
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture VI

Instructor: Goutam Biswas Autumn Semester 2023

0.1 Arithmetic Hierarchy

The arithmetic hierarchy of undecidable problems classifies the problems to
different grades of undecidability. We consider four languages.

ATM = {< M,x >: the TM M accepts x}.

The language ATM is recursively enumerable (r.e.). Another name of this class
is Σ0

1. If we assume that a TM halts only when it accepts the input, the phrase
“the TMM accepts x” can be written as “∃t, M halts on x within t steps”. ATM

is Turing recognizable language but not decidable (not recursive). In general a
language L in Σ0

1 can be written as L = {w ∈ Σ∗ : ∃yR(w, y)}, where R is a
recursive predicate i.e. its truth value can be decided by a TM. In our example
w =< M,x >, y = t.

The second language is ATM , the complement of ATM .

ATM = {< M,x >: the TM M does not accepts x}.

The language ATM is not r.e.. The phrase “the TM M does not accepts x”
can be written as “∀t, M does not halt on x within t steps”. There is no TM
that recognizes it. This language belongs to the class Π0

1. Any complement of
a r.e. belongs to this class. In general a language L in Π0

1 can be written as
L = {w ∈ Σ∗ : ∀yR(w, y)}, where R is a recursive predicate. In our example
w =< M,x >, y = t.

The third language is

Afin = {< M >: the language of the TM M is finite}.

This language is neither in Σ0
1 nor in Π0

1. The phrase “the language of the TM
M is finite” can be written as “∃n∀x∀t, |x| ≥ n ⇒ M does not halt on x in
t steps”. Note that “∀x∀t” can be combined to a single universal quantifier1.

1Both x and t are positive integers. A pair of positive integers (x, t) can be encoded as a
single integer e.g. m = 2x · 3t, where π1(m) = x and π2(m) = t. So ∀x∀t ≡ ∀m where x and
t are replaced by π1(m) and π2(m) respectively.

1

This language belongs to Σ0
2. In general a language L in Σ0

2 can be written
as L = {w ∈ Σ∗ : ∃y∀zR(w, y, z)}, where R is a recursive predicate. In our
example w =< M >, y = n, z =< x, t >.

The fourth language Ainf is complement of Afin.

Ainf = {< M >: the language of the TM M is infinite}.

The phrase “the language of the TMM is infinite” can be written as “∀n∃x∃t, |x| ≥
n and M halt on x in t steps”. Two existential quantifiers can be combined to
a single existential quantifier. This language belongs to the class Π0

2. In general
a language L in Π0

2 can be written as L = {w ∈ Σ∗ : ∀y∃zR(w, y, z)}, where R
is a recursive predicate. In our example w =< M >, y = n, z =< x, t >.

There is a hierarchy Σ0
1,Σ

0
2, · · · and the class of their complements Π0

1,Π
0
2, · · · .

Also there is ∆0
1,∆

0
2, · · · , where ∆0

i = Σ0
i ∩Π0

i for all i = 1, 2, · · · . The class ∆0
1

is the class of recursive languages.
A set is in Σ0

n if there is a decidable (n + 1)-ary predicate R such that
L = {x : ∃y1∀y2 · · ·Qyn R(x, y1, · · · , yn)}, Q = ∃ if n is odd and ∀ if n is even.

A set is in Σ0
n if there is a decidable (n + 1)-ary predicate R such that

L = {x : ∀y1∃y2 · · ·Qyn R(x, y1, · · · , yn)}, Q = ∃ if n is even and ∀ if n is odd.

0.2 Polynomial Hierarchy

In a similar line polynomial hierarchy,PH, is conjectured to divide the problems
harder than NP and coNP. The class PH is conjectured to have infinite layers
of subclasses beyond P, NP and coNP. We have the following motivating
example.
Example 1. Consider the NP-complete problem of independent set.

INDSET = {< G, k >: graph G has an independent set of size ≥ k}.

