School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course

Theory of Computation II: COM 5108

Tutorial III (24 August 2023)

Instructor: Goutam Biswas Autumn Semester 2023

1. Use diagonalization(directly) to show that there is no bijection from $\mathbb{N} \to \mathscr{P}\mathbb{N}$.

Ans. Suppose there is a bijection $f: \mathbb{N} \to \mathscr{P}\mathbb{N}$ i.e. f is one-one and onto, no two positive integers are mapped to the same subset of \mathbb{N} and for each $S \subseteq \mathbb{N}$, there is an $m \in \mathbb{N}$ such that f(m) = S. The following infinite table shows the mapping $n \mapsto f(n) = S_n$ through its characteristic function.

n	$m \in f(n)$									
	1	2	3	4	5	6	7	8	9	• • •
1	0	1	1	0	1	0	0	1	1	• • •
2	0	0	1	0	1	1	0	0	1	
3	0	0	1	0	1	1	0	0	1	
4	1	1	1	0	1	0	0	0	0	
5	0	0	1	1	0	1	0	1	1	
6	0	1	0	0	1	1	1	0	1	
7	1	1	1	0	0	0	1	0	0	
8	1	0	0	1	1	1	1	0	0	
9	0	1	0	0	1	0	0	1	1	
:	:	:	:	:	:	:	:	:	:	:

In our example $f(5) = \{3, 4, 6, 8, 9, \dots\}$. Following Cantor we construct the subset $\overline{D} = \{n \in \mathbb{N} : n \notin f(n)\}$. So $\overline{D} = \{1, 2, 4, 5, 8, \dots\}$.

The subset \overline{D} cannot be same as any one of the subsets present in the table. So it has no preimage in \mathbb{N} - a contradiction, as we started with a bijection and the table should exhaust all the subsets of \mathbb{N} .

2. Use diagonalization to prove that there is no bijection from $\mathbb N$ to [0,1).

Ans. Any number $x \in [0,1)$ can be represented as $0.d_1d_2d_3\cdots d_i\cdots$, where $d_i \in \{0,1,\cdots,9\}$. The bijection may be represented by the infinite

size table as

n	f(n)										
	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	• • •	
1	0	1	2	3	4	5	6	7	8		
2	1	2	3	4	5	6	7	8	9		
3	2	3	5	5	6	7	8	9	0		
4	3	4	5	6	7	8	9	0	0		
5	4	5	6	7	8	9	0	1	2		
6	0	9	8	7	6	5	4	3	2		
7	3	4	1	5	9	2	6	5	0		
8	2	7	1	8	2	8	1	5	2		
:	:	:	:	:	:	:	:	:	:	:	

So $f(5) = 0.456789012 \cdots$.

We construct an $y = 0.D_1D_2D_3\cdots D_i\cdots$, where

$$D_i = \begin{cases} 5 & \text{if } f(i)_i, \text{ the } i^{th} \text{ digit of } f(i), \text{ is not } 5 \\ 6 & \text{if } f(i)_i, \text{ the } i^{th} \text{ digit of } f(i), \text{ is } 5 \end{cases}$$

So $y = 0.55655655\cdots$ cannot be same as any value of f(n) present in the table and it does not have any preimage - a contradiction.

3. Use diagonalization to prove that the language

$$H = \{ \langle M, x \rangle : \text{ the DTM } M \text{ halts on input } x \}.$$

is not decidable(recursive).

Ans. Suppose H is decided by the DTM M_H i.e.

 M_H :

Input: $\langle M, x \rangle$

if M halts on x, then accept

else reject.

We define another DTM D as follows:

D:

Input: $\langle M \rangle$

if M_H rejects the input $\langle M, M \rangle$, then accept

f M_H accepts $\langle M, M \rangle$, then reject.

We apply D on its own description, < D> . The outcome is D(< D>) accepts if and only if $M(< D, D>) \equiv D(< D>)$ rejects - a contradiction.

Following table shows the the behavior of M_H on different pairs of $< M_i, M_j >$.

M_i	$< M_j >$										
	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M_9		D
M_1	R	A	A	R	A	R	R	A	A	• • •	
M_2	R	R	A	R	A	A	R	R	A		
M_3	R	R	A	R	A	A	R	R	A		
M_4	A	A	A	R	A	R	R	R	R		
M_5	R	R	A	A	R	A	R	A	A		
M_6	R	A	R	R	A	A	A	R	A		
M_7	A	A	A	R	R	R	A	R	R		
M_8	A	R	R	A	A	A	A	R	R		
M_9	R	A	R	R	A	R	R	A	A		
:	:	:	:	:	:	:	:	:	:	:	
D	\mathbf{A}	${f A}$	$\dot{\mathbf{R}}$	\mathbf{A}	\mathbf{A}	$\dot{\mathbf{R}}$	$\dot{\mathbf{R}}$	\mathbf{A}	$\dot{\mathbf{R}}$??