School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial VI (21 September 2023)

Instructor: Goutam Biswas

Autumn Semester 2023

- 1. 5-SUBSET-SSUM = { $\langle S, t \rangle$: $S = \{x_1, \dots, x_n : x_i \in \mathbb{N}\}, \exists S' = \{y_1, \dots, y_5\} \subseteq S, \sum_{i=1}^5 y_i = t\}$. Is 5-SUBSET-SSUM **NP**-complete?
- 2. PATH = $\{ \langle G, s, d \rangle : G \text{ is a graph where there is a path from } s \text{ to } d \}$. PATH is known to be in **P**. What is the repercussion if it is proved that PATH is not **NP**-complete.
- 3. Solve the following problems.

(i) What is the value of
$$n^{\left(\frac{1}{\ln n}\right)}_{n > 1?}$$

 $\left(\frac{1}{2}\right)^{\log \log n}$

- (ii) Show that $n \ c / c$ is bounded above (less than a constant), where $c \ge 3$ is a constant and $n \ge e$.
- 4. Prove that if there is a polynomial time reduction from SAT to SAT such that $\phi \mapsto \psi$ and $|\psi| = \sqrt[3]{|\phi|}$, then *SAT* is in **P**.
- 5. The language of undirected Hamiltonian path (UHAMPATH) is defined as follows.

 $UHAMPATH = \{ < G, s, d >: G \text{ is an undirected graph and there is a Hamiltonian path from s to } d \}.$

- (i) Show that UHAMPATH $\in \mathbf{NP}$.
- (ii) Show that UHAMPATH is NP- hard.