This problem has a short certificate, a set of k vertices that are not connected
by edges among themselves.
Its complement problem is

INDSET = {< G, k >: graph G has no independent set of size ≥ k}.

It does not have any obvious short certificate and it belongs to coNP.
Following is a similar problem which also does not have any obvious short

certificate (no one knows).

MAX−INDSET = {< G, k >: the size of the largest independent set of G is k}.

In this case we may write, “the undirected graph G has an independent set u
of size k such that all independent sets of G are of size less than or equal to k.”

In the similar line of undecidable problems, the characterization of these
languages can be written using existential and an universal quantifiers. The only
difference is the Turing machine is polynomial time bounded and the quantifiers
also polynomial bounded.

A problem in class NP is characterized by a polynomial bounded2 existen-
tial quantifier corresponding to certificate. This class is called ΣP

1 , a subclass
(conjectured) of polynomial hierarchy (PH).

2In the arithmetic hierarchy the quantifiers are unbounded.

2

A language L ⊆ {0, 1}∗ is inNP if there is a polynomial time Turing machine
and a polynomial p : N0 → N0, such that for all x ∈ {0, 1}∗,

x ∈ L ⇔ ∃w ∈ {0, 1}p(|x|), s.t. M accepts < x,w >.

In general x ∈ L ⇔ ∃pwR(x,w)}, where the quantifier is polynomial (p(|x|))
bounded and the predicate can be computed in polynomial time.

Similarly, L is in coNP if L is in NP i.e.

x ∈ L ⇔ ∀w ∈ {0, 1}p(|x|), s.t. M accepts < x,w >.

The machine M is same as M of NP with the accept and reject states inter-
changed.

There is a polynomial bounded universal quantifier for a problem in coNP

and the class is called ΠP
1 of the PH.

The intersection of ΣP
1 and ΠP

1 , is ∆
P
1 = P.

The problem of MAX-INDSET is specified by an existential quantifier, fol-
lowed by an universal quantifier, is in the class ΣP

2 . Both the quantifiers are
polynomial bounded.
< G, k >∈MAX-INDSET if and only if ∃ an independent set Vk = {vi1 , · · · , vik}
of G s.t.
∀ independent sets Vl = {vj1 , · · · , vjl} of G, l ≤ k. It is to be noted that any
subset of V (G) can be encoded as a binary string of finite length.

So it is possible to have a polynomial time bounded Turing machine M and
a polynomial p : N0 → N0, (which is cn here), such that M accepts << G, k >
, Vk, Vl > where Vk is an independent subset of V (G) of size k and Vl is any
independent subset of V (G) of size l such that l ≤ k. We have the following
formal definition of ΣP

2 .
Definition 1. ΣP

2 is the class of languages L such that there is a polynomial
time bounded Turing machine M and a polynomial q (both depends on L) such
that for all x ∈ {0, 1}∗,

x ∈ L if and only if ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) M accepts < x, u, v >.

MAX-INDSET is in ΣP
2 . By definition ΣP

2 contains both NP and coNP. In
general a language L ∈ ΣP

2 is defined as

x ∈ L if and only if ∃py∀pzR(x, y, z).

Now we are in a position to generalize the definition of such classes and
define the polynomial hierarchy.

Definition 2. The class ΣP
n , for n ≥ 1, is the collection of languages L so

that there is a polynomial time bounded Turing machine M and a polynomial
q (both depends on L) such that for all x ∈ {0, 1}∗, x ∈ L if and only if

∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qun ∈ {0, 1}q(|x|) s.t. M accepts < x, u1, · · · , un >,

where Q = ∃ if n is odd and Q = ∀ if n is even.
The polynomial hierarchy PH =

⋃

i≥1 Σ
P
i , the union of all these classes. We

define
ΠP

n = coΣP
n = {L ∈ {0, 1}∗ : L ∈ ΣP

n }.

