
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture III

Instructor: Goutam Biswas Autumn Semester 2023

1 Space Complexity

We shall consider workspace-bounded computation of Turing machines. In this
case the model is slightly different. The input tape is read-only and the space
is measured in terms of the space used by the work-tape.

1.1 PSPACE, NPSPACE, L and NL

Definition 1. A language L ⊆ Σ∗ is in DSPACE(f(n)), if there is a proper

function s : N0 → N0 so that there is a DTM M , that decides L, using at most
cf(n) (O(f(n))) cells of the work tape for all but finite number of input x ∈ Σ∗

(Σ is often {0, 1}), where n = |x| and c is a constant.
Similarly NSPACE(f(n)) is defined when the Turing machine is nondeter-

ministic.
The space of the read-only input tape is not included in the space usage. So

it makes sense to talk about sub-linear of space (f(n) < n) bounded language
classes. But f(n) should be greater than logn.

The configuration of a machine with read-only input tape consists of (i)
position of the head on the input tape (n = |x|), all possible configurations of
the work tape using f(n) tape cells (cf(n), c = |Γ|), head positions on the work-
tape (f(n)), state of the machine (q = |Q|). The total number of configurations
is

qnf(n)cf(n) = 2log2
q×2log2 n×2log2 f(n)×2f(n) log2

c = 2(q+log
2
n+log

2
f(n)+f(n) log

2
c) = 2O(f(n),

if f(n) ≥ logn.
Definition 2. A function f : N0 → N0 is proper if it is space constructible

i.e. f(n) is at least O(log n), and there is a DTM that computes f(|x|) using
O(f(|x|) space, on input x.

We already know the following relations among the time and space complex-
ity classes. For any space and time-constructible function f : N0 → N0,

DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ NSPACE(f(n)) ⊆ DTIME(2O(f(n))).

1



For polynomial functions we further know that

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP.

Definition 3. We define two classes of languages using sublinear space
where f(n) = logn.

L = DSPACE(log n), NL = NSPACE(logn).

Example 1. All regular languages are in DSPACE(O(1)). As it is not
necessary to use any work-tape space for its recognition.
Example 2.

L1 = {0n1n : n ∈ N0}.

Our DTM M has a read-only input tape and a read-write work tape. It works
as follows:
M : input x

1. Scan the input to see that there is no 0 after 1. If there is, reject.

2. Maintain a counter on the work-tape and count the number of 0’s as a
binary numeral.

3. Decrement the counter with the number of 1’s.

4. If the count is non-zero and all 1’s are counted, or the count is zero but a
few more 1’s are left, then reject, otherwise accept.

The counter will take O(log n) work space, so L1 ∈ L.
Exercise 1. L2 = {0n1n2n : n ∈ N} is in L.
Example 3.

MULT = {< a, b, a× b >: a, b ∈ N0} ∈ L.

The algorithm depends on the fact that the ith bit of the result of n by n bit
multiplication can be calculated as follows.



c+

min(i,n−1)
∑

j=max(0,i+1−n)

ajbi−j



 mod 2,

Example 4.

9 8 7 6 5 4 3 2 1 0 (Bits)
1 0 1 1 0 (a)

× 1 1 0 1 1 (b)
+ 1 0 1 1 0

+ 1 0 1 1 0
+ 0 0 0 0 0

+ 1 0 1 1 0

+ 1 0 1 1 0
1 0 0 1 0 1 0 0 1 0 (result)
0 1 1 1 10 1 1 1 0 0 (carry)

Let n = 5, i = 0, 1, · · · , 9. Let us consider the bit-3 and bit-5 of the result.i

2



r3: i = 3, the lower value of j = max{0, i + 1 − n} = max{0,−1} = 0 to
j = min{i, n− 1} = min{3, 5− 1} = 3.
So the result bit is


c+
3∑

j=0

ajbi−j) mod 2 = (1 + a0b3 + a1b2 + a2b1 + a3b0) mod 2 = (1 + 0 + 0 + 1 + 0



 mod 2 = 0.

r5: i = 5, the lower value of j = max{0, i + 1 − n} = max{0, 1} = 1 to
j = min{i, n− 1} = min{5, 5− 1} = 4.
So the result bit is


c+

4∑

j=1

ajbi−j) mod 2 = (1 + a1b4 + a2b3 + a3b2 + a4b1) mod 2 = (1 + 1 + 1 + 0 + 1



 mod 2 = 0.

where c is the carry from the previous stage. The value i = 0, · · · , 2n− 1,
where both a and b are n bit numbers. The next stage carry is generated as

⌊(c+

min(i,n−1)
∑

j=max(0,i+1−n)

ajbi−j)/2⌋.

