
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture IV

Instructor: Goutam Biswas Autumn Semester 2023

1 Diagonalization

We know that the following language is Turing recognizable (recursively enu-
merable) but not Turing decidable (recursive).

HTM = {< M,x >: the DTM M accepts the input x}.

The proof was by reduction to a contradiction using diagonalization.
Let f(n) ≥ n be a time constructible function. We define a time bounded

version of HTM as follows.

Hf = {< M,x >: the DTM M accepts the input x in f(|x|) steps}.

It is not difficult to see that Hf is decidable1 . But we have the following
theorem.
Theorem 1. Hf 6∈ DTIME(f(⌊n2 ⌋))

There is no f(⌊n2 ⌋) time bounded DTM that decides Hf . The proof is by
reduction to a contradiction using diagonalization.
Proof: Suppose an f(⌊n2 ⌋) time bounded DTM Nf decides Hf i.e. Nf on input

< M,x > always halts within f
(⌊

|<M,x>|
2

⌋)

steps. If “M accepts x in time

f(|x|)”, Nf halts with ‘Y ’. But if “M rejects x within time f(|x|)” or “M does
not halt within f(|x|) steps”, then Nf halts with ‘N ’.

Construct the diagonalizing machine Df as follows:
Df :
Input: < M >
Simulate Nf on < M,M >.
if Nf halts at ‘N ’, then halt at ‘Y’.
if Nf halts at ‘Y ’, then halt at ‘N’.

1Hf ∈ DTIME(f(n)3)

1

The running time of Df on input < M > (|M | = n) is the running time of

Nf on input < M,M >. So it is ≤ f
(⌊

|<M,M>
2

⌋)

= f
(

⌊ 2n+1
2 ⌋

)

= f(n) i.e.

Df always halts within f(n) time.
We apply Df on its own description < Df >. Df will halt within f(|Df |)

number of steps. There are two possibilities.
If Df (< Df >) = ‘Y ’, then Nf(< Df , Df >) = ‘N ’ ≡< Df , Df > 6∈ Hf . As

Df always halts within f(n) time, < Df , Df > 6∈ Hf ⇒ Df (Df) = ‘N’.
If Df(< Df >) = ‘N ’, then Nf (< Df , Df >) = ‘Y ’ ≡< Df , Df >∈ Hf ≡

Df (< Df >) = ‘Y ’. Our assumption leads to contradiction. QED.
Theorem 2. (Time Hierarchy Theorem)
If f, g : N0 → N0 are time constructible functions and f(n) log f(n) = o(g(n)),
then

DTIME(f(n)) (DTIME(g(n))

Note the following facts before we go for proof:

• Each x ∈ {0, 1}∗ represents a TM2

• There are infinitely many descriptions of a Turing machine.

• If a TM M halts on an input x within O(f(n)) time, then its simulation
by an universal TM U halts within O(f(n) log f(n)) time.

Proof: The proof is for a simpler result,

DTIME(n) (DTIME(n1.5)

Consider the following DTM D.
D :
Input: x

1. Runs the Universal Turing machine U for |x|1.4 steps to simulate Mx (the
DTM encoded by x) on x.

2. If the simulation halts with output ‘N’ (reject), then halt with output ’Y’
(accept). If the simulation halts with output Y or does not come to halt
within this time, then halt with N.

As the DTM D halts within time O(|x|1.4|), L(D) ⊆ DTIME(n1.5).
We claim that L(D) 6∈ DTIME(n).

Suppose for the sake of contradiction there is a DTM M that decides L(D)
in linear time i.e. given an input x, M halts in time c|x| and M(x) = D(x),
where c is a constant.

A Universal Turing machine U can simulateM on input x in time c1c|x| log |x|.
But then there is some n0 such that for all n ≥ n0, n

1.4 > c1cn logn.
There are infinitely many x representing the same Turing machine i.e. L(Mx) =
L(M).
We take one such x so that |x| ≥ n0. We run D on this x. The simulation of
Mx on x will certainly halt as |x|1.4 > c1c|x| log |x|. But then D(x) = Y if and
only if Mx(x) =M(x) = D(x) = N - a contradiction. QED.

