
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture VIII

Instructor: Goutam Biswas Autumn Semester 2023

1 Recursivew and Lambda Definable Functions

We define the General Recursive and λ-definable functions. They are equivalent.

1.1 Primitive and µ-Recursive Functions

We define a class of numeric functions, f : Nk
0 → N0.

Definition 1. The class of initial or base functions.

(a) Constant function: Ck
m(n1, · · · , nk) = m, a k-variable function whose

value is a constant m, where k,m = 0, 1, · · · .

(b) Projection function: Πk
i (n1, · · · , nk) = ni, where 1 ≤ i ≤ k and k =

1, 2, · · · .

(c) Successor function: S(n) = n+ 1.

Definition 2. Consider the following two function constructors.

(a) A class of functions C is closed under function composition, if the k-ary
function f defined as follows, f(n1, · · · , nk) = h(g1(n1, · · · , nk), · · · , gl(n1, · · · , nk))
belongs to C, whenever h, an l-ary function and g1, · · · , gl, k-ary functions,
are in C.

(b) A class of functions C is closed under primitive recursion, if the k + 1-ary
function defined as follows

f(0, n1, · · · , nk) = g(n1, · · · , nk),

f(m+ 1, n1, · · · , nk) = h(f(m,n1, · · · , nk),m, n1, · · · , nk),

is in C, whenever g, h ∈ C.

1

Definition 3. The class of primitive recursive functions, PR, is the small-
est class that contains the initial functions and is closed under, composition and
primitive recursion.

Definition 4. Let P (n1, · · · , nk,m) be a (k + 1)-ary predicate. We define
the k-ary partial function f(n1, · · · , nk) = µm[P (n1, · · · , nk,m)], where the
value of f(n1, · · · , nk) is the minimum value of m so that P (n1, · · · , nk,m) is
true. Otherwise, f(n1, · · · , nk) is undefined. So f is a partial function.

A class of functions C is closed under minimalization, if the k-ary function
defined as follows,

f(n1, · · · , nk) = µm[g(n1, · · · , nk,m) = 0],

is in C, whenever g ∈ C. It is clear that f may be a partial function (not defined
at every point in N

k
0).

Definition 5. The class of recursive functions, R, is the smallest class
that contains the initial functions and is closed under, composition, primitive
recursion and minimalization.
Example 1. Following are a few examples of primitive recursive functions.

1. Predecessor function (Pd):

Pd(0) = C0
0 (),

Pd(m+ 1) = Π2
2(Pd(m),m)).

2. Addition function (Add):

Add(0, n) = Π1
1(n),

Add(m+ 1, n) = h((Add(m,n),m, n)),

where h = S ◦Π3
1.

We define a sequence of one variable functions and show how they are defined
by primitive recursion.

f0 = S, f1(x) = 2 + x; f2(x) = 2x; f3(x) = 2x.

So we have

f1(0) = 2,

f1(m+ 1) = f0(f1(m)).

f2(0) = 0,

f2(m+ 1) = f1(f2(m)).

f3(0) = 1,

f3(m+ 1) = f2(f3(m))

In this way we may define

f4(0) = 1,

f4(m+ 1) = f3(f4(m))

2

and subsequent functions.

f4(0) = 1, f4(1) = f3(f4(0)) = 2f4(0) = 2, f4(2) = 22, f4(3) = 22
2

, · · · , f4(m) = 22
·

·

·
2

︸ ︷︷ ︸

m−times

.

So the growth rate of fn eventually exceeds the growth rate fn−1. It is not
difficult to see that the values are becoming very large. Finally we define f as
follows:

f(n) = fn(n).

So f(0) = f0(0) = 1, f(1) = f1(1) = 2 + 1 = 3, f(2) = f2(2) = 2 × 2 = 4,

f(3) = f3(3) = 23 = 8, f(4) = f4(4) = 22
2
2

= 216 = 65536,

f(5)

= f5(5)

= f4(f5(4))

= f4(f4(f5(3)))

= f4(f4(f4(f5(2))))

= f4(f4(f4(f4(f5(1)))))

= f4(f4(f4(f4(f4(f5(0))))))

= f4(f4(f4(f4(f4(1)))))

= f4(f4(f4(f4(2))))

= f4(f4(f4(2
2)))

= f4(f4(2
22

2

))

= f4(f4(65536))

= f4(2·
·
·

2

︸︷︷︸

222
2

=65536−times

))) · · ·

The claim is that the growth of f is more than any fi and cannot be expressed
as a primitive recursive function. A similar well-known function is called the
Ackermann function defined as follows:

First we define a slightly different sequence of functions - gi, i = 0, 1, 2, · · · .

g0 = S,

gi+1(0) = gi(1),

gi+1(m+ 1) = gi(gi+1(m)).