The number of bits to be stored in work tape for computation is O(log n). So
MULT ∈ L.
Example 5.

PATH = {< G, s, d >: G is a directed graph with a path from s to d}.

Let |V (G)| = k. The nodes can be numbered with ⌈log2 k⌉ bits and the value
of k can be stored in ⌈log2 k⌉ bits. An NTM N starting from the start node s
nondeterministically chooses the next nodes on the path from s to d, if there is
one. The next node number created by N is checked with d. The path length
cannot be more than k − 1. So the computation stops after generation of at
most k − 1 nodes.

It is not necessary to store the complete path (that requiresO(k log k) space).
The work tape contains total node count k, current node number and the next
node number. This can be computed in O(log n) work space by a nondetermin-
istic Turing machine. So PATH ∈ NL .

It is unknown whether PATH ∈ L. But we shall prove that PATH is NL

complete.

1.2 PSPACE

It is known that P ⊆ NP ⊆ PSPACE. But no stronger result is known e.g.
whether P or NP are proper subsets. People believe that they are, but no
proof.

Definition 4. A language L is PSPACE-hard if for every L′ ∈ PSPACE,
L′ is polynomial time Karp reducible to L, L′ ≤P L. A language L is PSPACE-
complete if it is PSPACE-hard and also belongs to PSPACE.

The following language is PSPACE-complete.

LPSPACE = {< M,x, 1n >: M accepts x in space n}

3



Any language L ∈ PSPACE is Karp reducible to LPSPACE. Let M be a
deterministic Turing machine decides L in polynomial space p(n), where n is
the length of the input. The reduction function maps x 7→< M,x, 1p(|x|) >,
∀x ∈ {0, 1}∗.

Compare it with the NP-complete language

LNP = {< M,x, 1n, 1t >: ∃w ∈ {0, 1}n such that the TM M accepts < x,w > in t steps}.

We are now going to look for a more useful language known to be PSPACE-
complete.

Definition 5. A quantified Boolean formula (QBF) is defined inductively
as follows:

1. Boolean constants true (1) and false (0) are QBFs.

2. Boolean variables x1, x2, · · · are QBF.

3. If f1 and f2 are Boolean formulas and xi is a Boolean variables, then
(f1 ∨ f2), (f1 ∧ f2), ¬f1, ∃xif1 and ∀xif1 are QBFs.

We use appropriate associativity and precedence conventions to avoid some of
the parentheses. The scope of a quantifier is as usual. In general a QBF looks
as follows:

Q1x1 · · ·Qnxnφ(x1, · · · , xn), n ≥ 0,

where Qi is either an existential (∃) or a universal (∀) quantifier and xi’s are
boolean variables that take values over { true, false}.
A QBF is called closed if all variables are quantified. A closed QBF can be
evaluated to true (1) or false (0). A variable is said to be free if it is not
quantified. An QBF with k free variables is a map from {0, 1}k → {0, 1}.
Example 6. The closed QBF ∃x1∀x2(x1 ∨ x2) is true as x1 = 1 makes the
formula always true. But the closed formula ∃x1∀x2(x1 ∧ x2) is false.
The open formula ∀x2(x1 ∨ x2), where x1 is the free variable, is a map from
{0, 1} → {0, 1}, ∀x2(0 ∨ x2) 7→ 0, ∀x2(1 ∨ x2) 7→ 1.

A QBF is not restricted to prenex normal form. Quantifiers may appear
within the body of the formula. But such formula can be convert to prenex nor-
mal form using the following equivalences: ∀xφ(x) ≡ ¬¬∀xφ(x) ≡ ¬∃x¬φ(x),
ψ ∨ ∃xφ(x) ≡ ∃x(ψ ∨ φ(x)), ψ ∧ ∀xφ(x) ≡ ∀x(ψ ∧ φ(x)), where ψ does not have
any free x. If ψ has a free variable x, then we can rename the bound variable
in ∀xφ(x).
Example 7. The question of satisfiability of φ(x1, · · · , xn) is equivalent to
the question of truth value of the QBF ∃x1 · · · ∃xnφ(x1, · · · , xn). The formula
φ(x1, · · · , xn) is SAT if and only if ∃x1 · · · ∃xnφ(x1, · · · , xn) is true.