2We may associate a standard useless machine to each string that actually does not encode
a machine.

2

Theorem 3. (Space Hierarchy Theorem) Let f : N0 → N0 be a space con-
structible function. There is a language L that is decidable in O(f(n)) space
but not in o(f(n)) space.

The language L will be described by designing an O(f(n)) space bounded
DTM D. The TM D is so designed that L is different from any language
decidable in o(f(n)) space.

If M is a decider DTM running in o(f(n)) space, then L = L(D) is different
from L(M) in at least one element. Here comes the diagonalization. M will be
simulated on an extension of the string of M ’s description.

Note that the asymptotic behavior sets in beyond some length of input. The
TM M may be o(f(n)) space bounded, but below the input length n0, for the
finite number of inputs, the space requirement may exceed f(n). The reason
for padding the input is to get more work-tape space for these inputs of M .

Proof. Following O(f(n)) space bounded DTM D decides a language
L(D) = L that is not decidable in o(f(n)) space.
D = ”On input x:

1. Let |x| = n.

2. Compute f(n) (space constructible) and mark its end. Halt with ‘N ’ if
computation goes beyond the marked end.

3. If x 6=< M > 01∗ for some DTM M , halt with ‘N ’.

4. Simulate M on x =< M > 01∗ for at most 2f(n) steps. If it goes beyond
this, M will not halt on x, halt with ‘N ’. The number of configurations
cannot be more than 2f(n) with f(n) space3.

5. If M halts on ‘Y ’, then halt on ‘N ’; otherwise halt on ‘Y ’.

By definition L(D) = L is decided in O(f(n)) space. Following argument
establishes that L cannot be decided in o(f(n)) space.
Suppose, for the sake of argument, there is a g(n) = o(f(n)) space bounded
DTM M so that L = L(M). Let ∀n ≥ n0, dg(n) ≤ f(n). On the input
x =< M > 01n0 , the simulation of M on x =< M > 01n0 will be over in stage
(4.). And

M accepts x if and only if D rejects x.

It is a contradiction of the assumption that L(D) = L(M).

1.1 NP Intermediate Language

It is known that P ⊆ NP and there are large number of problems that are
NP-complete. It is not known whether P = NP. But there is a strong belief
that they are not equal. People asked whether problems in NP are of two
categories, they are either in P or NP-complete. The answer is not known but
the following theorem in [LAD75] says something very interesting about NP

intermediate languages.
Theorem 4. If P 6= NP, then there is a language L ∈ NP \ P that is not
NP-complete.

3The encoding of the alphabet and state of M on D may require dg(n) space where g(n)
is the space bound of M .

3

The language SATH is defined as follows.

SATH = {φ 0 1n
H(n)

: φ ∈ SAT and |φ| = n}.

The function H : N0 → N0 is defined below. But before that we have the
following observation. If H(n) = c, a constant for all n, then SATH is NP-
complete. It is so because SAT can be reduced to SATH in polynomial time,

φ 7→ φ01n
c
, copy φ and pad it with nc 1’s separated by 0. But if H(n) = n, then

SATH ∈ P. The reason is the satisfiability of φ can be tested using a truth table.
Though the size of the truth-table is exponential in the size of φ, it is polynomial

(in fact linear) in of the length of φ01n
n
. In fact φ cannot be reduced to φ01n

n

in polynomial time for large n = |φ|.
The function H is defined in such a way that it is between these two extreme

conditions. It is not a constant function; it grows slowly so that limn→∞H(n) =
∞. SATH is not NP-complete and also not in P under the assumption P 6=
NP.

Definition 1.

H(n) =

{

i, i = min{j : j satisfies C}
log logn, otherwise.

C: j is a natural number less than log logn, such that the TM Mj decides the
membership of x in SATH , for all x ∈ {0, 1}∗, |x| < logn, within j × |x|j steps.