Now instead of defining g(m) = gm(m) we define a two variable Ackermann’s
function A(m,n) = gm(n). The definition of Ackermann’s function as follows:

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x + 1, y + 1) = A(x,A(x + 1, y)).

3

A few elements of the Ackermann’s functions are tabulated below.

y → 0 1 2 3 4 5 · · ·
0 1 2 3 4 5 6 · · ·
1 2 3 4 5 6 7 · · ·
2 3 5 7 9 11 13 · · ·
3 5 13 29 61 125 253 · · ·
4 13 32765 · · ·
· · ·
x ↑

There are two important theorems about Ackermann’s function which we
shall state without proof [FCH].

Proposition 1. Ackermann’s function is not primitive recursive.
Proposition 2. Ackermann’s function is recursive.

Example 2.

(a)

Mult(1, n) = π1
1(n)

Mult(m+ 1, n) = Add(π3
1(x, y, z), π

3
3(x, y, z))(Mult(m,n),m, n).

(b)

Exp(0, n) = C1
1 (n), n

0 = 1

Exp(m+ 1, n) = Mult(π3
1(x, y, z), π

3
3(x, y, z))(Exp(m,n),m, n).

(c)

Fact(0) = C1
0 ()

Fact(m+ 1) = Mult(π2
1(x, y), (S ◦ π

2
2)(x, y))(Fact(m),m).

4

2 Lambda Definable Functions

The untyped lambda calculus (λ-calculus) was introduced by Alonzo Church

around 1930 to formalize mathematics. The original system was inconsistent1

But the theory gave another foundation of computing. Starting from Lisp many
programming languages were influenced by it. The study on formal semantics
of programming languages has its foundations in the semantics of λ-calculus.
Subsequently typed versions of λ-calculus also gave foundations to the type
systems of modern programming languages.

The original λ-calculus is a type free theory that views a function as a
computation rule2 rather than a graph as viewed in set theoretic mathematics3.

2.1 Lambda Terms

The set of λ-terms, Λ, is defined inductively as follows. Let x be a variable4

1. Every variable is a λ-term (x ∈ Λ).

2. If M is any λ-term (M ∈ Λ), then (λxM) is a λ-term ((λxM) ∈ Λ). This
is called a function abstraction. (λxM) may be viewed as a function with
one argument x, where the body of the function is M .

3. If M,N are λ-terms (M,N ∈ Λ), then (MN) is a λ-term ((MN) ∈ Λ).
This is called a function application, where M is a function and N is its
argument.

We shall use following conventions to avoid cluttering of parenthesis.

1. The outer parenthesis will be dropped.

2. The function abstraction will go as far as possible to the right i.e. λx1(λx2(· · · (λxnM)))
will be written as λx1λx2 · · ·λxn ·M or often as λx1x2 · · ·xn ·M , or λ~x·M ,
where ~x = x1 · · ·xn.

3. The function application is left associative i.e. (· · · (((MN1)N2) · · ·Nn) is
written as MN1N2 · · ·Nn.

Following are a few examples of λ-terms.
Example 3. x; xx; λx · x, known as I; λxy · x, known as K; λx · xx;
λf · (λx · f(xx)(λx · f(xx)), known as Y ; etc.

2.2 Convertibility: An Equivalence Relation

We define equality in the collection of ordinary arithmetic or algebraic expres-
sions. As an example the value of 3+2 is same as that of 5. They are not same
expressions (syntactically), but their values are same. So we write 3 + 2 = 5.
Similarly we write a(b + c) = ab + ac, where a, b, c ∈ R. These equalities are

1Shown by S C Kleene and J B Rosser, two students of Church
2Think of a Python program to compute n! as a specification of the dynamics of factorial

computation.
3Viewing a function as a rule to compute the value from the argument is actually older

than viewing it as a collection of argument and value pairs.
4There is a enumerable supply of variables: V = {v0, v1, · · · } and x is a meta-variable over

V .