3

We observe that NP = ΣP
1 and coNP = ΠP

1 . It is not difficult to establish that
for all n ≥ 1, ΣP

n ⊆ ΠP
n+1 ⊆ ΣP

n+2. So PH =
⋃

i≥1 Π
P
i .

An alternate definition is as follows: A language L ∈ ΣP
n if there is a

polynomial-time computable (n+1)-ary relation R such that for all x ∈ {0, 1}∗,
x ∈ L if and only if ∃u1∀u2 · · ·QnunR(x, u1, · · · , un), where u1, · · · , un ∈
{0, 1}q(|x|).

0.3 PH and OTM

There is a definition of ΣP
n ,Π

P
n and ∆P

n using oracle Turing machine (OTM).

ΣP
0 = ΠP

0 = ∆P
0 = P.

And

∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i , ΠP
i+1 = coNPΣP

i .

PΣP
i is set of languages that can be decided by a polynomial time bounded

OTM where the oracle is a complete problem of ΣP
i . Similarly, NPΣP

i is set of
languages that can be decided by a nondeterministic polynomial time bounded
OTM where the oracle is a complete problem.

Note that

• ∆P
1 = PΣP

0 = PP = P.

• Similarly, ΣP
1 = NPP = NP and ΠP

1 = coNPP = coNP.

• ∆P
2 = PΣP

1 = PNP. If the oracle is a complete problem for NP, a
language in NP or coNP can be decided in polynomial time (how?). So
ΣP

1 (NP),ΠP
1 (coNP) ⊆ ∆P

2 .

• ΣP
2 = NPΣP

1 = NPNP. It is clear that NP = ΣP
1 ⊆ ΣP

2 . Similarly,
coNP = ΠP

1 ⊆ ΠP
2 .

• In general ΣP
i ⊆ ΣP

i+1 and ∆P
i ⊆ ∆P

i+1

Now we have two definitions of Σp
n.

1. A language L ∈ Σp
n if

L = {x ∈ {0, 1}∗ : ∃py1∀y
py2 · · ·Q

p
nynR(x, y1, · · · yn)},

where all quantifiers are polynomial (p(|x|)) bounded (strings over {0, 1}p(|x|)))
and the predicate R(x, y1, · · · yn) can be computed in polynomial time,
Qn = ∃ if n is odd, = ∀ if n is even.

2. Σp
0 = P and Σp

n = NPΣp

n−1 , where the oracle set is is a complete problem
of Σp

n−1.

It is necessary to prove their equivalence. Here we present the proof outline of
the case where n = 2.
Example 2. We show that Σp

2 ⊆ NPSAT (SAT is a complete problem of Σp
1).

L = {x ∈ {0, 1}∗ : ∃py1∀
py2R(x, y1, y2)}. We design the following polynomial

time OTM with the oracle set SAT to decide L.
N : Input x

4

(i) Make a nondeterministic guess of y1.

(ii) The negation of R() is R(). Find R(x, y1). By Karp reduction (≤p
m) it

reduces to φ(y2).

(iii) Send query φ(y2)
?
∈ SAT .

(iv) If the answer is ‘yes’, reject; else accept.

If there is some y2 that satisfies φ(y2) (R(x, y1, y2)), then it is not the case that
R(x, y1, y2) is true for all y2.

Now we show that NPSAT ⊆ Σp
2.

Let L ∈ NPSAT . There is a polynomial time bounded OTM N with the oracle
set SAT so that x ∈ L if and only if there is a sequence of non-deterministic
choices c1, · · · , cm, there is a sequence of queries φ1, · · ·φk and the corresponding
answers a1, · · · , ak; and the corresponding computation of N reaches an accept
state, where

ai =

{

1 if ∃uiφi(ui) = 1
0 if ∀viφi(vi) = 0.

i = 1, · · · , k.

So

x ∈ L if and only if ∃c1 · · · ∃cm∃u1 · · · ∃uk∀v1 · · · ∀vk N accepts x.

So L ∈ Σp
2.

