-bit 8-bits 23-bits
            Single Precision
    31302928272625242322212019181716151413121110 9 8 7 6 54 3 2 1 0
\begin{tabular}{|l|l|l|}
\hline \(\mathrm{s} \mid\) & exponent & significand/mantissa \\
\hline
\end{tabular}
1-bit 11-bits 20-bits
    significand (continued)
                    32-bits
    Double Precision
```

Single Precision Data

Fields		Data Type
Exponent	Significand	
0	0	0
0	nonzero	\pm denormal number
$1-254$	anything	\pm normalized number
255	0	$\pm \infty$
255	nonzero	$N a N$ (not a number)

Double Precision Data

Fields		Data Type
Exponent	Significand	
0	0	0
0	nonzero	\pm denormal number
$1-2046$	anything	\pm normalized number
2047	0	$\pm \infty$
2047	nonzero	$N a N$ (not a number)

Single Precision Normalized Number

Let the sign bit (31) be s, the exponent (30-23) be e and the mantissa (significand) (22-0) be m. The valid range of the exponent is 1 to 254 (if e is treated as an unsigned number).

- The exponent (e) is biased by 127 i.e. the actual value of the exponent is $e-127$. This gives a range: $2^{1-127}=2^{-126}$ to

$$
2^{254-127}=2^{127}
$$

Single Precision Normalized Number

- The normalized significand is 1.m (binary dot). One is not present explicitly.
- The sign-bit s is 1 for a negative number and it is 0 for a positive number.
- The final value of a normalized number is

$$
(-1)^{s} \times 1 . m \times 2^{e-127}
$$

Single Precision Denormal Number

The interpretation of a denormal number is different. The content of the exponent part (e) is zero and the significand part (m) is non-zero. The value of a denormal number is

$$
(-1)^{s} \times 0 . m \times 2^{-126}
$$

There is no implicit one in the significand.

Tutorial VI. 4

1. What is the representation of -27.75 in IEEE- 754 single precision format?
2. What is the representation of +27.7 ?
3. What is the largest magnitude of a single precision normalized number?
4. What is the smallest magnitude of a single precision normalized number?
5. Answer the last two questions for denormal numbers.
6. What is the value stored as a result of $1.0 / 0.0$?

Tutorial VI. 5

How do you print the bit pattern of a floating point number?

Tutorial VI. 6

How do you print the exponent of a floating point number?

Tutorial VI. 7

How do you print the significand of a floating point number?