5

actually equivalent relations over the set of arithmetic expressions and the set
of algebraic expressions.

In a similar way we wish to define an equivalence relation over Λ, the collec-
tion of λ-terms. Two λ terms are equivalent (we may write them equal) if they
denote the same value (whatever that is). They belong to the same equivalence
class.

Definition 6. Two λ-terms M,N are said to be equal and is written
as M = N under the following situations (first three are standard for any
equivalence relation):

1. M = M ,

2. if M = N , then N = M ,

3. if M = N and N = L, then M = L,

4. (λx ·M)N = M [x← N]. It means when a function abstraction is applied
to its argument, its value is same as the λ-term obtained by replacing
every x (corresponding to the ‘argument variable x’) in the body of M ,
by N . This is known as β-conversion5.

There is some restriction about this replacement of x by the argument N ,
which we shall discuss after this.

5. λx ·M = λy · (M [x← y]). Again there is some restriction which we shall
discuss. This is known as α-conversioni6.

6. if M = N , then λx ·M = λx ·N ,

7. if M = N , then MP = NP and also PM = PN , where P ∈ Λ.

We have mentioned about some restriction in connection to our fourth and
fifth conditions for equivalence. We formalize it by defining the set of free
variables and the set of bound variables in a term M , FV (M)i and BV (M)
respectively.

1. If x is a variable, then FV (x) = {x} and BV (x) = ∅,

2. FV (λx ·M) = FV (M) \ {x}, the function abstraction binds a variable7.
So, BV (λx ·M) = BV (M) ∪ {x}.

3. FV (MN) = FV (M) ∪ FV (N) and BV (MN) = BV (M) ∪BV (N).

If a variable present in a λ-term M is not free, then it is bound. It is possible
that a variable x is both free and bound in a λ-term.
Example 4. FV (λx ·y(λy ·xy)) = {y} and FV (λx ·y(λy ·xy)) = {x, y}. Note
that the first occurrence of y is free but the second occurrence of y is bound.

When we write M [x ← N], we replace ever free occurrence of x in M by
N . But there is one problem. There may be a free occurrence of some y in N .

5Compare it with macro substitution by the C pre-processor or parameter passing by name.
6This is renaming of formal parameter of a function. We can do that if there is no name

clash.
7In

∫
2

1
y2x dx, y is free but x is not.

∫
2

1
· · · dx binds x.

6

After substitution, the free y of N may be bound by some λy in M . So it is
necessary to do α-conversion of sub-terms of M while doing substitution8.
Example 5. Let M = x(λy ·xy) and N = λx ·yx. In N we have a free variable
y. If we compute M [x← N] without care, we get (λx · yx)(λy · (λx · yx)y. Now
the second y has become bound and the substitution gives incorrect result.

The correct approach is to rename y in the sub-term λy · xy in M (α-
conversion).

(x(λy ·xy))[x ← λx ·yx] =α (x(λz ·xz))[x← λx ·yx] =β (λx ·yx)(λz ·(λx ·yx)z).

Definition 7. A λ-term M without a free variable is called a combinator.
We have already given several examples of combinators.

I ≡ λx · x,

K ≡ λxy · x,

S ≡ λxyz · xz(yz),

Ω ≡ (λx · xx)(λx · xx), etc.

A context C[] is an incomplete term with a hole in it. We can plug a λ-term
in the hole. Example 6. Let C[] = λx · x(λy · []) and we plug M = xy in it
to get C[M] = λx · x(λy · xy).

If two λ-terms M and N are equal, and C[] is a context, then C[M] = C[N].
We accept it with out proof.

2.3 Reduction

In arithmetic (59 + 7 × 2 − 3) ÷ 7 = 10. But there is an asymmetry as far as
computation goes. Given (59 + 7 × 2 − 3) ÷ 7 we reduce it to 10, but not the
other way. So a reduction is an one way operation. The steps of reduction for
this example are as follows:

(59 + 7× 2− 3)÷ 7→ (59 + 14− 3)÷ 7→ (73− 3)÷ 7→ 70÷ 7→ 10.