0.4 Complete Languages of ΣP
n

Definition 3. A language L is said to be ΣP
n -complete if

• L ∈ ΣP
n , and

• Every L′ ∈ ΣP
n is Karp reducible to L i.e. there is a polynomial time

computable function f : N0 → N0, such that for all x ∈ {0, 1}∗, x ∈ L′ if
and only if f(x) ∈ L.

The definition of PH-complete and ΠP
n -complete are similar. We shall show

that there are complete problems for ΣP
n and ΠP

n . Note the following points.

• It is believed that there is no PH-complete problem due to the following
simple reason.

If L is PH-complete, then L must belong to ΣP
n , for some n. But then for

every L′ ∈ PH, L′ ≤p
m L ∈ ΣP

n implies L′ ∈ ΣP
n , so PH ⊆ ΣP

n .

• It is clear that PH ⊆ PSPACE because a language L ∈ ΣP
n can be

decided in polynomial space - polynomial time TM M computes on <
x, u1, · · · , un > where |ui| = q(|x|), q is a polynomial, i = 1, 2, · · · , n.

• But it is believed that PH is not same as PSPACE, as it was pointed
out that PH may not have a complete problem. But PSPACE has a
complete problem.

5

Every class ΣP
n has its own satisfiability problem that is complete for the

class. We define the satisfiability problem ΣnSAT for the class ΣP
n as follows.

ΣnSAT = {φ(u1, · · · , un) : ∃u1∀u2 · · ·Qnunφ(u1, · · · , un) is true},

where Qn = ∃ if n is odd, it is ‘∀’ otherwise. Each ui, 1 ≤ i ≤ n is a vector
of Boolean variables3. It is not difficult to see that this set is in ΣP

n . We
can have a polynomial (over the first input) time bounded Turing machine M
such that every Boolean vector ui, 1 ≤ i ≤ n has a valuation Vi which may
be viewed as a string over {0, 1} and ∃V1∀V2 · · ·QnVn, the machine M accepts
< φ, V1, · · · , Vn > if and only if ∃u1∀u2 · · ·Qnunφ(u1, · · · , un) is true.

To show that it is ΣP
n -hard, we consider a L ∈ ΣP

n . So we have a polynomial
(q(n)) time bounded Turing machine M and a polynomial p : N0 → N0 so that
for all x ∈ {0, 1}∗, x ∈ L if and only if

∃w1 ∈ {0, 1}p(|x|)∀w2 ∈ {0, 1}p(|x|) · · ·Qwn ∈ {0, 1}p(|x|),

such that M accepts < x,w1, · · · , wn >.
Following the Cook-Levin’s theorem, the computation of a polynomial time

bounded Turing machine can be encoded as a polynomial size Boolean for-
mula φ which has (n + 2) tuples of Boolean variables. The first tuple X cor-
responds to the input x. Similarly there are Boolean vectors Y1, · · · , Yn, corre-
sponding to n witness strings w1, · · · , wn. Finally there is a O(q(|x|)2) length
Boolean vector Z corresponding to the q(|x|) time bounded computation of M
on < x,w1, · · · , wn >. The variables of Z are associated with each cell of the
computation tableau of M .

By definition x ∈ L if and only if ∃w1 ∈ {0, 1}p(|x|)∀w2 ∈ {0, 1}p(|x|) · · ·Qwn ∈
{0, 1}p(|x|) such that M accepts < x,w1, · · · , wn > if and only if there is a valu-
ation of Y1, for all valuations of Y2, · · · , there is a value for Yn (if n is odd) such
that φ is satisfiable.

This is equivalent to saying that x ∈ L if and only if ∃Y1∀Y2 · · · ∃Ynφ is
satisfiable. This formula is in ΣnSAT .

Note that ΣnSAT and ΠnSAT are subset of QBF. So ΣP
n ,ΠnSAT ⊆ PSPACE

for all n = 1, 2, · · · . So PH ⊆ PSPACE.