A suitable base case is defined.
The computation of H(n) is indirectly recursive as it tests for the member-

ship of SATH , which in tern requires the computation of H(n). But then H(n)
is well-defined as its value depends on elements of SATH whose lengths are
within logn. What is the computation time for H(n)? Following is an answer.

(i) Is H(n) non-decreasing?

(ii) What is the maximum number of TMs to simulate to compute H(n)?

(iii) On how many input each machine runs?

(iv) What is the upper bound of time to check the membership of φ in SAT
for all input?

(v) Give an upper bound of computation time of H(n).

Ans.

(i) The function H(n) is non-decreasing. Let a < b, H(a) = k and H(b) = l.
By the definition the TMMk correctly predict the membership of all input
of length log a, and the TM Ml correctly predict the membership of all
input of length log b. As a < b, log a < log b. If l < k < log log a, the value
of H(a) cannot be k (min{j : j satisfies C}).

(ii) There are at most log logn machines to simulate.

(iii) There are 1+ 2+22 + · · ·+2⌊log n⌋ inputs as the length of the string is at
most logn. So the number of input is 2n− 1.

4

(iv) As H(n) is not known, we use the whole input to compute an upper bound
of the number of steps to test the membership of φ ∈ SAT. If |x| = k,
the time to construct the corresponding truth table is 2k. For a length k
there are 2k input strings. Each one takes 2k steps. So the upper bound

of running time of a TM on all input is
∑⌊log n⌋
k=0 22k = 4log n+1−1

3 = O(n2).

(v) Considering log logn number of TMs, the running time is n2 log logn =
O(n3).

Lemma 5. SATH ∈ P if and only if H(n) ≤ c for all n, where c is a constant.
Therefore if SATH 6∈ P, limn→∞H(n) = ∞.

Proof: SATH ∈ P ⇒ H(n) ≤ c: there is a polynomial time bounded TM M

that decides SATH within k× |x|k steps. There are infinitely many TMs equiv-
alent to M . Let the natural number c > k be such that M ≡Mc. Let n > 22

c

,
so c < log log n. By the definition of H(n), its value is ≤ c. Moreover H(n) is
non-decreasing. So H(n) is bounded by c.

H(n) ≤ c⇒ SATH ∈ P: ∀n ∈ N0, H(n) ∈ {1, 2, · · · c}. So there is an
i ∈ {1, 2, · · · , c} such that H(n) = i for infinitely many n ∈ N0. We know
that Mi is a polynomial time bounded TM that decides membership of x ∈
{0, 1}∗, |x| ≤ logn in SATH . We claim that Mi decides SATH .
Suppose Mi does not give correct membership result for some input x. Let
n > 2|x| i.e. |x| < logn. So by the definition H(m) 6= i for all m ≥ n - a
contradiction to the fact that there are infinitely many n for which H(n) = i.

If Mi does not decide SATH in time i × ni, there is some x for which Mi

does not halt after i|x|i steps or gives wrong result. Then for each n ∈ N0 and
n > 2|x|. As |x| < logn and Mi fails on x, implies H(n) 6= i. This contradicts
the fact that there are infinitely many n for which H(n) = i. QED.
Corollary 6. If SATH 6∈ P, limn→∞H(n) = ∞.

Proof:(Theorem) We assume that P 6= NP.
If SATH ∈ P, then H(n) ≤ c. But then SAT can be reduced in polynomial time

to SATH , φ 7→ φ01|φ|
c
. And the polynomial time algorithm of SATH can be

used to solve SAT in polynomial time, implies that P = NP - a contradiction.
If SATH ∈ NP-complete: then there is a polynomial (nk) time bounded

reduction from SAT to SATH . Our assumption is P 6= NP, so SATH 6∈ P

implies that H(n) is not bounded above, and limn→∞H(n) = ∞.

