School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course ## Theory of Computation II: COM 5108 Tutorial III (24 August 2023) Instructor: Goutam Biswas Autumn Semester 2023 1. Use diagonalization(directly) to show that there is no bijection from $\mathbb{N} \to \mathscr{P}\mathbb{N}$. **Ans.** Suppose there is a bijection $f: \mathbb{N} \to \mathscr{P}\mathbb{N}$ i.e. f is one-one and onto, no two positive integers are mapped to the same subset of \mathbb{N} and for each $S \subseteq \mathbb{N}$, there is an $m \in \mathbb{N}$ such that f(m) = S. The following infinite table shows the mapping $n \mapsto f(n) = S_n$ through its characteristic function. | n | $m \in f(n)$ | | | | | | | | | | |---|--------------|---|---|---|---|---|---|---|---|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | • • • | | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | • • • | | 2 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | | | 3 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | | | 4 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | | 5 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | | | 6 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | | | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | 8 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | | 9 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | | : | : | : | : | : | : | : | : | : | : | : | In our example $f(5) = \{3, 4, 6, 8, 9, \dots\}$. Following Cantor we construct the subset $\overline{D} = \{n \in \mathbb{N} : n \notin f(n)\}$. So $\overline{D} = \{1, 2, 4, 5, 8, \dots\}$. The subset \overline{D} cannot be same as any one of the subsets present in the table. So it has no preimage in \mathbb{N} - a contradiction, as we started with a bijection and the table should exhaust all the subsets of \mathbb{N} . 2. Use diagonalization to prove that there is no bijection from $\mathbb N$ to [0,1). **Ans.** Any number $x \in [0,1)$ can be represented as $0.d_1d_2d_3\cdots d_i\cdots$, where $d_i \in \{0,1,\cdots,9\}$. The bijection may be represented by the infinite size table as | n | f(n) | | | | | | | | | | | |---|-------|----------|-------|-------|-------|-------|-------|-------|----------|-------|--| | | d_1 | d_2 | d_3 | d_4 | d_5 | d_6 | d_7 | d_8 | d_9 | • • • | | | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 3 | 2 | 3 | 5 | 5 | 6 | 7 | 8 | 9 | 0 | | | | 4 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 0 | | | | 5 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | | | | 6 | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | | | | 7 | 3 | 4 | 1 | 5 | 9 | 2 | 6 | 5 | 0 | | | | 8 | 2 | 7 | 1 | 8 | 2 | 8 | 1 | 5 | 2 | | | | : | : | : | : | : | : | : | : | : | : | : | | So $f(5) = 0.456789012 \cdots$. We construct an $y = 0.D_1D_2D_3\cdots D_i\cdots$, where $$D_i = \begin{cases} 5 & \text{if } f(i)_i, \text{ the } i^{th} \text{ digit of } f(i), \text{ is not } 5 \\ 6 & \text{if } f(i)_i, \text{ the } i^{th} \text{ digit of } f(i), \text{ is } 5 \end{cases}$$ So $y = 0.55655655\cdots$ cannot be same as any value of f(n) present in the table and it does not have any preimage - a contradiction. 3. Use diagonalization to prove that the language $$H = \{ \langle M, x \rangle : \text{ the DTM } M \text{ halts on input } x \}.$$ is not decidable(recursive). **Ans.** Suppose H is decided by the DTM M_H i.e. M_H : Input: $\langle M, x \rangle$ if M halts on x, then accept else reject. We define another DTM D as follows: D: Input: $\langle M \rangle$ if M_H rejects the input $\langle M, M \rangle$, then accept f M_H accepts $\langle M, M \rangle$, then reject. We apply D on its own description, < D> . The outcome is D(< D>) accepts if and only if $M(< D, D>) \equiv D(< D>)$ rejects - a contradiction. Following table shows the the behavior of M_H on different pairs of $< M_i, M_j >$. | M_i | $< M_j >$ | | | | | | | | | | | |-------|--------------|---------|--------------------|--------------|--------------|--------------------|--------------------|--------------|--------------------|-------|----| | | M_1 | M_2 | M_3 | M_4 | M_5 | M_6 | M_7 | M_8 | M_9 | | D | | M_1 | R | A | A | R | A | R | R | A | A | • • • | | | M_2 | R | R | A | R | A | A | R | R | A | | | | M_3 | R | R | A | R | A | A | R | R | A | | | | M_4 | A | A | A | R | A | R | R | R | R | | | | M_5 | R | R | A | A | R | A | R | A | A | | | | M_6 | R | A | R | R | A | A | A | R | A | | | | M_7 | A | A | A | R | R | R | A | R | R | | | | M_8 | A | R | R | A | A | A | A | R | R | | | | M_9 | R | A | R | R | A | R | R | A | A | | | | : | : | : | : | : | : | : | : | : | : | : | | | D | \mathbf{A} | ${f A}$ | $\dot{\mathbf{R}}$ | \mathbf{A} | \mathbf{A} | $\dot{\mathbf{R}}$ | $\dot{\mathbf{R}}$ | \mathbf{A} | $\dot{\mathbf{R}}$ | | ?? |