
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture V

Instructor: Goutam Biswas Autumn Semester 2023

1 Circuit Complexity

1.1 Introduction

A Turing machine runs on inputs of all possible sizes. It is called a uniform
model. A nonuniform model allows inputs of different lengths to be processed
by different gadgets or algorithms. Boolean Circuits is a nonuniform model.
Researchers in the late 1970s thought that Boolean Circuit may turn out to be
a better model to address the P verses NP and related questions.

Definition 1. An n-input and 1-output Boolean circuit is a directed acyclic
graph (DAG) with n input vertices (no incoming edges) and one output vertex
(no outgoing edge). Intermediate vertices are of three kinds, ∧ (and), ∨ (or)
and ¬ (not), are known as gates. Each gate has one out degree. A gate with a
label ∧ or ∨ has two in-degree and a gate with label ¬ has one in-degree.

not not

and and

a b

or

a b c

not

not

not

not

not

not

and

and

and

and

and

and

or

or

1

The size of a circuit C, |C|, is the number of gates present in it.
Input vertices of a circuit are labeled with Boolean variables x1, · · · , xn.

Function of each gate corresponds to its logical label.
A Boolean circuit may be viewed as a programming language where state-

ments are of the form xi = xj@xk, where @ ∈ {∨,∧} and also of the form
xi = ¬xj , where a variable can appear on the left-hand side of an assignment
only once (acyclic).

A Boolean circuit C of n variables computes the boolean function fC :
{0, 1}n → {0, 1}. If the input nodes are set with the value a1, · · · , an, the
output is b = fC(a1, · · · , an).

We wish to use circuits to test membership of a language. But an n variable
circuit can only handle an input of length n. So, to test the membership of a
language we define a family of circuits for different input lengths.

Definition 2. A circuit family C = {Cn}n∈N0

is a sequence of Boolean
circuits. A string x ∈ {0, 1}∗ is accepted by a circuit C|x| ∈ C if C|x|(x) = 1.
The language L(C) decided by a circuit family is the collection of all strings
accepted by the elements of the family.

L(C) = {x ∈ {0, 1}∗ : C|x|(x) = 1, C|x| ∈ C}.

Let f : N0 → N0 be a function. A circuit family C is of size f(n) if each
Boolean circuit Cn ∈ C with n input and one output is of size f(n). This is
known as the size complexity of a circuit family.

A language L ∈ SIZE(f(n)) if there is a circuit family of size f(n) such that

x ∈ L if and only if Cn(x) = 1,

where Cn ∈ C and |x| = n.

A circuit is size minimal if there is no equivalent circuit with smaller size.
Whether a given circuit is minimal is not known to be in P or in NP.

The circuit size complexity of a language L is is the size complexity of the
minimal circuit family that decides the language.

Definition 3. Depth of a circuit is length of the longest path from the
input variable to the output node (gate). We can define depth complexity of a
circuit family and depth minimal circuit in a way similar to the size complexity.

1.2 Circuit Satisfiability

Theorem 1. Let f : N0 → N0 be a function such that f(n) ≥ n. If L ∈
TIME(f(n)), then L ∈ SIZE(O(f2(n))).

The outline of the proof goes as follows: Let M be the Turing machine that
decides L in time f(n). For each input of length n, a Boolean circuit Cn is
constructed from the computation of M on the input of length n. The compu-
tation can be captured (roughly) by an f(n)×f(n) matrix. Where the first row
corresponds to the start configuration and the last row corresponds to the final
configuration1. Output of the gates corresponding to the ith configuration (ith

1The Turing machine M is such that in its accepting configuration its head moves to the
leftmost cell after erasing the content of the tape. Moreover, if M halts before f(n) steps, the
same configurations are repeated.

2

row of the matrix), are input to the gates of the (i + 1)th row simulating the
(i+ 1)th configuration.

Each cell of the matrix contains a tape symbol (element of Γ), or a com-
posite symbol of state (Q) and tape (Γ) if the head is scanning that cell. So

a configuration of the form 1 1 0 1 q51 0 0 1 means that the machine is

in state q5, the head is scanning 5th cell from the left containing ‘1’ in it. The
value of cell(i, j) is the content of the jth cell of the ith configuration.

