School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial I (10 August 2023)

Instructor: Goutam Biswas

Autumn Semester 2023

- (a) Design an NFA with minimum number of states that accepts all strings over {0,1} which has "101" as a substring.
 - (b) Convert the NFA to a DFA by subset construction (do not design it directly).
 - (c) How many states are there in the DFA that are reachable from the start state?
 - (d) Can we minimize the reachable part of the DFA designed in (1c)?
- 2. (a) How do you identify the states that are not reachable from the start state?
 - (b) What is the time complexity of your algorithm?
- Given a DFA M = (Q, Σ, δ, s, F) we define a binary relation ≡ on the set of states Q as follows: For all p,q ∈ Q, p ≡ q if ∀x ∈ Σ* (δ(p,x) ∈ F ⇔ δ(q,x) ∈ F).
 - (a) Justify that it is an *equivalence relation*.
 - (b) If $p \equiv q$, define two automaton with Q, Σ, δ, F of M whose languages are same.
 - (c) The equivalence relation of (3) partitions the set of states. Define the quotient automaton.
 - (d) How is L(M) related to the language of the quotient automaton?
- 4. Let $L \subseteq \Sigma^*$ be a regular language accepted by a DFA, $M = (Q, \Sigma, \delta, s, F)$ without any inaccessible state from the start state. Define a binary relation \equiv_M (modulo M) on Σ^* as follows:

$$x \equiv_M y \Leftrightarrow \delta(s, x) = \delta(s, y).$$

Two strings are related if they drive the machine from its start state to the same state.

- (a) Show that \equiv_M is an equivalence relation.
- (b) How many equivalence classes of Σ^* are created by \equiv_M ? (finite index)
- (c) Let $x \equiv_M y$ and $a \in \Sigma$. What can you conclude about xa and ya? (*right congruence*).
- (d) If $x \in L$, then what can you conclude about $[x]_{\equiv M}$?

- (e) How do you express L in terms of the equivalences classes of \equiv_M ?
- 5. An equivalence relation over Σ^* for a language L is called a Myhill-Nerode relation for L, if
 - (i) it satisfies right congruence,
 - (ii) it refines L, and
 - (iii) it has finite index.
 - (a) Given any Myhill-Nerode relation \equiv_{mn} on Σ^* for L, construct a DFA that accepts L. Let $M_{mn} = (Q, \Sigma, \delta, s, F)$, where
 - (b) Prove that $\delta([x], y) = [xy]$.
 - (c) Prove that $L = L(M_{mn})$.