
Computer Science & Engineering Department
I. I. T. Kharagpur

Operating System: CS33007

3rd Year CSE: 5th Semester (Autumn 2006 - 2007)
Lecture X (Mutual Exclusion of CS)

Goutam Biswas Date: 28th-29th August, 2006

1 Algorithmic Solution

Mutual exclusion of access to critical sections can also be achieved by algorithmic means
without any support from the architecture. We present here two algorithms one by Dekker
(presented by Dijkstra) and the other by Peterson. Both works for two processes. Then we
go for generalization of these algorithms for more than two processes.

The basic requirements for the solution:

1. Correctness (safety): control should not be in the CS of more than two processes or
threads.

2. Bounded wait (fair): no process should wait for indefinite amount of time.

3. Progress: if no process is in the critical section, a requesting process should not be
stopped to enter its CS.

1.1 Several Attempts

Consider the first attempt to the solution. Let the processes be P1 and P2 and there is a
shared variable turn initialized to 1. Consider the following pseudo code:

int turn = 1 ; // shared data

/* Process 1 */

while(1){

/* non-critical section 11 */

while(turn == 2); // Busy wait

/* Critical section of code */

turn = 2 ;

/* non-critical section 12 */

}

/***************************************/

/* Process 2 */

while(1){

/* non-critical section 21 */

1

while(turn == 1); // Busy wait

/* Critical section of code */

turn = 1 ;

/* non-critical section 22 */

}

The shared variable turn indicates which process can enter its critical section and the cor-
rectness is satisfied. It also does not violate the bounded wait. But consider the following
situation:

1. P1 has a long non-critical section (12) where it may even be blocked.

2. P1 comes out of its CS and and sets turn = 2.

3. P2 enters the critical section, comes out of it, sets turn = 1, goes back into the loop,
but cannot enter the CS even though P1 is not trying to enter its CS

The condition of progress is violated. So the solution is not acceptable.
In the 2nd attempt let us try to solve the problem by introducing two shared variables in

the following way:

int c1 = 0, c2 = 0 ; // shared data

/* Process 1 */

while(1){

while(c2) ; // Busy wait

c1 = 1 ;

/* Critical section */

c1 = 0 ;

/* Non-critical section 1 */

}

/* Process 2 */

while(1){

while(c1) ; // Busy wait

c2 = 1 ;

/* Critical section */

c2 = 0 ;

/* Non-critical section 2 */

}

This is certainly incorrect as both the processes can enter the CS together under the following
condition.

1. Both c1 and c2 are 0.

2. P1 executes while and is preempted.

3. P2 executes while and is preempted.

2

4. Both enters the critical section.

In the 3rd attempt the claim to entry in the CS is established first.

int c1 = 0, c2 = 0 ; // shared data

/* Process 1 */

while(1){

c1 = 1 ;

while(c2) ; // Busy wait

/* Critical section */

c1 = 0 ;

/* Non-critical section 1 */

}

/* Process 2 */

while(1){

c2 = 1 ;

while(c1) ; // Busy wait

/* Critical section */

c2 = 0 ;

/* Non-critical section 2 */

}

This code may lead to dead-lock under the following situation:

1. P1 executes c1 = 1 and is preempted.

2. P2 executes c2 = 2.

3. Both the processes will wait in their while.

What about the following code?

int c1 = 0, c2 = 0 ; // shared data

/* Process 1 */

while(1){

L: while(c2) ; // Busy wait

c1 = 1 ;

if(c2){

c1 = 0 ;

goto L ;

}

/* Critical section */

c1 = 0 ;

/* Non-critical section 1 */

3

}

/* Process 2 */

while(1){

L: while(c1) ; // Busy wait

c2 = 1 ;

if(c1){

c2 = 0 ;

goto L ;

}

/* Critical section */

c2 = 0 ;

/* Non-critical section 2 */

}

The mutual exclusion is guaranteed as the control can enter a CS when either (c1 == 1 and
c1 == 0) or (c1 == 1 and c1 == 0). But then there is a possibility of livelock, both are
trying to allow the other process to enter the CS.