We introduce Boolean variables sym(i, j, k), where k, a tape symbol or a
composite symbol, and i, j corresponds to the cell(i, j). The variable sym(i, j, k)
takes the value true (1) if the symbol k is present in cell(i, j), otherwise it is 0.
We know that a cell may contain an element of Γ∪(Q×Γ). Let |Γ∪(Q×Γ)| = c.
So there are cf(n)2 variables of type sym(i, j, k). A Boolean circuit will ensure
that only one of c variables corresponding to the cell cell(i, j), 1 ≤ i, j ≤ f(n)
will have Boolean value true (1).

As we have already mentioned, a boolean variable sym(i, j, k) is true (1) if the
cell(i, j) has the symbol k. The value of sym(i, j, k) depends on the the contents
of cell(i−1, j−1), cell(i−1, j), cell(i−1, j+1), and the transition function δ of the
Turing machineM . Let the possible values of these three cells for which cell(i, j)
has the symbol k i.e. sym(i, j, k) is true (1), be (a1, b1, c1), · · · , (am, bm, cm).
Then

sym(i, j, k) =

m∨

l=1

(sym(i− 1, j − 1, al) ∧ sym(i− 1, j, bl) ∧ sym(i− 1, j + 1, cl)

This is repeated for all the variables of all the configurations except the start
configuration.

Let the input be x = x1x2 · · ·xn: x1 is directly connected to sym(1, 1, q01)

and connected through a not gate to sym(1, 1, q00) i.e. sym(1, 1, q01) is

true(1) if x1 = 1 and sym(1, 1, q00) is true(1) if x1 = 0. In both the cases

the machine is at its start state q0. Similarly, sym(1, 2, 1), · · · , sym(1, n, 1)
are directly connected to x2, · · · , xn respectively. x2, · · · , xn are connected
through not-gates to sym(1, 2, 0), · · · , sym(1, n, 0). Boolean ‘1’ is connected
to sym(1, n + 1,⊔) to sym(1, f(n),⊔). All other variables of first row are con-
nected to Boolean ‘0’.

The output gate corresponds to sym(f(n), 1, qA⊔). Every cell has fixed

number of symbols sym(i, j, k), and every symbol is connected to the symbols
of three neighboring cells of the previous row (except the first row) through
fixed number of gates. So the size of this circuit is O(f(n)2).
Also note that the construction of Cn takes O(f(n)2) time.

Definition 4. CKT-SAT = {< C >: C is a satisfiable Boolean Circuit }.
Proposition 1. CKT-SAT is NP-complete.

Proof: It is clear that CKT-SAT is in NP. The certificate is an input that
produces the output 1. This can be verified in linear time as the output of each
gate can be computed in constant time.
To show that it is NP-complete we have to design a polynomial time reduction
function f : Σ∗ → Σ∗ so that for all x ∈ Σ∗

x ∈ L if and only if f(x) =< C > is satisfiable,

3

where L ∈ NP. For L there is a polynomial time verifier V and a polynomial
p : N0 → N0 so that for each x ∈ {0, 1}∗, x ∈ L if and only if ∃w ∈ {0, 1}p(|x|),
s.t. V accepts < x,w >.

The reduction function f constructs a circuit C corresponding to the verifier
V with input size |x| + p(|x|) where the input x is plugged in. The remaining
inputs correspond to the certificate.

If C is satisfiable, then there is a certificate. If x ∈ L, then there is a
certificate, and C is satisfiable.

The verifier V runs for nk time, so the size of the circuit is O(n2k). Connec-
tion to every gate is a constant amount of work. So the reduction is polynomial
time bounded. QED.

Proposition 2. CKT-SAT ≤P 3SAT.
Proof: We can give another proof of NP-hardness of 3SAT by reducing CKT-
SAT to 3SAT.

Let C be an n-input circuit. A 3SAT formula φ will be constructed so that
C(x1, · · · , xn) = 1 if and only if φ(x1, · · · , xn) is true (1).

Let w be a node of C. There are three possibilities,

1. Label of w is AND: the input of w are u and v. We introduce a variable yw
for w. We assume that we already have variables yu and yv corresponding
to u and v. We encode yw = yu ∧ yv.

