Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)

Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108
Lecture VII

Instructor: Goutam Biswas Autumn Semester 2023

1 Randomized Computation

A Turing machine model is augmented with the capability of making random
choice of transition during computation.

1.1 Probabilistic Turing Machine

A probabilistic Turing machine is a mathematical model for randomized algo-
rithms. This machine is structurally similar to a non-deterministic machine.
But their computations are very different. The definition of a NTM is com-
pletely structural or syntactic. Whereas the definition of a probabilistic Turing
machine has semantic component.

A class of randomized algorithms (and the corresponding machine model) may
give erroneous results. But the probability of error can be made very low (as
low as the probability of software or hardware failure or the probability of some
other catastrophic event). These are known as Monte Carlo algorithms. Another
class of algorithms give correct results on termination. But the termination is
not guaranteed. But its expected running time is “good” (polynomial). These
are known as Las Vegas algorithm.

Randomness is introduced in a Turing machine model essentially in two
different ways. The machine may have a pair of transition functions that are
selected uniformly at random from each configuration. The other ways is to
introduce a tape contains a sequence of random bits. The machine is essentially
deterministic and takes the input and the random bits into consideration for
transition. A more formal definition of the first kind of machine is as follows.

Definition 1. A probabilistic Turing machine (PTM) M has two transition
functions &g and d;. At each step of computation M “flips a fair coin” and
chooses one of them with equal probability (1/2) to go to the next configuration.
The choice at any state is independent of the previous choices.

Finally the machine halts either in accept (output 1) or in reject (output 0) state.

A random variable M (z) is associated with with the output of the machine. We
talk about Pr[M(z) = 1] and Pr[M(z) = 0].

If the machine halts within time T'(|z|) on all inputs z € {0, 1}*, and irrespective
of the outcome of coin toss, we call it T'(n)-time bounded, where n = |z|.

If a PTM is running for ¢ steps, the computation tree will have 2¢ branches.
Each branch will be taken with a probability 1/2¢. So the probability of ac-
ceptance of an input x is the fraction of branches where M finally writes 1 as
output, Pr[M(z) = 1].

Let L C {0,1}*. We use the notation L(z) = 1if x € L, and L(z) = 0 if
x ¢ L. Now we define the first set of probabilistic complexity classes.

Definition 2. A language L C {0,1}* is in the class RTIME(T(n))
if there is a T'(n) (T : Ny — Np) time bounded probabilistic Turing machine
(PTM), so that

xel = Pr[M(z)=1]>2/3,
¢ L = P[M(x)=1]=0.

The definition means that if M (x) = 1, the input x certainly belongs to L. But
there may be an error if the output is 0. As there is a finite probability that
even if x € L, the machine may print 0.

The class RP = J;- RTIME(n). So PTMs for RP are polynomial time
bounded. The value 2/3 is rather arbitrary. It can be replaced by any constant
> 1/2.

Example 1. As an example of COMPOSITE is in RP. Following algorithm
uses Fermat Test. The little Fermat’s theorem states that, if p is a prime and
p fa, then a?~! = 1 (mod p). The contrapositive statement is, if ged(a,n) = 1
and ™! # 1 (mod n), then n is composite.

isCompositeFT1(n) // nis odd >3
a < rand{2,---n — 2}
if (a™ ! mod n) # 1 return 1 // composite
else return 0 // most likely prime

If the procedure returns 1, then n is certainly composite. But if it returns 0,
there is no certainty!.

If L € RP and x € L, according to the definition of RP there are more than
2/3 branches of accepting computation of a polynomial time bounded PTM M.
Treating the RP machine as an NTM, one accepting branch is sufficient to
accept x. Therefore RP C NP.

Definition 3. A language L C {0,1}* is in the class coRP if there is a
polynomial time bounded PTM M such that

xel = Pr[M(z)=0=0,
r¢L = P[M(z)=0]>2/3.

In this case if the output is 0, then we are certain that x ¢ L. But if the output
is 1 we are not sure. In fact coRP = {L: L € RP}.

In RP we have error in half of the output (one-sided). Following class is
more general and allow two sided error.

12340 = 1(mod 341) and 341 = 11 x 31.

Definition 4. The class BPTIME(T(n)) is the collection of languages
decided by some PTM in time T'(n) such that Pr[M(x) = L(z)] > 2/3 (BP-
TIME means, bounded-error probabilistic T'(n) time).