1.2 Dekker’s Algorithm

It uses both turn, c1 and c2 as shared variables:

\begin{verbatim}

int c1 = 0, c2 = 0, turn = 1 ; // shared data

/* Process 1 */

while(1){

/* non-critical section */

c1 = 1 ;

while(c2)

if(turn == 2) {

c1 = 0 ;

while(turn == 2) ; // Busy wait

c1 = 1 ;

}

/* critical section */

turn = 2 ;

c1 = 0 ;

/* non-critical section */

}

/* Process 2 */

while(1){

/* non-critical section */

4

c2 = 1 ;

while(c1)

if(turn == 1) {

c2 = 0 ;

while(turn == 1) ; // Busy wait

c2 = 1 ;

}

/* critical section */

turn = 1 ;

c2 = 0 ;

/* non-critical section */

}

The variables c1, c2 are request/status flags for the two processes P1 and P2. They register
their request to enter the CS by making them 1.

The single variable turn can have one of two values and that changes only when a process
comes out of its CS. This variable plays its role only when both processes have made the
corresponding request flags 1 - process i enters its CS if turn is i. The value of turn is
changed to 3 − i after Pi come out of the CS and the other process P3−i gets the priority.

If P1 want to enter the CS, it sets the request flag c1 = 1;

• if there is no request from P2 i.e. c2 is 0, while(c2) is false, and P1 enters its CS. P2

cannot enter its CS as c1 is 1.

• if there is a request from P2 i.e. c2 is 1, while(c2) is true. The value of turn is tested.
If it is 1 (in favour of P1), P1 enters the critical section. This itself stops P2 to enter its
CS. P1 sets turn to 2 after coming out of its CS and allows P2 P2 to enter.

Following is an implementation of Dekker’s algorithm for producer-consumer problem on
pthreads.

/***

* The producer consumer problem using a thread

* CS using Dekker’s algorithm

* cc -Wall -c queue.c

* cc -Wall -lpthread dekkerProdCons.c queue.o

* ***/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#include "queue.h"

queue q ;

int c1, c2, turn ;

void * thread1(void *) ;

void * thread2(void *) ;

5

void producer(){

int count = 1 ;

while(1) {

int data, added = 1, err ;

if(added) {

data = rand() ;

added = 0 ;

}

// Dekker algorithm

c1 = 1 ;

while(c2){

if(turn == 2){

c1 = 0 ;

while(turn == 2) ;

c1 = 1 ;

}

}

//

err = addQ(&q, data) ;

// DA

turn = 2 ;

c1 = 0 ;

//

if(err == OK) {

added = 1 ;

printf("Produced Data %d: %d\n", count++, data) ;

}

}

}

void consumer() {

int count = 1 ;

while(1) {

int data, err ;

// Dekker algorithm

c2 = 1 ;

while(c1){

if(turn == 1){

c2 = 0 ;

while(turn == 1) ;

c2 = 1 ;

}

}

6

//

err = frontQ(&q, &data) ;

if(err == OK) err = deleteQ(&q) ;

// DA

turn = 1 ;

c2 = 0 ;

//

if(err == OK)

printf("\t\t\tConsumed Data %d: %d\n", count++, data) ;

}

}

int main() {

pthread_t thID1, thID2 ;

initQ(&q) ;

c1 = 0 ; c2 = 0; turn = 1; // Dekker algorithm variables

pthread_create(&thID1, NULL, thread1, NULL) ;

pthread_create(&thID2, NULL, thread2, NULL) ;

pthread_join(thID2, NULL) ;

pthread_join(thID1, NULL) ;

return 0;

}

void *thread1(void *vp) {

producer() ;

return NULL ;

}

void *thread2(void *vp) {

consumer() ;

return NULL ;

}

1.3 Peterson’s Algorithm

A simpler and elegant algorithm was proposed by Peterson to solve two process mutual
exclusion problem.

int c1 = 0, c2 = 0, turn ; // Shared data

/* Process 1 */

while(1){

/* non-CS */

c1 = 1 ;

turn = 1 ;

7

while(c2 && turn == 1) ;

/* Critical section */

c1 = 0 ;

/* non-CS */

}

/* Process 2 */

while(1){

/* non-CS */

c2 = 1 ;

turn = 2 ;

while(c1 && turn == 2) ;

/* Critical section */

c2 = 0 ;

/* non-CS */

}

The variables c1, c2 are request/status flags for the two processes P1 and P2. They register
their request to enter the CS by making them 1.