Similarly the question of validity of φ(x1, · · · , xn) is equivalent to the truth
value of ∀x1 · · · ∀xnφ(x1, · · · , xn). The formula φ(x1, · · · , xn) is a tautology (in
TAUT) if and only if ∀x1 · · · ∀xnφ(x1, · · · , xn) is true.
The language TQBF is defined as follows:

TQBF = {ψ : ψ is a closed and true QBF}.

Theorem 1. The language TQBF is PSPACE-complete.
Proof: First we prove that TQBF is in PSPACE. Let the size of the formula
ψ be m and there are n variables.

4



If (n = 0), the formula contains Boolean constants, and it can be evaluated
in O(m) time and space.

Let s(n,m) be the space required to evaluate a formula of n variables and
of length m.
If we initialize the first variable x1 with 0, we get a new formula ψ[x1 ← 0] of
(n − 1) variables. Similarly, if we initialize x1 with 1, we get another formula
ψ[x1 ← 1] of (n− 1) variables.
So we have the following recursive procedure to evaluate the truth value of a
QBF.

eval(Qixi · · ·Qnxnφ(v1, · · · , vi−1, xi, · · · , xn), i)
if i = n evaluate the constant Boolean expression.

b1 = eval(Qi+1 · · ·Qnxnφ(v1, · · · , vi−1, 0, xi+1, · · · , xn), i+ 1),
b2 = eval(Qi+1 · · ·Qnxnφ(v1, · · · , vi−1, 1, xi+1, · · · , xn), i+ 1),

if Qi = ∃ then return b1 ∨ b2,
if Qi = ∀ then return b1 ∧ b2.

The recursive procedure reuses the space after the first recursive call. So the
recurrence relation for space requirement is

s(n,m) = s(n− 1,m) +O(m)

The depth of recursion is the number of variables n. Solving the recurrence we

get, s(n,m) =

n
︷ ︸︸ ︷

O(m) + · · ·+O(m) = O(mn). So the space requirement is a
polynomial of the size of the formula.

Now we show that TQBF is PSPACE-hard, every language L ∈ PSPACE

is polynomial time reducible to TQBF. Let the language L be decided by a
Turing machine M , space-bounded by the polynomial nk for some constant k.
There is a polynomial time reduction from L to TQBF. An input x is mapped
to a QBF φ so that φ is true (in TQBF) if and only if M accepts x.

Unfortunately in this case a construction like Cook-Levin does not work. If
the input length is n and the polynomial space nk is used for computation, the

number of configurations are 2O(nk). A Cook-Levin style formula representing
this computation is too long to generate in polynomial time.

The solution uses a technique similar to the proof of Savitch’s theorem. It
reuses the space. The computation is divided into half and the same formula
is used with different sets of parameters using universal quantifier. Following is
an over simplified example:

∃m(φ(x,m) ∧ φ(m, y))

can be coded as

∃m∀p∀q(((p = x ∧ q = m) ∨ (p = m ∧ q = y)) ∧ φ(p, q))

In our case φ(x, y) is a long formula with large number of variables. Two
instances of the formula is replaced by one formula and a sequence of universal
quantifiers over the set of variables.

Equality of boolean variables can be expressed as a boolean formula a = b
is equivalent to ((a ∨ b) ∧ (a ∨ b)). The universal quantifications will run over a

5



long list of variables corresponding to the cells, states and symbols of the TM
M . But they are linear in space used.

Following is the construction Given c1 and c2, two sets of variables corre-
sponding to two configurations and a number t > 0, we construct a QBF formula
φc1,c2,t such that if we assign truth values of two actual configurations to c1 and
c2, the formula φc1,c2,t is true if and only if M can go from c1 to c2 in at most t
steps. The formula φ = φcs,ca,T , where cs corresponds to the start configuration

with x as the input (|x| = n), ca to an accepting configuration, T = 2dn
k

is the
bound on the number of configurations of M on an input of length n. The
formula φ = φcs,ca,T ∈ TQBF if and only if M accepts x.