The class BPP (bounded-error probabilistic polynomial-time) is the class of lan-
guages decided by probabilistic polynomial-time turing machine with bounded
error. So, BPP = U,y BPTIME(n").

The definition says that the machine outputs the correct membership status
of z and L with a probability larger than 2/3. The choice of 2/3 is arbitrary.
From the symmetry of the definition it is clear that BPP is closed under com-
plementation i.e. BPP = coBPP.

A deterministic Turing machine may be viewed as special case of a PTM.
So P C BPP. The open question is whether BPP = P. Many people believe
that they are i.e. every polynomial time, bounded error, probabilistic algorithm
can be transformed to a polynomial time deterministic algorithm with only
polynomial slowdown. This is an open question in complexity theory.
Following is an alternate definition of the class BPP. In case of NP we replaced
the NTM by a DTM verifier with a second input as a witness. In case of BPP
a PTM is replaced by a DTM. It is supplied with a sequence of random bits at
every step of computation (polynomial length) as the second input.

Definition 5. A language L C {0,1}* is in BPP, if there is a polynomial-
time Turing machine M and a polynomial p(n) so that for every = € {0,1}*,

Prre{071}P(\I\)[M(SC,T) = L(:c)] > 2/3'

Here the probability is over the sequence of random bits r. First we show that
this definition is equivalent to the first definition.

Let L € BPP according to the first definition. There is a polynomial (p(n))
time bounded PTM M and Pr[M(x) = L(x)] > 2/3.

So with 2/3 probability we find a polynomial length choice sequence r € {0, 1}1’(‘””‘)
of M so that M(x) = L(z). We can construct a DTM M’ that will simulate M
on z and using the choice sequence w reach L(z) = M(z) = M'(z,w).

Let L € BPP according to the second definition. There there is a polynomial
(p()) length random string w and a DTM M’ so that M (z, w) = L(z) with prob-
ability 2/3. We design a PTM M that randomly generates w of length p(|z|) and
simulates M’(x,w) so that Pr[M(z) = L(x)] = Pr[M’'(z,w) = L(z)] > 2/3.

The definition tells us that BPP C EXPTIME. As for every p(n) the num-
ber of random bit-strings is 27("). The exponential machine can enumerate them
and simulate the deterministic machine. So we have P C BPP C EXPTIME.
Little else is known about inclusion relation of this class.

There are randomized algorithms that give correct results, but may fail to
terminate.

Definition 6. Let M be a PTM. We define a random variable Ty, for
the running time of M on input x. So Pr[Ta,; = t] = p, if M halts on = within
t steps with a probability p, over the random choices of made by M. It is said
that the expected running time of M is T'(n), if E[Ta,5] < T'(|x|) for every
x € {0,1}*

Definition 7. The class ZTIME(T(n)) is the collection languages L for
which there is PTM M such that on every input z its expected run-time is
O(T(n)). But when it halts, M (x) = L(z).

The class ZPP (“zero-sided” error) is the collection of languages L, such

that for each L there is a PTM M whose expected running time is bounded by
a polynomial p(|z|), for every « € {0,1}*. But when it halts, M (z) = L(z).

There is an alternate way of looking at it. L € ZPP if there is a polynomial
time bounded PTM M such that

1. M(x) € {0,1, ‘unknown’(_L)},
2. ifx € L, then M(z) =1or L,
3. ifx ¢ L, then M(x) =0or L,
4. Pr[M(z) =1]<1/2.

Example 2. An example of such an algorithm (not a decision problem)
is finding the square-root of —1 modulo a prime p of the form 4k + 1. As
an example p = 13 = 3-4 4+ 1. We want to solve the quadratic congruence
2? = —1(mod 13)%. One value of z is 5, as 13|(5% + 1).

We want to find an element a € Zy, so that a® = —1(mod p). If we can find
an element b € Z; \ (Z;)?, we may take a = b as a2 = (b5T)? = b =

—1(mod p) (Euler’s criterion).
We know that half of the elements of Z; are quadratic non-residue®. So we
can use the following randomized algorithm.

sqrt-1(p)
do
b« rand{1,---,p—1}
a « pp—1)/4
while (a® mod p #p—1)
return a

The probability of picking a quadratic non-residue is % So the expected
number of times the loop is executed is 2. The probability that the algorithm
has not found a quadratic non-residue after k iterations is 1/2¥. The algorithm
when terminates gives the correct a. But its running time is a random variable
and its expected value is bounded. This type of algorithms are known as Las
Vegas algorithm.