The single variable turn can have one of two values 1 or 2. Its role is different from
Dekker’s algorithm. The process P2 sets the request flag c2 to 1 for entering the critical
section, it also assigns 2 to turn.

• If there is no request from P1 so far, P2 enters the critical section. P1 cannot enter it as
long as c2 is 1. P2 after coming out of its CS makes c2 0 and P1 may enter if necessary.

• Even if both c1 and c2 are 1, the value of turn can be either 1 or 2. Depending on this
value either P1 or P2 will busy wait.

Following is an implementation of Peterson’s algorithm for producer-consumer problem on
pthreads.

/***

* The producer consumer problem using a thread

* CS using Peterson’s algorithm

* cc -Wall -c queue.c

* cc -Wall -lpthread petersonProdCons.c queue.o

* ***/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#include "queue.h"

queue q ;

int c1, c2, turn ;

8

void * thread1(void *) ;

void * thread2(void *) ;

void producer(){

int count = 1 ;

while(1) {

int data, added = 1, err ;

if(added) {

data = rand() ;

added = 0 ;

}

// Peterson’ algorithm

c1 = 1 ;

turn = 1 ;

while(c2 && turn == 1) ;

//

err = addQ(&q, data) ;

// PA

c1 = 0 ;

//

if(err == OK) {

added = 1 ;

printf("Produced Data %d: %d\n", count++, data) ;

}

}

}

void consumer() {

int count = 1 ;

while(1) {

int data, err ;

// Peterson’s algorithm

c2 = 1 ;

turn = 2 ;

while(c1 && turn == 2) ;

//

err = frontQ(&q, &data) ;

if(err == OK) err = deleteQ(&q) ;

// DA

c2 = 0 ;

//

if(err == OK)

printf("\t\t\tConsumed Data %d: %d\n", count++, data) ;

}

9

}

int main() {

pthread_t thID1, thID2 ;

initQ(&q) ;

c1 = 0 ; c2 = 0; // Peterson algorithm variables

pthread_create(&thID1, NULL, thread1, NULL) ;

pthread_create(&thID2, NULL, thread2, NULL) ;

pthread_join(thID2, NULL) ;

pthread_join(thID1, NULL) ;

return 0;

}

void *thread1(void *vp) {

producer() ;

return NULL ;

}

void *thread2(void *vp) {

consumer() ;

return NULL ;

}

1.4 Bakery Algorithm

The mutual exclusion of CSs of n processes can be achieved by the following algorithm of L.
Lamport.

When a processes wishes to enter its CS, it takes an integer token. The value of the token
is larger than the tokens issued earlier. Process enter the CS in order of the token. But
getting token is a concurrent activity and two processes may get the same token.

There is an array choosing[] of boolean flags, choosing[i] indicates that the process
Pi is trying to get a token. The value of the token for the process Pi is in number[i]. It is 0
if the process has not taken any token after it has come out of its CS.

const int n = ... ;

int choosing[n], number[n] ;

for(i=0; i<n; ++i){

choosing[i] = 0 ; number[i] = 0 ;

}

/******* Process Pj *******/

while(1){

/* non-CS */

choosing[j] = 1 ;

10

number[j] = max(number, n) + 1 ;

choosing[j] = 0 ;

for(i=0; i<n; ++i) {

while(choosing[i]) ; // busy wait

while(number[i] != 0 && (number[i],i) < (number[j], j)) ; // busy wait

}

/* CS */

number[j] = 0 ;

/* non-CS */

}

References

[1]

11