As in the case of Cook-Levin theorem, a formula encodes the content of cells
of a configuration. Several variables are associated with each cell c[i, j]. The
variable xi,j,p is true if p ∈ Σ ∪ Q is in c[i, j]. Each configuration has nk cells.
Boolean values of l × (nk) = O(nk) variables represent a configuration, where
l = |Σ ∪Q|.

If t = 1, then either c1 = c2 or c2 is reached in one step from c1. The equality
is expressed by writing a boolean expression. It says that each of the variables
representing c1 has the same boolean value as the corresponding variable rep-
resenting c2.
In the second situation, values of variables of each triple1 of c1’s cells (3l vari-
ables) should yield the values of variables of the corresponding triple of c2’s
cells.

If t > 1 (we take t to be power of 2 for ease of presentation), φc1,c2,t is
constructed recursively. The obvious solution that comes to mind is as follows.
But it does not work.

φc1,c2,t = ∃c
′(φc1,c′,t/2 ∧ φc′,c2,t/2).

The symbol c′ represents a configuration. But the actual meaning of ∃c′ is the
existence of l = O(nk) variables that encodes the configurationc′ i.e. ∃x′1 · · · ∃x

′
l.

The machineM can go from c1 to c2 in at most t steps, if some intermediate
configuration c′ exists such that M can go from c1 to c′ in at most t

2 steps and
from c′ to c2 in at most t

2 steps.
But now we need to construct two formulas φc1,c′,t/2 and φc′,c2,t/2, and

though the number of steps are cut to half (t/2), the length of formula is doubled!

Finally the length of the formula will be exponentially large as 2log 2dn
k

= 2O(nk).
We use ‘∀’ quantifier along with the ‘∃’ quantifier as follows to solve the

problem.
φc1,c2,t = ∃c

′∀(c3, c4) ∈ {(c1, c
′), (c′, c2)}(φc3,c4,t/2).

By introducing new variables representing the configurations c3 and c4, allows
us to fold the two parts of the original sub-formula φc1,c′,t/2 and φc′,c2,t/2 into
a single formula.

The meaning of ∀(c3, c4) ∈ {(c1, c′), (c′, c4)} is that the variables of c3 and
c4 can take the values of the variables of c1 and c′ or the values of the variables
of c′ and c4 respectively. And in both the cases φc3,c4,t/2 is true.

Next we calculate the size of the formula. φcs,ca,T where T = 2df(n). At
each level of recursion the new variables and equality formula added is linear in

1The notion of triple window was presented in the proof of Cook-Levin Theorem.

6



the size of configurations The depth of recursion is log(2df(n)) = O(f(n)). So
the size of the formula is O(f2(n)). QED.

The proof of the theorem does not require that the machine M should be
deterministic. It actually proves that TQBF is also a complete problem for
NPSPACE. This implies that PSPACE = NPSPACE.

It is known that a problem in NP has a short certificate that can be verified
in polynomial time. A quantified statement is viewed as a two player game with
perfect information. Both players have access to what is known to the other.
The game of chess and a configuration of the chess-board is an example of such
game. The notion of PSPACE-complete problem is related to the existence of
a winning strategy for player 1. It amounts to say that there is a first move for
the player-1 such that for all moves of the player-2, there is a second move of
the player1, · · · , such that at the end the player-1 wins.

In case of a problem in NP, finding a witness requires a search through the
space of certificates. But the length of a certificate is bounded by a polynomial.
In case of a problem in PSPACE, the search is for a winning strategy on the
game tree. An encoding of a winning strategy of player-1 may be exponentially
long as it depends on all possible (at least 2) moves of player-2. .

1.3 QBF-Game

The ”play ground” of a QBF game is a closed QBF
∃x1∀x2 · · ·Qxkφ(x1, x2, · · · , xk) with k variables. Q = ∃ if k is odd and it is ∀
if k is even. Two players E and A, alternately make moves by picking values
of the corresponding variables. The player E picks the values of x1, x3, · · · , and
the player A picks the values of x2, x4, · · · .