0.5 Properties of PH

People believe that P 6= NP, NP 6= coNP. In PH it is conjectured that for
all n ≥ 1, ΣP

n is a proper subset of ΣP
n+1.

The polynomial hierarchy will collapse to the height k i.e. ΣP
k = PH, if

there is some positive integer k so that ΣP
k = ΣP

k+1.
Proposition 1.

1. For every n ≥ 1, if ΣP
n = ΠP

n , then ΣP
n = PH.

2. If P = NP, then P = PH.

Lemma 1. If ΣP
n = ΠP

n and ΣP
n = ΣP

n+1, then ΣP
n+1 = ΠP

n+1.
Proof:(lemma) ΣP

n+1 = ΣP
n = ΠP

n ⊆ ΠP
n+1. We prove the other direction. Let

L ∈ ΠP
n+1; this implies L ∈ ΣP

n+1 ⊆ ΠP
n+1 ⇒ L ∈ ΣP

n+1. QED.
Proof:(proposition)

3∃ui ≡ ∃ui1∃ui2 · · · ∃uik, where uij , 1 ≤ j ≤ k, are boolean variables. Similar is the case
for the universal quantifier.

6

1. The proof is by mathematical induction starting from some n ≥ 1.
Basis: ΣP

n = ΠP
n . This amounts to say that ΣP

n is closed under comple-
mentation.

Induction: We prove that ΣP
n+1 ⊆ ΣP

n to show that ΣP
n+1 = ΣP

n , as the
other direction of inclusion is known. This fact uses the previous lemma
to establish

ΠP
n = ΣP

n = ΣP
n+1 = ΠP

n+1.

So the polynomial hierarchy (PH) collapses to the nth level, i.e. PH = ΣP
n .

proof:
Let L ∈ ΣP

n+1. So there is a polynomial time bounded Turing machine M
and a polynomial p : N0 → N0 such that, for all x ∈ {0, 1}∗,

x ∈ L if and only if ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|) · · ·Qn+1un+1 ∈ {0, 1}p(|x|)

such that M accepts < x, u1, · · ·un+1 >, where Qn+1 = ∃ or ∀ depending
on whether n is even or odd.

We define the language L′ as follows.

(x, u1) ∈ L′ if and only if ∀u2 ∈ {0, 1}p(|x|) · · ·Qn+1un+1 ∈ {0, 1}p(|x|)

such that M ′ (a modification of M) accepts << x, u1 >, u2, · · ·un+1 >,
where Qn+1 = ∃ or ∀ depending on whether n is even or odd. Clearly
L′ ∈ ΠP

n . But then ΠP
n = ΣP

n . So there is a polynomial time bounded
Turing machine M ′′ and a polynomial q : N0 → N0 such that,

(x, u1) ∈ L′ if and only if ∃v1 ∈ {0, 1}q(|x|)∀v2 ∈ {0, 1}q(|x|) · · ·Qnvn ∈ {0, 1}q(|x|)

such that M ′′ accepts << x, u1 >, v1 · · · , vn >, where Qn = ∃ or ∀ de-
pending on whether n is odd or even.

So we redefine the language L as

x ∈ L if and only if ∃ < u1, v1 >∈ {0, 1}r(|x|)∀v2 ∈ {0, 1}r(|x|) · · ·Qnvn ∈ {0, 1}r(|x|)

such thatM ′′′ (a modification ofM ′′) accepts< x,< u1, v1 >, v2, · · · , vn >,
where r may be taken as p+ q. So L ∈ ΣP

n .

2. This is a special case when n = 1. P = NP is equivalent to ΣP
1 = ΠP

1 . So
under this condition P = PH.

QED.

0.6 Alternation

Using an NTM one can solve a problem that requires guessing an accepting
computation path. This is equivalent to deterministic verification of a certificate.
If the NTM is polynomial time bounded, the verifier is also so. The length of
the certificate is also of polynomial bounded.
But there are problems for which there is no obvious (known) short certificate.
An alternating Turing machine (ATM) was proposed as a generalization of NTM
to capture such (and higher order) computation problems.