A SAT instance φ, |φ| = n, is mapped to a SATH instance ψ01|ψ|
H(|ψ|)

.
For a large n, nk is smaller than nH(n) as H(n) is not bounded. So the size of
the SATH instance is smaller than |φ|H(|φ|) (due to polynomial time reduction).
We have |φ|k = |ψ| + |ψ|H(|ψ|) ≈ |ψ|H(|ψ|). Therefore |ψ| = |φ|k/H(|ψ|) = o(n).
In fact |ψ| should be smaller than |φ| by a polynomial factor (after all H(n)
is computed in polynomial time) e.g. |ψ| = 3

√

|φ| (?). But then φ are ψ are
satisfiable by the same sets of assignments. This reduction if applied repeatedly
gives a formula whose satisfiability can be tested in O(1) time. But then SAT ∈
P - a contradiction. QED.

The language SATH is not very natural or useful, it is deliberately created.
But there are languages such as factoring and graph isomorphism who can be
good candidate for NP intermediate language.
Factoring: given three positive integers a, b, c, decide if a has a prime factor p
between b and c.

5

Graph Isomorphism: given two n× n adjacency matrices corresponding to two
graphs G1 and G2, decide whether the graphs are same upto renaming of ver-
tices.
They are known to be in NP. The certificate for the first is the p, a prime, and
the certificate for the second is the permutation of vertices.
No polynomial time algorithm is known for these two problems, and people
strongly believe that they are not NP-hard.
Example 1.

(i) What is the value of n1/ lnn?

(ii) Show that n

(

1

c

)log logn

is less than a constant, where c ≥ 3 is a constant.

Ans.

(i) Let

n1/ lnn = x⇒ lnx =
1

lnn
· lnn = 1 ⇒ x = e.

(ii) cln lnn =
(

eln c
)ln lnn

= (eln lnn)ln c = (lnn)d, where d = ln c > 1.
Therefore

n

(

1

c

)ln lnn

= n

1

(lnn)d < n

1

lnn < e.

Example 2. Prove that if there is a polynomial time reduction from SAT to
SAT such that φ 7→ ψ and |ψ| = 3

√

|φ|, then SAT is in P.
Ans. Let the reduction be bounded by nc steps. If we perform the reduction

log logn times. The number of steps are O(nc log logn). The length of the

reduced formula is n

(

1

c

)ln lnn

, less than a constant. Its satisfiability can be
checked by a constant size table look-up in O(1). So the membership of φ can
be tested in polynomial time through the reduction.

1.2 Limit of Diagonalization

An oracle is a device that can solve the membership problem of a language
without any computation cost (time or space). The original Turing machine
model can be modified by supplying an oracle to it. It is natural for an Oracle
Turing Machine (OTM) to solve more problems with less resource modulo the
given oracle. This defines relativised complexity classes.

An oracle Turing Machine (OTM) MO, where O is the oracle language, has
a different read-write tape called a query tape and three special states sq, sy, sn.
The OTM MO may write a query string u on the query tape and enters the
state sq. The query is, “does u belong to O?”. If the answer from the oracle
is ‘yes’, the machine is in state sy and continues. It is i in sn if the answer is
‘no’. The query processing does not consume any resource.

We can define new language classes modulo or relative to the query language.
Definition 2. The class PO is the class of languages decided by a

polynomial-time bounded OTM with the oracle of language O. The class NPO

is defined similarly.

6

Example 3. The language SAT , a complete problem of coNP belongs to
PSAT .

D: input x

1. If x is not a proper encoding of a CNF Boolean formula, reject.

2. Ask whether x ∈ SAT .

3. If not, accept, else reject.

Finally we conclude that through Karp reduction every element of coNP be-
longs to PSAT .

The technique of diagonalization uses essentially following two facts about
TMs.

(i) Any TMM can be encoded as a string (in fact infinitely many strings) and
there is a TM U that can decode the description ofM and simulate/apply
M on its data.

(ii) The simulation overhead in terms of time and space is not much.

In a proof using diagonalisation, a machine M simulates another machine N ,
and depending on the outcome of the simulation behaves differently.

An OTMs with the same oracle L also satisfies the two properties mentioned
above. Any result about complexity classes that can be proved only with the
consideration of (i) and (ii) of ordinary TM, also holds for OTMs using same
oracle. This is called relativizing result.