At the end the values picked up by two players are used to evaluate φ(x1, x2, · · · , xk).
The first player wins if φ(x1, · · · , x2n) is true for the chosen values of the Boolean
variables. Similarly, the second player wins if it is false.
Example 8. Consider the formula

∃x1∀x2∃x3(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

The player E has a winning strategy: x1 = 0, x3 = x2.
If we change the formula in the following way,

∃x1∀x2∃x3(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3),

then the player A has a winning strategy with x2 = 1.
If we have sequence of existential or universal quantifiers, e.g.

∃x1x2∀x3x4x5 · · ·Qxkφ(x1, · · · , xk).

The E player will choose values of x1, x2 and A player will choose values
x3, x4, x5 etc.

QBF−GAME = {< φ >: player E has a winning strategy in the game of φ}.

This essentially means that QBF-GAME is PSPACE-complete.

7



1.4 L, NL and coNL

Here we talk about languages decided in sub-linear space. Important language
classes are in L and NL. A natural question is why do we consider logspace
when we consider sub-linear complexity classes. One reason is that logspace
is just large enough to solve many interesting problems. An n bit input can
be addressed using ⌈logn⌉ bits. It seems logspace is almost a necessity. These
classes also have nice properties.

A logspace TM model is slightly different. It has a read-only input tape,
read/write work-tape, and there may be a write-only output tape where bits of
the computed function can be written sequentially. The number of cells used in
the work-tape is considered as the measure space complexity.
Our earlier claim of 2O(f(n)) running time of a f(n) space bounded machine is
not valid if f(n) < logn, as it takes n number of steps to read the input.
In general a configuration of an f(n) space bounded machine has information
about state, input head position, work-tape head position and the content of
the work-tape. If there are g tape symbols, then the maximum number of
configurations can be snf(n)gf(n), where s is the number of states. This is
equal to n2O(f(n)) = 2logn+O(f(n)). Which is equal to 2O(f(n)) if f(n) ≥ logn.

The notion of complete problem in logspace is similar to our earlier concept.
But a polynomial time Karp reduction is not useful in case of language classP, L
or NL. The reduction cost obscures the resource bound of the complexity class.
Every problem in P, NL or L are decidable in polynomial time. Every language
A 6= ∅ and 6= Σ∗ is a complete problem under polynomial time reduction.
Example 9. Let A ∈ NL and neither L = ∅, nor L = Σ∗. So there is a string
xi ∈ L and xo 6∈ L. Let B be any language in NL. So B has a polynomial time
decider (DTM) M . We define the mapping as follows: for all x ∈ Σ∗

x 7→

{
xi if M accepts x,
xo if M does not accept x.

This makes A an NL-complete language under Karp reduction.
The reduction function is restricted to logspace to make complete problems

more meaningful in case of P, L and NL. But there is a problem of composition
of two such functions. Following is a definition of a computable function in
logspace.

Definition 6. A function f : N0 → N0 is logspace computable, if the input
is given on a read-only tape, and the output is obtained on a write-only output
tape. The amount of space used on the read-write work-tape is O(log |x|), where
x is the input.
This gives a natural bound on the size of the value of f(x). The length of f(x)
is bounded by a polynomial i.e. |f(x)| ≤ |x|c, where c is a constant.

Let f and g be two functions computable in logspace. But to compute
g(f(x)) we cannot store the intermediate value of f(x), as its length may be
polynomial in |x|. So to compute g ◦ f in logspace, it is necessary to compute
bits of f(x), f(x)i, 1 ≤ i ≤ |f(x)| in logspace as and when required.

From the composition point of view, f : {0, 1}∗ → {0, 1}∗ is logspace com-
putable if every bit of f(x) can be computed using logspace i.e. the function is
implicitly computable in logspace.

8



In terms of language this can be stated as follows. The language Lf = {<
x, i >: f(x)i = 1} and the language L′

f = {< x, i >: 1 ≤ i ≤ |f(x)|} are in L.
In other words we have a logspace bounded Turing machine that computes
< x, i > 7→ f(x)i, 1 ≤ i ≤ |f(x)|.

Definition 7. A language A is logspace reducible to a language B, A ≤l B,
if there is a logspace computable function f : {0, 1}∗ → {0, 1}∗ such that for all
x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B.

We say that a language A is NL-complete if it is in NL and all languages
in NL are logspace reducible to A. If an NL-complete problem is in L, then
L = NL.

Following proposition shows that logspace computable functions are closed
under composition and have expected properties of reducibility.

