
Computer Science & Engineering Department
I. I. T. Kharagpur

Operating System: CS33007

3rd Year CSE: 5th Semester (Autumn 2005 - 2006)
Lecture XII (Memory Management)

Goutam Biswas Date: 11th September, 2006

Memory Management: Paging

1. The main memory may be divided into fixed size page frames.

2. A program along with data is divided into same size pages.

3. The size of a page frame depends on several factors e.g. the size of the disk block, the
time taken to transfer one block of data from the disk to the main memory etc.

4. Different pages of a process are loaded in different page frames of the main memory.

I

I

I

I

II

II

II

II

0

1

5

6

2

3

4

7

8P3

P2

P1

P0

P3

P2

P1

P0

P
ag

es
P

ag
es

Process−I

Process−II

Main Memory

P
ag

e
F

ra
m

es

P0

P0

P1

P2

P2

P3

P1

P3

OS

Figure 1: Paging

5. Page and page frame - an example

• Size of the main memory is 16 MBytes.

• The size of code + data is 122KBytes (from the load module).

• Size of a Page (page frame) is 4 KBytes.

• Total number of page frames are 16K

4
= 4K.

• The code will occupy 122

4
= 31 pages.

6. Internal fragmentation - In the previous example the last page frames (30th frame) is
not full. Some memory space within the last frame is wasted. This is called an internal
fragmentation.

1

7. Page table - translation of logical address to physical address.

• For each process a table, called the page table, is used to translate the virtual or
logical address to the main memory address.

• A logical address has two parts -

Page Number Offset within Page

• The page number is used as an index to the page table.

• The page frame number of the main memory where the page is loaded is obtained
from the page table.

P0

P0

P1

P2

P3

P1

P2

P3

OS

P0

P1

P2

P3

P0

P1

P2

P3

I

I

I

I

II

II

II

II

0

5

6

2

3

4

7

8

0

0

1

2

2

1

3

3

1

1

2

4

8

0

7

3

5

Process−II

Process−I

P
ag

es
P

ag
es

PT−II

PT−I

P
ag

e
F

ra
m

es
Main Memory

Figure 2: Page Table

• There are questions related to the page table -

– What is the size of the page table?

– Where does the OS stores the page table?

8. Size of the page table, a 32-bit Pentium example -

• The logical address is 32-bits.

• There are 4M = 220 entries in the page table for each process.

• Assuming 4-Bytes per table entry, each process needs 4 MBytes space only for
the page table. This not an acceptable solution.

9. Two level page table -

• A page table is also divided into pages.

• There is a table of the page-table pages called the page directory.

• For each process there is a page directory.

• The 32-bit logical address is divided in i three parts

2

0

1

1022

1023

Page Directory

Page Table 0

Page Table 1023

1023

0

0

1023

Figure 3: 2-Level Page Table

0111231 22 21

+

+
+

Page Table

Actual Page

031

Page Tables
Directory of

4K

4K

4K

Starting at 4K Boundary

20 20

(cr3)
Directory Base

10 10 12

P−OffsetP−Table OffsetPT−Directory

4−times
4−times

4096−times

4096−times

Figure 4: 2-Level Translation

3

Directory Page Table Offset within
Index (31-22) Index (21-12) a Page (11-0)

• Address translation -

– The page directory base register (cr3 in Pentium) is loaded by the OS when a
process is scheduled.

– The address bit 31-22 is multiplied by 4 (4-Bytes per entry) and added to the
content of cr3 to get the physical address of the directory entry.

– The directory entry provides the base address of the corresponding page (if it
is present).

– The base address is specified by 20-bits. The size of the directory, the size of a
page table and the size of a page are each 4 KBytes. Each one is loaded at the
4 KByte boundary.

– The base address of the page table is multiplied by 4K and added to the
address bits 21-12 (after multiplying by 4).

– This gives the address of the page table entry which holds the base address of
the page (if it is present).

– The 20-bit base address of the page is obtained from the page table.

– It is multiplied by 4K and added to the 12-bit Offset (logical address bits 11-
0) to get the physical address of the location specified by the logical or virtual
address (Intel call it linear address).

10. Address translation in 2-level paging - an example. Assume that the OS has assigned a
virtual space of size 0x1000 0000 - 0x1001 FFFF to a process.

• The size of the virtual space is 128KBytes.

Directory Table Offset

0001 0000 00 00 000X XXXX XXXX XXXX XXXX

where X ∈ {0, 1}

• There is only one valid entry in the page directory (out of 1024 entries). Its index
is i 0x00 0100 0000 = 64D.

• All other entries of the page directory are nil.

• There is only one page table with valid entries ranging from the index 00 0000
0000 = 0D to 00 0001 1111 = 31D i.e. there are 32 pages, each of size 4 KBytes.

11. Extra memory for two level paging -

• One page directory of size 4 KBytes with only one valid entry.

• One page table of size 4 KBytes with 32 valid entries.

• 8 KBytes of extra memory is required for paging.

12. Other data in the page directory and the page table.

4

• Valid/Present Bit: If set (1), it indicates that the page is valid and present in
the main memory. If it is zero (0), the page is not valid or in case of a virtual
memory system it is not present.

For an invalid page the logical address is saved in some control register (cr2 in
Pentium) and a memory exception (page fault in case of virtual memory) (int 14

in Pentium) is generated. In this case the other bits may be used by the OS.

• The page is present -

– 20-bits are used as the base address.

– Dirty Bit - Indicates whether the page has been modified. Its copy in the disk
may be stale.

– Permission bits - Indicates whether the page is read-only or writable.

– Access privilege - Indicates the privilege level required to access the page etc.

13. Protection and sharing using page table -

• Protecting a process or the OS from another process is easy. The instruction to
modify the page directory base register (cr3) is to be a privileged instruction and is
not available to a user process.

