School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial VIII (02 November 2023)

Instructor: Goutam Biswas

Autumn Semester 2023

- 1. According to the time hierarchy theorem, for any time constructible f: $\mathbb{N}_0 \to \mathbb{N}_0$, there is a language $A \in DTIME(f(n))$ but not decidable in time o(f(n)/logf(n)).
 - (a) Are $2^n, 2^{n+1}, 2^{2n}$ time constructible?
 - (b) Is $DTIME(2^n)$ a proper subset of $DTIME(2^{2n})$?
 - (c) Is $DTIME(2^n)$ a proper subset of $DTIME(2^{n+1})$?
- 2. Let $A_{TM} = \{ \langle M, x \rangle : \text{ the TM } M \text{ accepts } x \}$ and $A_{\neg \emptyset} = \{ \langle M \rangle : L(M) \neq \emptyset \}$. Show that $A_{\neg \emptyset} \leq_m A_{TM}$.
- 3. Prove that
 - (a) If $A \leq_m B$, then $A \leq_T B$.

(b) If $A \leq_m^p B$, then $A \leq_T^p B$.

- 4. Prove that $SAT_H = \{\phi 01^{n^{H(n)}} : \phi \in SAT, |\phi| = n\} \in \mathbf{NP}$. The function H(n) is time constructible.
- 5. The language $SAT_H = \{\phi 01^{n^{H(n)}}: \phi \in SAT, |\phi| = n\}$ is **NP**-complete if H(n) is bounded i.e. $f(n) = n^{H(n)}$ is a polynomial of n. But it is in **P** if f(n) is super-polynomial. How do you design H(n) so that under the assumption $\mathbf{P} \neq \mathbf{NP}$, there will be a contradiction, if $SAT_H \in \mathbf{P}$ or SAT_H is **NP**-complete.
- 6. The function H(n) is defined as follows:

$$H(n) = \begin{cases} i, & i = \min\{j : j \text{ satisfies } C\}\\ \log \log n, & \text{otherwise.} \end{cases}$$

C: j is a natural number, $1 \leq j < \log \log n$, such that the TM M_j decides the membership of all $x \in \{0,1\}^*$, $|x| \leq \log n$ in SAT_H , within $j \times |x|^j$ steps.

Base case may be suitably defined.

Prove the following:

- (a) If $SAT_H \in \mathbf{P}$, H(n) is bounded.
- (b) If $H(n) \leq c$, then $SAT_H \in \mathbf{P}$.