(yw ∨ ȳu ∨ ȳv) ∧ (ȳw ∨ yu) ∧ (ȳw ∨ yv).

2. Label of w is OR: We encode yw = yu ∨ yv.

(yw ∨ ȳu) ∧ (yw ∨ ȳv) ∧ (ȳw ∨ yu ∨ yv).

3. Label of w is NOT: We encode yw = ȳu.

(yw ∨ yu) ∧ (ȳw ∨ ȳu).

4. Finally corresponding to the output gate vo of C we add yo i.e. the clause
φ is true if and only if the output of the circuit is true.

QED.

1.3 P/poly

Definition 5. P/poly is the class of languages decidable by polynomial-sized
circuits. P/poly =

⋃
c≥1 SIZE(nc).

Proposition 3. P ⊆ P/poly.
Proof: We know that if a language L ∈ TIME(f(n)), then L ∈ SIZE((f(n))2)
for f(n) ≥ n. If f(n) = nc, where c is a constant, then L ∈ P so it is in
SIZE(n2c) ⊆ P/poly.

QED.
Any language L ⊆ {1}∗ is in P/poly. If 1n ∈ L, then the circuit Cn with

(n− 1) AND-gate is in the family. If it is not there, Cn is a circuit that always
gives 0. So any unary language is in P/poly. But then there are uncountably
many languages in P/poly and the inclusion of P/poly in P is not possible.
Consider the following language. e.g.

UATM = {1n : < M,x > is the binary encoding of n and M accepts x}.

UATM is undecidable but in P/poly.

4

1.4 P - uniform

The class P/poly is too large. There are languages in P/poly that are unde-
cidable, where the circuit family exists but cannot be effectively constructed.
Can we restrict the size of the class where the circuit family can be constructed
in reasonable time or space?

Definition 6. A circuit family {Cn} is called P-uniform if there is a
polynomial time Turing machine that on input 1n produces the description of
Cn. Similarly we can talk about log-space-uniform circuit family.

This restriction reduces the collection of languages of the circuit family to
P.

Proposition 4. A language L is decidable by a P-uniform circuit family
if and only if L ∈ P.
Proof: Let L be decided by a P-uniform circuit family {Cn}. So there is a
polynomial time Turing machine that Mc that given 1n generates Cn so that
for all x ∈ {0, 1}n, x ∈ L if and only if Cn(x) = 1. We design the polynomial
time decider for L to prove that L ∈ P.
M : input x

1. Run Mc on 1|x| and generate Cn.

2. If Cn(x) = 1, accept; else reject.

M is a polynomial time Turing machine that decides L.
Let L ∈ P. There is a nc time bounded TM M that decides L. We know

that given n and a function f(n) ≥ n; if there is a language L ∈ DTIME(f(n)),
then a circuit of size O(f(n)2) can be constructed by an O(f(n)2) time bounded
TM M c

L. We design Mc as follows.
Mc: input 1

n

1. Use M c
L to build a circuit Cn for strings of length n in L.

2. Output Cn.

So L is in P-uniform. QED.

1.5 TMs take Advice and P/poly

We can define a Turing machine that takes ‘advice’ - a string αn for each input
of length n ∈ N0. The machine uses the string in its computation.

Definition 7. Let a, f : N0 → N0. We define DTIME(f(n))/a(n), the
class of languages decidable by a f(n) time bounded TM taking a(n) bits of
advice.

A language L ⊆ {0, 1}∗ is in DTIME(f(n))/a(n), if there is a f(n)-time
bounded Turing machine M and a sequence {αn}, αn ∈ {0, 1}a(n), such that
x ∈ L if and only if M accepts < x, αn >, where |x| = n.
Example 1. Any unary language is decided by a polynomial time Turing
machine with 1-bit advice. For each n ∈ N0, αn of the sequence {αn}n∈N0

is 1,
if 1n ∈ L, otherwise it is 0. In this case advice length a(n) = 1 for all n.

We have the following characterization of P/poly.
Theorem 2. P/poly =

⋃
c,d≥1 DTIME(nc)/nd.

Proof: Let L ∈P/poly. We have a polynomial-sized family of circuits {Cn}n∈N0

that decides L. If the input x is of length n, then the description of Cn is

5

bounded by some polynomial over n and can be taken as the advice. The
Turing machine takes < x,Cn > and accepts if and only if Cn(x) = 1.