/**

* The page table base register cr3 is *

* not available to a user process *

* **/

#include <stdio.h>

int main() {

asm (

"movl $1, %%eax \n\t"

"movl %%eax, %%cr3 \n\t"

:

:

:"%eax"

) ;

return 0;

}

• It is also easy to share pages under the paged memory management.

• If two processes want to share a page, the base address of the shared page-frame
in the main memory is entered in page tables of both the processes.

• It is also easy to have different set of permissions on the same page for two different
processes.

14. problems of paged memory management -

• Instruction fetch or data access through a 2-level page-table system will first look-
up the page directory, then the page table, and finally will fetch the actual instruc-
tion or data from the main memory.

5

P0

P0

P2

P3

P1

P2

OS

P0

P2

P3

P0

P1

P2I

I

I

II

II

II

0

5

6

2

3

4

7

8

0

0

1

2

2

1

3

3

1

1

2

4

0

3

5

P3

P1

7

7

Shared
Page

P1−P3

P
ag

es
P

ag
es

Process−I

Process−II

PT−I

PT−II

Main Memory

Figure 5: Shared Page

• Every access to a logical address will give rise to three (3) access to the physical
memory. This is not acceptable as the access to physical memory is slow compared
to the processor speed.

15. A solution from architecture - translation look-aside buffer (TLB) cache -

• The memory management unit (MMU) has a fully associative cache memory know
as i the translation look-aside buffer (TLB) cache for fast translation of virtual to
physical address.

0111231

{

Virtual Address
Tag

Address
Page Frame Base

TLB Match

Other Bits

TLB Miss

Valid and

Virtual Page Frame Number

Directory and
Page Table

PT−Directory P−Table Offset P−Offset

Physical Address

Virtual Address

Figure 6: TLB

• When a process gets scheduled, the page directory base register is loaded with the
appropriate base address. All entries of the TLB cache1 may be invalidated (there
are other possibilities as well).

1Not to be confused with the cache memory of the memory hierarchy.

6

• If some of the old entries of the TLB have their dirty bits set, the corresponding
page table entries are to be properly updated.

• When the scheduled process starts its execution, there is no valid entry in the TLB.
The first logical address will be translated to the physical address with the help of
the page table system.

• Once the translation is known, the MMU loads an entry of the TLB with the
following information.

– The virtual page frame number (31-12) is loaded in the tag field.

– The corresponding page frame base address is loaded in the corresponding
cache line.

– The valid and other control bits are set accordingly.

• Any subsequent reference to the same virtual page will be translated using the
TLB.

• The virtual page frame number from the logical address is compared in parallel
with the tags corresponding to all the valid entries of the TLB. This is called an
associative search.

• If there is a match, the page-frame base address is obtained immediately, and the
memory is accessed.

16. The system of TLB works due to the fact that the memory references are clustered.
And the cluster changes slowly.

There is a working set of pages (instruction as well as data), where most of the references
are made for a time period much larger than the time of execution of an instruction.

There is spatial and temporal locality in the stream of instruction execution.

17. TLB Miss -

• Typically there are 16 to 128 entries in a TLB (that is good enough to cover 64
KBytes to 512 KBytes of memory)2.

• If there is a TLB miss, and there is a free slot in the TLB, the first translation is
through the page table. But the new translation entry is loaded in the available
slot of the TLB.

• But if all entries of the TLB are valid, then it is necessary to replace one of those
to accommodate the translation of the referenced page.

• The question is which entry to replace and what is to be done if the dirty bit is set.

• Simple replacement policy is implemented on hardware. If the dirty bit is set, the
bit is to be written in the corresponding page table entry while replacing.

18. Printing the content of page directory base register in Pentium - cr3

19. Three level paging - DEC Alpha example -

• 64-bit architecture - The address space is 64-bit. But the most significant 21-bits
are always set to zero (0). We are left with 43-bits.

2Systems with larger TLB may not be fully associative.

7

• The 2-level paging scheme does not work for such a big address space.

• An example -

– Let the page size be 8 KBytes. The least significant 13-bits will give the offset
within the page.

– Remaining 30-bits may be divided in two groups, each of size 15-bits.

– Each table will have 32K entries. Even if the size of each entry be 32-bits, the
size of each table will be 128KBytes. There will be at least two such tables
for each process i.e. 256KB of table space per process. This is too big.

• Three level paging -

– The page size 8 KBytes. Bit 12-0 is of the logical address is the page offset.

– The base address of directory1, the top-level directory, whose base address is
available from an MMU register. It is indexed by higher order 10 bits (bit
42-33) of the logical address.

– The base address of directory2, the middle directory, is obtained from the
directory1 and is indexed by the next 10 bits (bit 32-23) of the logical address.

– The base address of a page table is obtained from the directory2 and is indexed
by the next 10 bits (bit 22-13) of the logical address.

– Size of each table entry may be 8 Bytes.

20. Inverted Page table - a solution to a very large address space.

(a) An alternate to a system of page table per process, is a global page table where
each entry corresponds to a page frame of the main memory.

(b) The index of the table, after multiplying and adding two constants, gives the base
address of the page frame.

(c) Each entry of the page table contains, other than the protection information, the
process ID and the logical page number.

(d) It is clear that though this page table reduces the total memory requirement for
the table, the translation through the table is costly as it involves search through
the table.

(e) But most of the time the translation takes place through the TLB cache and
the table search is not necessary. The searching can be reduced by using hashed
inverted table.

8

CPU pid page no. page offset

page offsetpage frame base

Inverted Page Table

pid

0
1

#

Main memory address

page no. next

pid page no. next

pid page no. next

i

search
j

k
Hash
 function

Figure 7: Inverted Page Table

9