Proposition 1. RP U coRP C BPP
Proof: Let the language L C {0,1}* be in RP. There is a polynomial time
PTM M so that for all z € {0,1}*,

e if z € Lie. L(x)=1,then PriM(x)=1] > 2/3,

e ifz ¢ Lie L(x)=0,then PriM(x)=0]=1

2Let p be an odd prime and a is an integer so that ged(a,p) = 1. If the quadratic
congruence z2 = a(modp) has a solution, then a is called a quadratic residue of p. Otherwise
it is a quadratic non-residue of p. When p is of the form 4k+1, then a is a quadratic residue of
p if alp—1)/2 = 1(modp) and it is a quadratic non-residue of p if alp—1)/2 = —1(modp)
(Euler’s theorem).

3Let p = 13, Z35 = {1,2,3,4,5,6,7,8,9,10,11,12}. Consider a generator of Z]3, say 2,
20 = 1,21 =222 = 4,23 =8,2¢ =3,2° =6,20 = 12,27 = 11,28 = 9,29 = 5,210 =
10,21 = 7,212 = 1. All even powers of 2 are quadratic residues e.g. 2* = (22)2 = 3. So the
solution of 2 = 3(mod 13) is 22 = 4. Odd powers are quadratic non-residue e.g. 2° = 5.
513-1)/2 = 56 = 12 = —1.

So we have Pr[M(z) = L(z)] > 2/3 i.e. L € BPP. Similarly we prove that
coRP C BPP. QED.
Proposition 2. ZPP = RP N coRP.
Proof: We prove that ZPP C RP: Let L € ZPP. So there is a PTM M with
expected running time bounded by a polynomial p(n) such that M (z) = L(x)
on termination.
We design a polynomial time bounded PTM N such that N works as follows:

1. N simulates M for 5p(n) (five times expected running time of M).
2. Return M (x) on termination.
3. Return 0 if the simulation does not terminate within that time.

Probability of the simulation running beyond 5p(n) is % (Markov’s inequality).
So we have the following behavior of N:

1. Ifx € L, M(z) = 1 or M does not terminate and N(z) = 0 is incorrect.
This is with a probability < 1/3.

2. If x ¢ L, N(z) = 0 irrespective of whether the simulation terminates or
not.

So we have L(x) =0= Pr[N(z) =0]=1and L(z) = 1= Pr[N(z) =1] >
N(z) =1 guarantee that € L and L € RP.
Similarly we can design a polynomial time PTM N’ by modifying the step
(3) of N so that L(N') = L € coRP. So we conclude that ZPP C RP N coRP.
In the other direction, we prove that RP N coRP C ZPP.
Let L € RP N coRP. There are two polynomial time bounded PTM M; and
Ms such that

1. if My(z) = 1 then L(x) = 1, but M;(x) = 0 is not certain. But if L(x) =0
the Ml(SC) =0

2. if Ms(z) =0 then L(x) =0, but Ms(z) =1 is not certain.

wWin

3. In both the cases the error probability is < %

We construct a PTM N as follows:
1. Simulate My and M, alternately until M;(z) =1 or Ma(z) = 0.
2. If My(z) =1, then x € L. If Ma(x) =0, then = & L.

The expected running time is bounded by the running time of M; and Ms. So
L € ZPP. QED.

1.2 Error Reduction in RP

Let L € RP. We have a polynomial time (p()) PTM M so that
xel = Pr[M(z)=1]>2/3,
x¢L = P[M(z)=1]=0.
(

Consider the following machine where ¢() is a polynomial.
M, : input x

(i) Run M on z for ¢(]z|) number of times.
(ii) The output is disjunction of ¢(|z|) output.

If M'(z) =1 then certainly x € L as at least once M (z) = 1.
If M'(xz) = 0 (all outputs are zero), then the probability that x € L is
rather small. There cannot be any error if z & L. Therefore

_1
3a(a]) ?

zel = Pr[M(m):l]Zl—(g) ,

v¢L = P[M(z)=1=0.

1.3 Error Reduction in BPP

For the class BPP Pr[M(z) = L(z)] > 2. Again this 2 is arbitrary. Following
lemma states that it is good enough to have Pr[M(z) = L(x)] = 1/2 + 1/n¢,
where |z| =n and ¢ > 0 is a constant.

Lemma 1. Let BPPy 5/, be the class of languages L so that there is a
polynomial time bounded PTM M such that for each = € {0,1}*, Pr[M(z) =
L(z)] > 1/2+1/n".