If L ∈ DTIME(p(n))/q(n), where p, q are polynomials, then there is a p(n)
time bounded Turing machine M that on input x of length |x| = n, takes an
advice αn of length q(n) and decides whether x ∈ L.

From the computation of M on < x, αn > we can construct a polynomial
size circuit Dn such that M accepts < x, αn > if and only if Dn(x, αn) = 1. We
construct Cn by directly connecting the input αn to Dn. QED.

Can SAT be solved using a polynomial circuit? The answer is most likely
negative and was supplied in [?] using the following theorem.
Theorem 3. (Karp, Lipton & Sipser) If NP ⊆ P/poly, then PH = ΣP

2 .
If every NP problem has a polynomial size circuit family, then the polyno-

mial hierarchy collapses to ΣP
2 .

Proof: We have the following argument:

(a) We prove that under the assumption NP ⊆ P/poly · · · (a), ΠP
2 = ΣP

2 , so
that PH = ΣP

2 .

(b) We know that if ΠP
2 ⊆ ΣP

2 then ΠP
2 = ΣP

2 .

L ∈ ΣP
2 ⇒ L ∈ ΠP

2 ⇒ L ∈ ΣP
2 ⇒ L ∈ ΠP

2 ⇒ ΣP
2 ⊆ ΠP

2 .

(c) We prove that ΠP
2 ⊆ ΣP

2 under the assumption (a).

(d) If a ΠP
2 -complete problem is in ΣP

2 , then ΠP
2 ⊆ ΣP

2 .

Let L be ΠP
2 -complete and also L ∈ ΣP

2 . Then for all L′ ∈ ΠP
2 , L

′ ≤p L.
Ans through the reduction L′ ∈ ΣP

2 .

(e) Π2SAT is a complete problem of ΠP
2 . We claim that it is in ΣP

2 .

The set Π2SAT is a collection of Boolean formulae of the following form.

{∀u∃vφ(u, v) = 1,

where u and v are two vectors of boolean variables and φ is a quantifier free
boolean formula. In other words there is a polynomial time bounded TM M
and a polynomial p such that

∀u ∈ {0, 1}n∃v ∈ {0, 1}nM(φ, u, v) = 1.

Given a φ and a boolean vector u (the first u variables are initialized), we
get the boolean formula φu so that

∃vφu(v) = 1.

φu(v) is an element of SAT. In other words there is a polynomial time bounded
TM Mu and a polynomial p such that

∃v ∈ {0, 1}p(n)Mu(φu, v) = M(φ, u, v).

φu(v) is an element of SAT and Mu is its verifier.
According to our assumption (a), φu(v) ∈ P/poly. So there is a r(n) size

circuit family {Cn} (r is a polynomial) such that

∀φ∀u ∈ {0, 1}nCn(φ, u) = 1 if and only if ∃vφu(v) = 1.

6

So a polynomial size circuit solves the decision problem of SAT.
We know that if there is a decision algorithm for SAT, then we can have

a search algorithm to generate the satisfying assignment (if there is one) for a
given formula φ.

The assignment generation algorithm may also be viewed as a circuit and
from {Cn}, we obtain a q(n) size circuit family {C′

n} such that for any φ and
u ∈ {0, 1}n, if there exists v ∈ {0, 1}n such that φ(u, v) = 1, then {C′

n} produces
v (multiple bit output).

But then a q(n) size circuit can be described using polynomial r(n) many
bits and can be guessed! So we have

∀u ∈ {0, 1}n∃v ∈ {0, 1}nφ(u, v) = 1,

if and only if

∃w ∈ {0, 1}r(n)∀u ∈ {0, 1}n s.t. w =< C′
n > and φu(C

′(φ, u)) = 1

The second formula is in ΣP
2 as verification can be done in polynomial time. So

Π2SAT is in ΣP
2 and the hierarchy collapses to ΣP

2 . QED.

References

[MS] Theory of Computation byMichael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[JES] Models of Computation by John E Savage, Brown University,
http://cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter9.pdf.

[KL] R Karp and R Lipton, Turing machine that take advice, L’ Ensignement
Mathématique, 28:191-210, 1982.

7