Proposition 1. Let A,B,C ⊆ {0, 1}∗.

1. If A ≤l B and B ≤l C, then A ≤l C.

2. If A ≤l B and B ∈ L, then A ∈ L.

Proof: We first prove that if f, g : {0, 1}∗ → {0, 1}∗ are implicitly computable
in logspace, then so is h = g ◦ f .

Let Mf and Mg be the logspace machines computing < x, i > 7→ f(x)i and
< y, j > 7→ g(y)j respectively, where 1 ≤ i ≤ |f(x)| and 1 ≤ j ≤ |g(x)|. We
construct the machine Mh that computes < x, k > 7→ g(f(x))k in logspace,
where 1 ≤ k ≤ |g(f(x))|.

Mh is computing the kth bit of g(f(x)) by simulatingMg on f(x). We assume
that Mg wants to work on the ith bit of f(x). Mh saves i on its work-tape, that
requires log |f(x)| space.

But then f(x)i is not actually available, and is to be computed usingMf . So,
Mh suspends Mg, saves the configuration of Mg on the work tape. It requires
O(log |f(x)|) space (Mg is a logspace machine and its potential input is f(x)).
Mh simulates Mf on the input < x, i >, where x is available from the actual
input and i is available from the work tape of Mh. Running of Mf requires
O(log |x|) space. Once the bit f(x)i is obtained, the computation of Mf is
discarded and Mg is simulated for one more step on f(x)i.

The total space used by Mh is (i) space for the index i of f(x), (ii) space for
the computation ofMf on < x, i >, (iii) space to save the configuration ofMg on
< f(x), j > etc. The lengths of f(x) and g(f(x)) are polynomial bounded. So
the total space is (i) O(log |f(x)|), (ii) O(log |x|), (iii) O(log |f(x)|+log |g(f(x))|)
which is equal to O(log |x|) as f, g are bounded by polynomial.

Once it is known that the composition of implicitly logspace computable
functions are possible, the proof of the first part is simple. The logspace com-
putable function f reduces A to B and the logspace computable function g
reduces B to C. So, the logspace computable function h = g ◦ f reduces A to
C.

For the second part we observe that B is in L implies that the characteristic
function χB of B is logspace computable. So, χA = χB ◦ f , the characteristic
function of A is also logspace computable. QED.

We have already argued that PATH is in NL. Now we prove that it is NL-
hard, and so is NL-complete.

Proposition 2. PATH is NL-hard.

9



Proof: Let the NTM N decides a language A in space O(log n). We need an
implicitly logspace computable function f that reduces A to PATH.

Let x ∈ {0, 1}∗ and |x| = n. Let f(x) be the configuration graph GN,x

which has 2O(logn) nodes, along with the start configuration Cstart and the
accept configuration Caccept i.e.

x 7→< GN,x, Cstart, Caccept > .

x ∈ A if and only if there is a path from Cstart to Caccept in the graph GN,x.
A configurations of N can be stored in O(log n) space. The reduction ma-

chine will essentially produce a list of configurations, the set of vertices of GN,x

and a list of edges (Ci, Cj) of GN,x, where Ci, Cj are vertices of GN,x and
Ci ⊢M Cj . Each configuration is of length k logn, where n = |x| and k is
a constant. The reduction machine sequentially generates a strings of length
k logn, tests whether the generated string encodes a valid configuration of N ,
and output it. It also generates all pairs of configurations Ci and Cj , checks
whether Cj is reachable from Ci in one step of N . If yes, it outputs the pair
(Ci, Cj). This can also be done in O(log n) space. QED.
Corollary 2. NL ⊆ P.
Proof: Let A ∈ NL. So A ≤l PATH takes 2O(logn) = O(nk) steps. It is also
known that PATH ∈ P. So A can be decided in polynomial time. QED.

The class NP has a verifier based definition. A similar definition is there for
NL where the certificate is of polynomial length but each bit of it can be read
only once.

Definition 8. A language A is in NL, if there is a deterministic logspace
bounded verifier V with a special read once certificate tape and a polynomial
p : N0 → N0, such that for all x ∈ {0, 1}∗, x ∈ L if and only if ∃w ∈ {0, 1}p(|x|)

s.t. V accepts < x,w > in logspace (O(log |x|)), where x is on the read-only
input tape and w is on the read once certificate tape.