It is clear that terms in each step of reduction are in the same equivalence class.
The final term 10 cannot be reduced further (in reduced or normal form), a
representative of the equivalence class.

Definition 8. We define the binary relation β on the collection of λ-terms
as follows:

β = {((λx ·M)N,M [x← N]) : M,N ∈ Λ}.

If (M,N) ∈ β, then M is called β-redex and N is called β-contractum of M .
Definition 9. The compatible closure of the binary relation β is the binary

relation →β defined as follows:

1. If (M,N) ∈ β, then M →β N .

2. If M →β N , then PM →β PN , MP →β NP , λx ·M →β λ ·N .

8There are modified form of λ-expressions where this problem will not arise.

7

If C[] is a context of λ-term and M →β N , then C[M]→β C[N].
The reflexive-transitive closure of →β is defined as usual and is denoted by

→∗

β . So →
∗

β is the smallest binary relation such that →β⊆→
∗

β and →∗

β is both
reflexive and transitive.

A λ-term M is in β-normal form if no sub-term9 of it is a β-redex.
The →∗

β induces the β-equivalence we have defined earlier.
Example 7. Following are a few examples of β-reductions.

1. (λx · x)M →β M , so λx · x behaves like identity function.

2. (λxy ·x)MN →β (λy ·M)N →β M , as we know that there cannot be any
free variable y in M .

3. (λx · xx)(λy · y)M →β (λy · y)(λy · y)M →β (λy · y)M →β M .

4. (λx · xx)(λx · xx) →β (λx · xx)(λx · xx) →β · · · , a non terminating com-
putation.

5. (λxy ·(λxy ·xy)(λx ·x)x)(λxy ·y) can be β-reduced in more than one ways.

(a) →β (λxy · (λy · (λx · x)y)x)(λxy · y) →β (λxy · (λy · y)x)(λxy · y)
→β (λxy · x)(λxy · y) →β (λy · (λxy · y). We can rename the first
parameter y and get λzxy · y.

(b) →β λy · (λxy · xy)(λx · x)(λxy · y) →β λy · (λy · (λx · x)y)(λxy · y)
→β λy · (λx ·x)(λxy · y)→β λy · (λxy · y). Again by renaming we get
λzxy · y.

Example 8. If we are not careful about substitution, we may prove almost
anything. Let the λ-term be K = λxλy·x. Take any λ-termM,N . KMN = M .
Now take M = y and we get KyN = (λy · y)N = N .

It is possible to compute 2+ 3+4 in two different ways. The law of associa-
tivity ensures that the final values are same. Similarly, it is necessary to prove
that different valid sequences of β-reductions should lead to same β-normal form
(modulo α-conversion). But there is one problem - a reduction sequence may
be non-terminating.
Example 9.

(λxy · y)((λx · xx)(λx · xx))→β (λxy · y)((λx · xx)(λx · xx)) · · · ,

is non-terminating if we evaluate (λx · xx)(λx · xx) first. But

(λxy · y)((λx · xx)(λx · xx))→β (λy · y),

is terminating.
We assume two very important properties of β-reduction without proof.

The first one states that whatever be the path of reduction, two terminating
reductions will give equivalent β-normal form (same value) modulo renaming
(α-conversion). In fact for every λ-term has at most one β-normal form.

This is known as Church-Rosser property of term rewriting. Let M be a
λ-term which can be β-reduced to M1 and M2 in two different ways, then there
is a λ-term M such that both M1 and M2 can be reduced to in finite number
of steps.

9We have not formally defined sub-terms of a λ-term M . Informally it is a portion of M
that is a valid λ-term. As an example sub terms of xλx · xy are x, λx · xy, xy, x, y and the
whole term.

8

2.4 Fixed Point Theorem and Combinators

We start with the following proposition:
Proposition 3. For all λ-term F , there is a λ-term X so that FX = X .

Proof: Given F , we define W = λx · F (xx) and X = WW . We see that X

β-reduces to FX !

X = WW = (λx · F (xx))W,

→β F (WW) = FX.

QED.
Definition 10. A fixed point combinator is a closed λ-term M so that for

all λ-term F we have MF = F (MF). So MF is a fixed point of F .
Example 10. Y = λf · (λx · f(xx))(λx · f(xx)) is a fixed point combinator.

