School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial VII (19 October 2023)

Instructor: Goutam Biswas

Autumn Semester 2023

1. Justify that $\mathbf{NL} \subseteq \mathbf{P}$.

Ans. Let $A \in \mathbf{NL}$. As PATH is **NL**-complete, the log-space reduction of A to PATH takes $2^{O(\log n)} = O(n^k)$ steps. It is also known that $PATH \in \mathbf{P}$. So A can be decided in polynomial time.

2. We defined SAT_H as follows:

$$SAT_H = \{\phi 01^{n^{H(n)}} : \phi \in SAT, |\phi| = n\}.$$

The function H(n) is defined as follows:

$$H(n) = \begin{cases} i, & i = \min\{j : j \text{ satisfies } C\}\\ \log \log n, & \text{otherwise.} \end{cases}$$

C: j is a natural number, $1 \leq j < \log \log n$, such that the TM M_j decides the membership of all $x \in \{0,1\}^*$, $|x| \leq \log n$ in SAT_H , within $j \times |x|^j$ steps,

- (a) Is H(n) non-decreasing?
- (b) What is the maximum number of TMs to simulate to compute H(n)?
- (c) On how many input each machine runs?
- (d) What is the upper bound of time to check the membership of ϕ in SAT for all input?
- (e) Give an upper bound of computation time of H(n).

Ans.

- (a) The function H(n) is non-decreasing. Let a < b, H(a) = k and H(b) = l. By the definition the TM M_k correctly predict the membership of all input of length log a, and the TM M_l correctly predict the membership of all input of length log b. As a < b, log a < log b. If l < k < log log a, the value of H(a) cannot be k (min{j : j satisfies C}).
- (b) There are at most $\log \log n$ machines to simulate.
- (c) There are $1 + 2 + 2^2 + \cdots + 2^{\lfloor \log n \rfloor}$ inputs as the length of the string is at most $\log n$. So the number of input is 2n 1.
- (d) Let $x = \phi 01^{n^{H(n)}}$. $|\phi| < |x| = k$ The time to construct the truth table of ϕ is less than 2^k . For an input of length length k there are 2^k input strings. Each one takes less than or equal to 2^k steps. So the upper bound of running time of a TM on all input is $\sum_{k=0}^{\lfloor \log n \rfloor} 2^{2k} = \frac{4^{\log n+1}-1}{3} = O(n^2).$

- (e) Considering $\log \log n$ number of TMs, the running time is $n^2 \log \log n = O(n^3)$.
- 3. Let $PAL = \{x \in \{0, 1\}^* : x = x^R\}$. Show that $PAL \in \mathbf{L}$.

Ans. Following is a logspace algorithm for PAL.

PAL(x) $1 \quad l \leftarrow 0$ $2 \quad r \rightarrow n-1 \ /* \ x = x_0 \cdots x_{n-1} \ */$ $3 \quad \text{do } 4 \text{ to } 6 \text{ while } l < r$ $4 \quad \text{if } x_l \neq x_r \text{ reject}$ $5 \quad l \leftarrow l+1$ $6 \quad r \leftarrow r-1$ $7 \quad accept$

Both l and r takes $\log |x|$ space. Index of head positions will also take $\log |x|$ space.

It looks like a random access machine, but it will work in logspace on an ${\bf L}$ machine.

4. Let x be the binary representation of a positive integer (without leading zeros). The function f computes $f(x) = x + x^R$, where x^R is reverse of x. Give a logspace algorithm to compute f(x).

Ans. We cannot compute and remember x^R in logspace. Our logspace algorithm is as follows.

```
F(x)
    i \leftarrow 0
1
     j \leftarrow n-1 / x = x_0 \cdots x_{n-1} / x /
2
3 c \leftarrow 0 /* \text{ carry } */
4 do 5 to 8 while i < n
5
           \operatorname{output}((x_i + x_j + c) \mod 2)
           c \leftarrow (x_i + x_j + c)/2
6
7
           i \leftarrow i + 1
8
           j \leftarrow j - 1
9
      if c = 1 output(c)
```

The space used by i, j on the work-tape are $\log n$ each. The carry c is a single bit. The index of head positions will also use

It looks like a random access machine, but it will work in logspace on a logspace bounded work-tape.

- 5. The language $A_{NFA} = \{ \langle N, x \rangle : N \text{ is an NFA that accepts } x \}.$
 - (a) Show that $A_{NFA} \in \mathbf{NL}$.
 - (b) Show that A_{NFA} is **NL**-complete.

Ans.

- (a) The work-tape maintains a pointer to *current state* of N (logspace). The nondeterminism of the **NL** machine helps where there is a nondeterministic transition of the NFA. It nondeterministically chooses the correct transition. The input $\langle N, x \rangle$ is accepted when x is consumed and the NFA is at a final state.
- (b) The reduction from PATH to A_{NFA} is trivial as the graph of $\langle G, s, d \rangle$ may be viewed as the state transition diagram of an $N = \langle V(G), \{a\}, \delta, s, \{d\} \rangle$ where $\delta(u, \varepsilon) = \{v \in V(G) : (u, v) \in E(G)\}$, for all $u \in V(G)$.

If d is reachable from s in G, then $\langle G, s, d \rangle \mapsto \langle N, \varepsilon \rangle$. Even the length of the path can be constructed in logspace. So all transitions may be labeled with 'a' and $\langle G, s, d \rangle \mapsto \langle N, a^c \rangle$, where c is the path length.