But the following two theorems show that the question P
?
= NP cannot be

a relativizing result.
Proposition 1. There is a language B such that PB = NPB.

Proof: Whatever be the language B, PB ⊆NPB. We prove the other direction
of the subset relation by taking B as a PSPACE-complete language4. Let L ∈
NPB. We claim that L is in PSPACE. Let OTM NB decides L. As N is a
polynomial time bounded machine, it can send at most polynomial many quaries
to the oracle B. If B is decided by a polynomial space bounded machine MB.
Then MB can process (replacing the oracle B) polynomial number of queries of
NB is polynomial space. The non-query processing part of computation of N ,
also cannot take more than polynomial space. So the whole computation can
be carried out in polynomial space.

L ∈ PSPACE and B is PSPACE-complete, so L ≤p B. Let f be the poly-
nomial time computable function used for reduction. Following is a polynomial
time oracle decider for L using f .

D: input x

1. Compute f(x).

2. Ask whether f(x) ∈ B.

3. If the answer is ‘yes’, accept; else reject.

4We can also take any EXP-complete language e.g. Lexp.

7

As f(x) can be computed in polynomial time, L ∈ PB. QED.
Proposition 2. There is a language A such that PA 6= NPA.

Proof: For any language A we define a language LA as follows:

LA = {x ∈ {1}∗ : ∃y ∈ A, s.t. |x| = |y|}.

A strings of length n ≥ 0 from {1}∗ is in LA if and only if there is a string of
length n in A. We claim that LA ∈ NPA.

N : input x ∈ {1}∗

1. Nondeterministically guess a string y whose length is equal to that of x.

2. Ask the oracle about the membership of y in A.

3. If the answer is ‘yes’, accept x.

We construct the language A in such a way that LA is not in PA. Let
M1,M2, · · · be an enumeration of all polynomial time OTMs. We assume that
the running time of Mi is n

i ((?)for simplicity). Initially A is assumed to be
empty. The construction of A is done in stages. At the ith stage, a finite subset
of A is ‘decided’ by MA

i . So MA
i cannot decide LA. Before the ith stage, the

membership status of a finite number of strings of {1}∗ are known (whether
they are in A).
Stage i: Up to the (i − 1)th stage we have included (and excluded) a finite
number of strings in A. Choose an n greater than the lengths of all strings
whose membership in A has already been decided and also 2n > ni, where ni

is the running time of Mi. We extend the set A so that MA
i accepts 1n if and

only if 1n 6∈ LA.
The execution of the oracle Turing machine MA

i is simulated on the input
1n. During the run MA

i sends queries to the oracle of A (which is partially
constructed). The simulator processes the queries as follows: If the membership
status of the query string y is already known (y ∈ A or y 6∈ A), the answer is
given consistently. If the status of y is unknown, the answer (from the simulater
to MA

i) is uniformly ‘no’ i.e. y 6∈ A. Simulation continues until MA
i halts after

ni steps either accepting or rejecting 1n.
By the defination 1n ∈ LA if and only if there is a string of length n in A.

If the oracle machine MA
i wants to accept LA, either it must detect a string

of length n in A and accept 1n, or it gets negative answers to all query for all
strings of length n (2n in number). But the ni step bounded machine cannot
send query for all 2n(> ni) strings of length n. So MA

i halts and takes decision
on its input 1n on insufficient information.

If Mi accepts 1
n, no strings of length n is included in A so that 1n is not in

LA. If Mi rejects 1n, we find a string of length n for which Mi has not sent a
query (ni step bounded OTM cannot send query for all 2n strings of length n),
and put it in A so that 1n is in LA. Either way, the set A is ‘constructed’ one
step further so that MA

i accepts 1n if and only if 1n 6∈ LA.
After this the simulation proceeds to the stage i+ 1. Finally no polynomial

time OTM can decide LA. QED.

8

References

[MS] Theory of Computation byMichael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[LAD75] On the structure of polynomial time reducibility by R E Ladner, J.
ACM, 22(1): 155-171, 1975.

9