We claim that BPPy/5,1/,c = BPP.

It is clear that BPP C BPP, /5 /,--. We have to prove the other direction
i.e. given a polynomial time PTM M with success probability % + #, we can
construct a polynomial time PTM M’ with success probability 2/3.

Following theorem proves a stronger result. Given M we can construct a ma-
chine M’ with success probability exponentially close to 1.

Theorem 2. Let there be a polynomial time bounded PTM M for the language
L € {0,1}*, so that for all z € {0,1}*, Pr[M(z) = L(z)] > 3 + -=. Then for
each d > 0, there is a polynomial time PTM M’, such that for all € {0,1}*,
Pr(M(z) = L(z)] > 1~ 57

Let the machine M’ runs M on every input = € {0,1}* for 8n?**4 = k (say)
times, and let the k outputs be 01, -+, 0, € {0,1}. The value of M'(x) =1 if
the majority is 1, else it is 0.

We use Chernoff bound to show that L € BPPl_l/(Qnd).

For every ¢ = 1,--- ,k, we define a boolean random variable X; so that
X; =1if o; = L(x), else it is 0. The random variables are independent. The
expected value of X;, E[X;] = Pr(X; =1]=p>p=1+ L.

Let X = Y% Xi, B[X] = SF | E[X,] = kp > kp.

The PTM M’ makes a mistake when the majority of answers of the runs of
PTM M are wrong i.e. X < £. We need to find Pr(X < £].

According to Chernoff bound, sufficiently small 4, 0 < 6 < 1,

52pk

PriX<(1-90)E[X]|<e =,

We have p = 1/2 4 |z|~¢ and we take 0 = || ~¢/2. If we output the majority
answer, X > (1 — §)E[X], the probability of wrong output is bounded by

2 1 1y 1 y.g|p(2ctd
ef%pk — ¢ uIT (2+\m\6) 8|z < 27|x|d'

1.4 BPP and Other Classes

Theorem 3. BPP C P/poly

Proof: Suppose L € BPP. There is a polynomial time PTM M’ so that for
every x € {0,1}*, Pr[M'(z) = L(z)] > 2/3.

By error reduction we claim the following:

For every d > 0 there is a polynomial time PTM M" so that for every z €
{0,1}*, Pr[M"(z) = L(z)] > 1 — 1/(2"d), n = |zl

Using the second definition of BPP, there is a polynomial time DTM M and
a polynomial p() such that for all 2 € {0,1}* and all w € {0,1}P(™ where
n = |z|, Pro[M(z,w) = L(z)] > 1 —1/(2""). The TM is determinsitic and the
is probability is over all w.

Therefore for all z € {0,1}* and all w € {0,1}*™) Pr,[M(z,w) # L(z)] <
1/(27).

We show by counting argument that there is a string wo € {0, 1}?(") so that
for all x € {0,1}", M (z,wo) = L(x). The single string can be hardwired to get
a circuit C), such that C,(z) = M (z,w) = L(x) for all x € {0,1}". The size of
such C,, is quadratic in the running time of M.

We use a counting argument to show that there is such a string. A string
w € {0,1}P™ is ‘bad’ for an x € {0,1}"if M (x,w) # L(z); otherwise it is ‘good’.
Number of ‘bad’ strings for an z cannot be more than 22%, where |w| = m, the
total number of strings of length m are 2" and fraction of strings that are ‘bad’
cannot exceed 1/(2").

Considering all , the number of ‘bad’ strings are less than

9p(n) 2
X o = gntp(n)=n® < gp(n),
So there are ‘good’ strings and there is a polynomial size circuit family {C),}
for L such that z € L if and only if C|;(z) = 1. QED.

We have the following facts (i) BPP C P/poly, (ii) if NP C P/poly, then
PH = X%, So if 3SAT can be solved in probabilistic polynomial time then PH
collapses to X5.

1.5 BPP Complete Problem?

The probabilistic complexity class BPP is defined using the class BPTIME(n¢),
where the defining notion is semantic in contrast to syntactic notion of NDTM.
Any input string € {0,1}* is either accepted with probability > 2/3 or is
accepted with probability < 1/3.

Given a string « € {0, 1}*, it is easy to check syntactically whether it is a valid
NTM. But checking of valid encoding of a BPP machine is undecidable.

References

[MS] Theory of Computation by Michael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &
Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