7

An ATM has two transition functions δ0 and δ1. From every configuration
there are two possible next configurations4. Each state of an ATM, except the
final states qA and qR, is labeled either with ‘∨’(or) or with ‘∧’ (and). An NTM
is an ATM where all states are labeled with ‘∨’.

The configuration graph of an ATM is similar to that of an NTM. But in
case of an NTM a configuration C in the graph is said to be accepting (labeled
with ‘A’) if there is path from C to a configuration with an accepting state
qA. In other words, one of the successor configuration of C is labeled with ‘A’.
A string x ∈ Σ∗ is accepted by an NTM if the start configuration of GM,x is
labeled with ‘A’.

In case of an ATM we inductively define (label) accepting configurations as
follows.

1. Basis: All configurations with qA are labeled with ‘A’ and all configura-
tions with qR are labeled with ‘R’.

2. Induction: If C is a configuration with a state labeled ‘∨’, and C1 and C2

are its successor configurations, then C is labeled with ‘A’ (accepting), if
any one of C1 or C2 is labeled with ‘A’ (accepting).

If the label of the state of C is ‘∧’, and C1 and C2 are its successor
configurations, then C is labeled with ‘A’ (accepting), if both C1 and C2

are labeled with ‘A’ (accepting).

An alternating Turing machine M accepts a string x ∈ Σ∗, if the start configu-
ration of GM,x can be labeled with ‘A’ (accepting).

Definition 4. Let f : N0 → N0 be a time constructible function. We
say that an alternating Turing machine (ATM), M runs for f(n) time, if for all
input x ∈ {0, 1}∗, such that |x| = n, the depth of the configuration graph GM,x

is at most f(|x|).
If a language L ⊆ {0, 1}∗ is decided by an alternating Turing machine M ,

that halts on all input within f(|x|) steps, then L ∈ ATIME(f(n)). The start
state q0x of GM,x is labeled ‘A’ if and only if x ∈ L. Similarly we define the
class ASPACE(f(n)). We also have

AP =
⋃

c≥1

ATIME(nc),

APSPACE =
⋃

c≥1

ASPACE(nc),

AL = ASPACE(logn),

Example 3. We know that TAUT = {< φ >: Boolean formula φ is a tautology}
is in coNP5. Following is an ATM algorithm for TAUT.
M : input < φ >

4It is possible to have ATM with more than two possible next configurations. But that
can be transformed to two-way alternation.

5SAT is in NP. So SAT , the collection of unsatisfiable formulas, is in coNP. Negation of
unsatisfiable formula is a tautology.

8

1. Start state is universally quantified and branches on all possible assign-
ments of the variables of φ6

2. Evaluate φ for every assignment.

3. If φ evaluates to 1 in all branches, then accept.

The depth of the tree is polynomial in the length φ. So TAUT ∈ AP.
Example 4. NOT-EQIV = {< φ,ψ >: the boolean formulas φ and ψ are not
equivalent}. NOT-EQUIV is in NP.

M : input < φ >

(a) Guess (nondeterministic) an assignment x = (x1, · · · , xn) so that φ(x) 6=
ψ(x).

(b) Return 1 if φ(x) 6= ψ(x); else return 0.

Example 5.

NONMIN − FORMULA = {< φ >: φ is not a minimal formula}.

NONMIN-FORMULA is in NPSAT .
We know that NOT-EQUIV ∈ NP. There is a polynomial bounded function

f so that NOT − EQUIV ≤p
m SAT .

M : input < φ >

(a) Guess (nondeterministic) a shorter formula ψ.

(b) Compute f(φ, ψ) = α (say).

(c) Ask the oracle whether α ∈ SAT .

(d) If the answer is ‘yes’, return 1; else return 0.

