School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial V (14 September 2023)

Instructor: Goutam Biswas

Autumn Semester 2023

1. Consider the following languages and answer whether they belong to **P** or they are **NP**-complete?

(i)

$$SAT_e = \{\phi \ 0 \ 1^{2^n} : \phi \in SAT \text{ and } |\phi| = n\}$$

(ii)

$$SAT_p = \{ \phi \mid 0 \mid n^c : \phi \in SAT, n = |\phi|, \text{ and } c \text{ is a constant} \}.$$

Ans.

- (i) The membership of $x \in SAT_e$ can be tested using the truth table of the boolean formula ϕ . The size of the truth table is $O(2^n)$. So time taken is linear in the length of the input and $SAT_e \in \mathbf{P}$.
- (ii) SAT_p certainly belongs to **NP**. A satisfying assignment of the variables of ϕ is a certificate.

It is **NP** complete as SAT can be reduced to SAT_p in polynomial time.

From the length n of a boolean formula ϕ , n^c can be computed in polynomial time and those many 1's can be augmented.

2. If $\mathbf{P} = \mathbf{NP}$ and $L \in \mathbf{P}$, but $L \neq \phi$ or Σ^* , then prove that L is \mathbf{NP} complete.

Ans. Let $L' \in \mathbf{NP} = \mathbf{P}$ is decided by a polynomial time bounded DTM M, and $\exists x_0, x_1 \in \Sigma^*$ such that $x_0 \in L$ and $x_1 \notin L$ $(L \neq \phi \text{ or } \Sigma^*)$. The polynomial time reduction machine is as follows.

- N: "Input x:
- (i) Run M on x.
- (ii) If M comes to 'Y' halt, return x_0 .
- (iii) If M comes to 'N' halt, return x_1 .
- 3. UNARY-SSUM = {< $S, t >: S = \{x_1, \dots, x_k : x_i \in \mathbb{N}, \text{ where } x_i \text{'s are represented as unary numerals } is a multiset and for some <math>\{y_1, \dots, y_l\} \subseteq S, \sum_{i=1}^l = t$ }.
 - (i) Is UNARY-SSUM in **NP**?
 - (ii) Is UNARY-SSUM NP-hard?

Ans.

- (i) The certificate $C \subseteq S$ where $\langle S, t \rangle$ is the input, will also be in unary. So it is polynomial over the length of the input. Verifying $C \subseteq S$ and $\sum C = t$ can be done in polynomial time. So UNARY-SSUM is in **NP**.
- (ii) The reduction from SUBSET-SUM to UNARY-SSUM cannot be done in polynomial time as there will be exponential increase in the length to convert a radix $b \ge 2$ numeral to an unary numeral. So UNARY-SSUM is not **NP**-hard?
- 4. In the proof of Cook-Levin theorem a window of size 2×3 was used to establish the correctness of transition from configuration C_i to C_{i+1} . Justify that it cannot be done using window of size 2×2 .

Ans. Consider two transitions $\delta(p,0) = \{(q,1,\leftarrow),\cdots\}$ and $\delta(p,1) = \{(q,0,\rightarrow),\cdots\}$. We have a portion of $C_i = \cdots 0 \ 1 \ 0 \cdots$ and the corresponding cells in $C_{i+1} = \cdots 0 \ q \ 0 \cdots$. A 2 × 3 cell can immediately detect its invalidity due to the appearance of a state symbol at the middle $\frac{0 \ 1 \ 0}{0 \ q \ 0}$. But a 2 × 2 window will look only at (i) $\frac{0 \ 1}{0 \ q}$ and (ii) $\frac{10}{q \ 0}$. Window (i) can be extended to $\frac{0 \ 1 \ p \ 0}{0 \ q \ 0}$ making it valid. Window (ii) can be extended to $\frac{p \ 1 \ 0}{0 \ q \ 0}$ making it valid.

5. Give a polynomial time reduction of 3COL to SAT. What is the time complexity of the reduction.

Ans. Let the graph G = (V, E) has *n* vertices $V = \{v_1, \dots, v_n\}$. We take 3*n* variables, $\{x_{11}, x_{12}, x_{13}, \dots, x_{n1}, x_{n2}, x_{n3}\}$. The variable $x_{ij}, 1 \le i \le n, 1 \le j \le 3$, is true if the vertex v_i is coloured with the colour *j*. We have the following set of clauses:

(a) Each vertex must have at least one colour:

$$\bigwedge_{i=1}^{n} (x_{i1} \lor x_{i2} \lor x_{i3}).$$

(b) No vertex can have two colours:

$$\bigwedge_{i=1}^{n} ((\neg x_{i1} \lor \neg x_{i2}) \land (\neg x_{i2} \lor \neg x_{i3}) \land (\neg x_{i3} \lor \neg x_{i1})).$$

(c) No pair of adjacent vertices can have same colour.

$$\bigwedge_{w_a, v_b\} \in E} \bigwedge_{j=1}^3 (\neg x_{aj} \lor \neg x_{bj}).$$

The length is of $O(n) + O(n) + O(n^2) = O(n^2)$.

{