We argue that the definitions of NL using a nondeterministic logspace ma-
chine is equivalent to the logspace deterministic verifier based definition, where
the verifier uses a polynomial length read only once certificate.
If A is decided by an NL machine N , then the number of nondeterministic
choices is bounded by some polynomial. The sequences of these choices can be
used as a certificate for the deterministic logspace verifier.
If there is a logspace verifier V for A that uses a polynomial length read-only-
once certificate, then we have the following NL machine:
N : input x

1. Non-deterministically guess a witness bit and simulate the logspace veri-
fier.

2. A log-space verifier cannot remember the entire history of certificate bits
as it is of polynomial length. In other words, the verifier reads the bit
only once.

The class coNL is defined in a natural way. If A ∈ NL, then L ∈ coNL. So

PATH = {< G, s, d >: there is no path from s to d in G}.

is in coNL. In fact it is coNL complete. The reduction function that reduces
a language A ∈ L to PATH will also reduce A ∈ coNL to PATH.

10



An interesting result ([NI], [RS]) is that the class NL = coNL.
PATH ∈ NL ⇒ PATH ≤l PATH . PATH ∈ NL ⇒ PATH ∈ coNL.

For all A ∈ coNLA ≤l PATH ≤l PATH . So by composition of reduction, all
A ∈ coNL is in NL. So all A ∈ NL is also in coNL.

The language PATH can be decided by a nondeterministic Turing machine
in logn space. It was shown by Immerman, Szelepcsényi that the number of
reachable (unreachable = m− reachable) nodes from a given node s in a graph
G can be counted by a nondeterministic Turing machine using logn space.

The algorithm for counting the number of reachable nodes from a given node
s is as follows.

• Let m = |V (G)| and s be the start node.

• The set Ai ⊆ V (G), i = 0, · · · ,m−1 is the collection of all nodes that are
at a distance ≤ i from s. The basis is A0 = {s}, Ai ⊆ Ai+1, 0 ≤ i < m,
and Am−1 is total collection of reachable nodes of V (G) from s.

• Let the size of Ai be ci. We have c0 = 1 and cm−1 is the total number of
reachable nodes of V (G) from s.

We calculate ci+1 from ci starting from c0. The elements of Ai are computed,
but they cannot be stored as that will exceed logspace limit.

We compute and store ci+1. At the beginning of the ith iteration the value
of ci is known and it occupies logspace. At the end of iteration ci+1 is available
and ci is discarded.

• Following computation takes place for i = 0, · · · ,m− 2.

• The algorithm goes through every v ∈ VG \ {s}, and checks whether v ∈
Ai+1. The value of ci+1 is accumulated.

• To test whether v ∈ Ai+1, an inner loop goes through every u ∈ VG. There
is a non-deterministic guess whether u ∈ Ai. If that be the case and there
is an edge (u, v), then v ∈ Ai+1.

• If u is guessed to be in Ai, the non-deterministic algorithm for PATH is
used to enumerate a path of length ≤ i. If the last node is not u, the
branch of computation ‘No’-halt. If the last node is u and (u, v) ∈ EG,
then v ∈ Ai+1 and ci+1 is incremented.

• A local counter lc is maintained to keep track of the count of elements of
Ai. At the end, if ci 6= lc, the branch of computation ‘No’-halt. Note that
ci is already known.

The question is why does the following simple minded non-deterministic
machine will not work, where NPATH is a non-deterministic logspace machine
that decides PATH . Does it have something to do with function computation
by a nondeterministic machine or space?

11



C: Input < G, s >

1. c← 1

2. for every u ∈ V (G) \ {s} do

3. if NPATH accepts < G, s, u >, then c← c+ 1
// NPATH gets G and s from the input tape of C and u from its work
tape.

4. return c.

Theorem 3. (Immerman, Szelepcsényi) PATH ∈ NL.
Proof: Let G be a graph with m nodes. We know how to calculate the number
of nodes reachable from s in G. Let it be equal to c. We wish to design a
non-deterministic logspace bounded Turing machine M that given the input
< G, s, d > and c will accept, if there is no path from s to d.

• For every node of u ∈ V (G), the machine M nondeterministically guesses
whether u is reachable from s. If the guess is that u is ‘reachable’, it does
the following:

• If u = d, the computation branch of the non-deterministic machine comes
to reject halt.