Example 6. Prove that

MIN − FORMULA = {< φ >: φ is a minimal formula}

is in AP.
M : input < φ >

1. Start state is universally quantified and branches on all formulas ψ, shorter
than φ (there are finite number of them).

2. Existentially select an assignment to the variables.

3. Evaluate both φ and ψ.

4. If for every universal branch, there is an existential branch where where
the values of φ and ψ are different, then accept; else reject.

6Note that it can be decomposed into two way branches, each configuration labeled with
‘∧’.

9

Proposition 2. Let f : N0 → N0 where f(n) ≥ n. ATIME(f(n)) ⊆
SPACE(f(n)).
Proof: A deterministic O(f(n)) space bounded Turing machine S can do a
depth-first search (DFS) on the configuration graph of O(f(n)) time bounded
ATM M to decide about the labels (accept or reject) of the configurations of
M .

It is necessary to stack O(f(n)) configurations for the DFS as the depth of
GM,x is O(f(n)), where |x| = n. Each configuration takes O(f(n)) space. So
apparently it is necessary to use O(f(n)2) space.

But then it is not necessary to keep the whole configuration but the history
of non-deterministic moves taken up at every level. Sequence of configurations,
one at a time, can be regenerated. So, only a constant amount of information
is necessary to save at each depth of recursion, and the space requirement is
O(f(n)). QED.

The conclusion is AP ⊆ PSPACE.
Proposition 3. Let f : N0 → N0 where f(n) ≥ n. SPACE(f(n)) ⊆

ATIME(f(n)2).
Proof: Given an O(f(n)) space bounded deterministic Turing machine M , we
construct a O(f(n)2) time bounded alternating Turing machine A such that A
simulates M .

The construction is similar to the construction in the Savitch’s theorem.
Given two configurations c1 and c2 of M and a number n, is c2 reachable from
c1 in n steps?
An ATM first guesses the existence of a configuration ci, midway between c1
and c2.
Then it will takes an universal branch to recursively test whether ci is reachable
from c1 in n/2 steps, and also c2 is reachable from ci in n/2 steps.

An f(n)(≥ n) time bounded TM can have at the most 2O(f(n)) configura-
tions. An ATM A uses the recursive procedure to test whether M can reach an
accepting configuration from the start configuration in 2df(n) steps. At every
stage of recursion the ATM takes O(f(n)) time to write the intermediate con-
figuration ci. The depth of recursion is log 2df(n) = O(f(n)). So the total time
is O(f2(n)). QED.

So polynomial space bounded TM can be simulated by a polynomial time
bounded ATM i.e. PSPACE ⊆ AP and finally we have PSPACE = AP.

Proposition 4. Let f : N0 → N0 where f(n) ≥ logn. ASPACE(f(n)) ⊆
TIME(2O(f(n))).
Proof: Let A be an O(f(n)) space bounded ATM. We construct an equivalent
2O(f(n)) time bounded TM D. The machine D on the input x, constructs the
configuration graph of M . Each configuration is bounded by kAf(n) space,
where kA is a constant. The graph can be constructed in 2O(f(n)) time.

After the construction of the graph, D scans it and marks the configurations
as accepting. It requires the traversal of the graph of 2O(f(n)) nodes. The time
it takes is 2O(f(n)). So the total time of construction and labeling the graph
takes O

(

2O(f(n))
)

time. QED. So APSPACE ⊆ EXP and AL ⊆ P.
We can also prove the following proposition.
Proposition 5. Let f : N0 → N0 where f(n) ≥ logn. TIME(2O(f(n))) ⊆

ASPACE(f(n)). The conclusion is ASPACE(f(n)) = TIME(2O(f(n))).
And the final conclusion is AL = P and APSPACE = EXP.

So we have

10

References

[MS] Theory of Computation byMichael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[RPNS] Lecture 5: Polynomial Hierarchy, by Rafael Pass & Navin Sivakumar,
February 3, 2009.

11