Θ = (λxy · y(xxy))(λxy · y(xxy)) is Turing fixed point combinator.
Example 11. Assume that conditional, test for zero, subtraction and mul-
tiplication are λ-definable (soon we shall do that). The factorial function F is
defined as follows:

Fn ≡ (λn · if n = 0 then 1 else M n (F (P n)))n,

where Mxy gives x ∗ y. Pn is the predecessor function, gives n− 1 when n > 0.
But in λ− calculus F cannot be defined using F (no recursion).

Let
H ≡ λfλn · (if n = 0 then 1 else M n (f (P n))).

Our factorial function is a fixed point ofH = (λfλn·if n = 0 then 1 else M n (f (P n)))
i.e

HF = λn · if n = 0 then 1 else M n (F (P n)) ≡ F.

Y combinator computes the fixed point: Y H = H(Y H).
The computation goes as follows - we call the λ-term λfλn·(if n = 0 then 1 else M n (F (P n)))
as F .

(Y H) 5,
= Y (λfλn · (if n = 0 then 1 else M n (H (P n)))) 5,
≡ (λfλn · (if n = 0 then 1 else M n (H (P n)))) (Y H) 5,
≡ (λn · (if n = 0 then 1 else M n ((Y H) (P n)))) 5,
≡ (if 5 = 0 then 1 else M 5 ((Y H) (P 5)))),
≡ M 5 ((Y H) 4),

And the computation continues.

2.5 Lambda Definable

The λ-calculus (λ-terms and β-reduction etc.) may be used to represent the class
of µ-recursive functions on natural numbers10. Following are representations of
different mathematical objects as λ-terms.
Conditional and Truth Values - A conditional is a λ-term of the form BMN ,
where B corresponds to truth values true or false. If B is true, it evaluates to
M , if B is false, it evaluates to N . So the truth values are true ≡ λxy · x and
false ≡ λxy · y.

10This was first proved by S C Kleene, a student of Alonzo Church.

9

n-tuples An ordered pair defined by Church keeping projection function in mind.
(M,N) ≡ λz · zMN . So

(M,N)T = (λz · zMN)(λxy · x)→β (λxy · x)MN →β M.

Similarly,

(M,N)F = (λz · zMN)(λxy · x)→β (λxy · y)MN →β N.

An ordered n-tuple (M1,M2, · · · ,Mn) ≡ (M1, (M2, · · · ,Mn) · · ·), where
n > 1 and [M] ≡ M11 The important function are the projection functions.
There are n projection functions, πi

n that takes an n-tuple and projects its ith

component. We define

πi
n = λx · x

(i−1)
︷ ︸︸ ︷

FF · · ·F T, 1 ≤ i < n, and πn
n = λx · x

n
︷ ︸︸ ︷

FF · · ·F .

Example 12. Consider a 3-tuple (P, (Q,R)). We apply π1
3 , π

2
3 , π

3
3 .

π1
3(P, (Q,R)) = (λx · xT)(P, (Q,R)),

→β (P, (Q,R))T = (λz · zP (Q,R))T,

→β TP (Q,R),

→β P.

π2
3(P, (Q,R)) = (λx · xFT)(P, (Q,R)),

→β (P, (Q,R))FT = (λz · zP (Q,R))FT,

→β FP (Q,R)T,

→β (Q,R)T = (λz · zQR)T,

→β Q.

Note that →β may be one or more steps of β-reductions.
Numerals can be defined using λ-terms in different ways. The requirement is

that if i, j ∈ N0 and i 6= j, then the λ-numerals corresponding to i and j should
not belong to the same equivalence class. On top of this the numerals should
be such that the basic operations can be easily encoded as λ-terms. Following
is a convenient λ-numeral system.

Definition 11. If n ∈ N0 = N ∪ {0},

λ(n)

{
I = λx · x if n = 0,

(F, λ(n − 1)), if n > 0.

So we have

λ(1) = (F, λ(0)) = λz · zFI; λ(2) = (F, λ(1)) = λz · zF (F, λ(0)), etc.

We need to define the following three primitive functions:

11There may be other definitions as well.