• Otherwise, a path from s to u is guessed using the non-deterministic al-
gorithm for PATH of length at most m− 1.

• If there is a verification error, the computation branch comes to reject
halt.

• Otherwise the computation continues with the next u.

• A local counter of reachable nodes is maintained. At the end if the count
is less than the known count c, the branch comes to reject halt.

• Otherwise it is accepted.

We put two parts of the algorithm together.

M : Input < G, s, d >
1. c0 = 1 /* A0 = {s} - counting of reachable nodes start */
2. for i = 0 to m− 2 /* Compute ci+1 from ci
3. ci+1 = 1 /* s ∈ Ai+1 */
4. For each v ∈ V (G) \ {s}
5. lc = 0 /* recounting |Ai| */
6. For each u ∈ V (G)
7. Nondeterministically guess whether u is reachable and perform 8-10 or skip
8. Nondeterministically guess a path from s of length ≤ i
9. if the last node is u, then lc = lc+ 1 /* size of |Ai| incremented */

else reject
10. if (u, v) ∈ V (G), then { ci+1 = ci+1 + 1 and goto 5 }

/* size of Ai+1 is incremented */

12



11. if lc 6= ci, reject - /* wrong guess for the elements of Ai−1 */
/* counting of reachable nodes ends */

12. lc = 0 /* counting of Am−1 starts */
13. For each u ∈ V (G)
14. Nondeterministically whether u is reachable and perform 15-17 or skip
15. Nondeterministically guess a path of length ≤ m from s

if the last node of the path is not u, reject.
16 if u = d, then reject
16 lc = lc+ 1
17. if lc 6= cm−1, then reject,
18. else accept

The algorithm needs to storem,u, v, ci, ci+1, d, i, and s. So the only logspace
is required. QED.

This shows that

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

From the hierarchy theorem it is known (we have not yet proved) that L is a
proper subset of PSPACE and P is a proper subset of EXP. It is also known
that NL is a proper subset of PSPACE (we have not proved yet). So, either
NL is a proper subset of P or P is a proper subset of PSPACE. But nothing
is known.

Proposition 3. 2SAT is in NL.
Proof: If we prove that 2SAT ∈ NL, then 2SAT ∈ coNL. But then NL =
coNL, so 2SAT ∈ NL.
If a 2CNF formula is unsatisfiable, then a nondeterministic logspace machine
guesses a variable x and path from x to ¬x and back. QED.

Proposition 4. 2SAT is NL-complete.
Proof: We reduce PATH to 2SAT in logspace. Given a graph < G, s, d > the
2SAT formula φ is designed as follows:

1. For every vertex v ∈ V (G), there is a variable xv. This variable is true if
there is a path from s to v in G.

2. For every edge (u, v) ∈ F (G), a clause (xu ∨ xv) is there in φ. Note that
(xu ∨ xv) is logically equivalent to (xu ⇒ xv).

3. There are two more clauses, (xs) and (xd).

We claim that φ ∈ 2SAT if and only if < G, s, d >∈ PATH.
If there is no path from s to d, then the formula is satisfiable by assigning true to
all variables corresponding to the nodes reachable from s. If u is reachable from
s and there is an edge (u, v), then xv ← true. It satisfies the clause (xu ∨ xv).
If u is not reachable from s, xu ← false, and that satisfies the clause (xu ∨ xv).
Finally, xd ← false, makes (xd) true.
In the other direction, if there is a path s, u1, · · · , uk, d in G, we have the
following clauses in φ:

(xs) ∧ (xs ∨ xu1
) ∧ · · · ∧ (xuk

, xd) ∧ (xd).

Following assignment is necessary to satisfy it.

{xs, xu1
, · · · , xuk

, xd, xd} ← true.

But that is impossible. QED.

13



References

[MS] Theory of Computation byMichael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[NI] N Immerman, Nondeterministic space is closed under complementation,
SIAM J. Comput. 17(5):935-938, 1988.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[RS] R Szelepcsényi, The method of forcing for nondeterministic automata, Bul-
letin of the European Association for Theoretical Computer Science, 33:96-
100, Oct. 1987.

[WJS] W J Savitch, Relationship between nondeterministic abd deterministic
tape complexities, in J. Comput. Syst. Sci., 4:177-192, 1970.

14