10

• Test for zero:

Zλ(n) =

{
T if n = 0,
F if n > 0.

• Successor function: Sλ(n) = λ(n+ 1).

• Predecessor function:

Pλ(n) =

{
I if n = 0,

λ(n− 1) if n > 0.

We define

• Z = λx · xT . So,
ZI = (λx · xT)I = IT = T,

and

Z λ(n+1) = Z (F, λ(n)) = (λx·xT)(λz·zFλ(n)) = (λz·zFλ(n))T = TFλ(n) = F.

• S = λx · (F, x). It is clear that it works.

• P = λx · (Zx)I(xF). It is clear that

PI = (λx · (Zx)I(xF))I = (ZI)I(IF) = TIF = I.

and

P λ(n+ 1) = (λx · (Z x) I (xF)) λ(n+ 1)

= (Z λ(n+ 1)) I (λ(n+ 1) F)

= F I (λ(n+ 1) F)

= (λ(n+ 1) F)

= (λz · z Fλ(n)) F

= F F λ(n)

= λ(n).

Our next question is how do we λ-define functions from N
k
0 → N0. A typical

example is + : N0 × N0 → N0. But in λ-calculus we take one argument at a
time12. So we take our addition as Plus : N0 → [N0 → N0]

13, and define it as
follows:

Plus m n =

{
n if m = 0,

S (Plus (P m) n) if m > 0.

So our ’Plus’ satisfies the following equation and by the fixed point theorem it
has a solution.

Plus m n = (Z m) n (S (Plus (P m) n)).

Consider the λ-term

F = λfmn · (Z m) n (S (f (P m) n)).

12We may us pair as the single argument and use projection etc.
13Curried version of ‘+’. One can show that N0 ×N0 → N0 is isomorphic to N0 → [N →

N0].

11

F has a fixed point and that is a solution of the equation, our Plus. We already
know that Y F is a fixed point of F .
Example 13.

(Y F) λ(2) λ(3)

→∗

β F (Y F) λ(2) λ(3)

→β (λmn · (Z m) n (S ((Y F) (P m) n)) λ(2) λ(3)

→2
β (Z λ(2)) n (S ((Y F) (P λ(2)i) λ(3))

→∗

β (S((Y F) (P λ(2)) λ(3)))

→∗

β (S((Y F) λ(1) λ(3)))

→∗

β (S(S((Y F) λ(0) λ(3))))

→∗

β (S(Sλ(3)))

→∗

β λ(5)

Definition 12. A function f : Nk
0 → N0 is λ-definable if there is a λ-term

F so that for each (n1, · · · , nk) ∈ N
k
0 ,

F λ(n1) · · · λ(nk)→
∗

β λ(f(n1, · · · , nk).

Addition, multiplication, exponentiation, factorial etc. can be shown to be
λ-definable

2.6 Lambda Definable and Recursive Functions

We shall show that any numeric function that is λ-definable is also recursive14.
Proposition 4. All initial functions are λ-definable.

Proof:

1. Constant function: λ(Ck
m) = λx1 · · ·xk ·m.

2. Projection function: λ(Πk
i) = λx1 · · ·xk · xi.

3. Successor function: λ(S) = λx · (F, x).

QED.
Proposition 5. λ-definable functions are closed under composition.

Proof: Let the k-ary functions g1, · · · , gl and the l-ary function h be λ-definable
byG1, · · · , Gk andH . So, f(x1, · · · , xk) = h(g1(x1, · · · , xk), · · · , gl(x1, · · · , xk))
is λ-defined by

λ(f) = λx1 · · ·xk ·H (G1x1 · · ·xk) · · · (Glx1 · · ·xk).

QED.
Proposition 6. λ-definable functions are closed under primitive recursion.

14In fact any function that is recursive is λ-definable, Turing computable and vice versa.

12

Proof: Let the k-ary function g and the (k + 2)-ary function h be λ-definable
and a (k + 1)-ary function is defined as follows:

f(0, n1, · · · , nk) = g(n1, · · · , nk),

f(m+ 1, n1, · · · , nk) = h(f(m,n1, · · · , nk),m, n1, · · · , nk),

We define

Fm n1 · · · nk = (Z m)(G n1 · · · nk)(H (F (P m)n1 · · · nk)n1 · · · nk)

From our discussion of fixed point theorem we know that there is a solution of
this equation e.g.

Y (λfλmλn1 · · · nk · (Z m)(G n1 · · · nk)(H (f(P m)n1 · · · nk)n1 · · · nk))

QED.
Finally we wish to prove that λ-definable functions are closed under mini-

malization.
Let P be a λ-term. We define HP = Θ FP , where Θ = (λxy · y(xxy))(λxy ·

y(xxy)) is the Turing’s fixed point combinator and FP = λhz ·(P z) z (h (S z)),
where S is the λ-term corresponding to the successor function.

We also define

µP = HP λ(0) = (P λ(0)) λ(0) ((Θ FP) (S λ(0)).

That is, “if (P λ(0)), then λ(0), else ((Θ FP) (S λ(0))”.
Proposition 7. Let P be a λ-term so that for all n ∈ N0, P λ(n) is either

true (λxy · x) or false (λxy · y), then

1. HP λ(n)→∗

β if (P λ(n)), then λ(n), else ((Θ FP) (S λ(n))”.

2. If there is an n ∈ N0, so that P λ(n) is true and m is the smallest of such
n, then µP defined as HP λ(0), is λ(m).

Proof:

1. This comes from the property of fixed point combinator.

2. The second part is also from the property of the fixed point combinator.
We know that for all k, 0 ≤ k < m, P λ(k) = false, and P λ(m) = true.
So we have

Hpλ(0) = Hpλ(1) = · · · = Hpλ(m) = λ(m).

QED.
Proposition 8. λ-definable functions are closed under minimalization.

Proof: Let the k-ary function f be defined by minimalization where

f(n1, · · · , nk) = µm[g(n1, · · · , nk,m) = 0],

where g, the (k + 1)-ary function λ-definable by G.
Our P is λm · Z (G λ(n1) · · ·λ(nk) λ(m)), where Z tests for zero and f is

defined as
F = λn1 · · ·λnk · µ[λm · Z (G n1 · · ·nk m)].

13

So,
F λ(n1) · · · λ(nk) = µ[λm · Z (G λ(n1) · · · λ(nk) m].

The right hand side will extract the smallest value of m, if there is one, so that

Z (G λ(n1) · · · λ(nk) λ(m))→∗

β true(λxy · x).

Otherwise the reduction will not terminate. QED.
Proposition 9. All recursive functions are λ-definable and vice versa.
Definition 13. Church numerals are λ(n) = λfx · fn(x), where n ∈ N0.

It applies the first argument f on the second argument x, n number of times.
So, we have c0 = λfx · x = true, c1 = λfx · fx, c1 = λfx · f(fx) etc.
The successor function for this numeral is Sc = λnfx · f(nfx). The prede-

cessor function is more complicated.

Pc = λnfx · n (λab · b (af)) (λc · x) (λd · d).

We apply Pcc2 and get

(λnfx · n (λab · b (af)) (λc · x) (λd · d)) (λfx · f (f x)),

= λfx · (λfx · f (f x)) (λab · b (af)) (λc · x) (λd · d)),

= λfx · (λx · (λab · b (af)) ((λab · b (af)) x)) (λc · x) (λd · d)),

= λfx · (λx · (λab · b (af)) (λb · b (xf))) (λc · x) (λd · d)),

= λfx · (λx · (λb · b ((λb · b (xf)) f))) (λc · x) (λd · d)),

= λfx · (λx · (λb · b (f (xf)))) (λc · x) (λd · d)),

= λfx · (λb · b (f ((λc · x)f))) (λd · d)),

= λfx · (λb · b f x) (λd · d),

= λfx · (λd · d) f x,

= λfx · f x = c1.

References

[HPB] The Lambda Calculus, Its Syntax and Semantics by H P Barendregt,
Series: Studies in Logic and The Foundations of mathematics, vol. 103,
Pub. North-Holland, 1984, ISBN 0-444-87508-5.

[AS] www.dsi.unive.it/~salibra/pdf15sep2003-chapter01.pdf by An-

tonino Salibra, chapter 1, Lambda Calculus.

[FCH] Introduction to Computability by F C Hennie, Pub. Addison-Wesley,
1977, ISBN 0201028485.

14

