
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture II

Instructor: Goutam Biswas Autumn Semester 2023

1 P, NP, coNP and Complete Problems

We have already defined the basic complexity classes P and NP using poly-
nomial time bounded deterministic and nondeterministic Turing machines. In
this section we start with a different definition of the class NP. We show that
these two definitions coincide. Then following Cook and Levin we establish the
existence of an important NP-complete problem, the satisfiability problem of
propositional logic.

Many of us have experience that solving a mathematical problem is more
difficult than verifying the correctness of a given solution. It seems, it is also
manifested in computing (no one knows for sure). There are decision problems
for which there is no known polynomial time algorithm (Turing machine solving
the problem within the number of steps bounded by some polynomial over the
length of an input), but if an appropriate “witness” or “proof” of polynomial
size is provided for a positive answer (x ∈ L), then that can be verified in
polynomial time.

We have already defined NP =
⋃

k≥1NTIME(nk). Following is an alter-
nate and interesting definition using polynomial time ‘proof verifier’.

Definition 1. A language L ⊆ {0, 1}∗ is in NP, if there is a polynomial
time bounded Turing Machine V called a verifier and a polynomial p(n) over
N0, such that

x ∈ L if and only if ∃w ∈ {0, 1}p(|x|) such that V accepts < x,w >,

where w is called an witness, certificate, or proof of x ∈ L. It is natural that the
witness cannot be too long. Its length must be polynomial bounded. Otherwise
reading the proof will take ‘long’ time.

If L ∈ P, then it must be in NP, and the verifier is the decider of L with
null string as the witness. So P ⊆ NP. The class coNP is defined as follows:

coNP = {L ⊆ {0, 1}∗ : Σ∗ \ L ∈ P}1.

1The notion of Σ∗\L is a bit relaxed. We treate PRIME as a complement of COMPOSITE,
and do not bother about 1.

1

The following proposition shows the equivalence of two definitions of NP.
Proposition 1. NP as defined above is same as

⋃

k≥1 NTIME(nk).
Proof: Let L is decided by an NDTM N within p(n) number of steps, where
p(n) is a polynomial. So for each x ∈ L, there is a sequence of choices of
transitions2 that leads to an accept halt. The length of this sequence cannot be
longer than p(n).
Given the input x, the description of N and the choice sequence, a deterministic
Turing machine M can verify in polynomial time that x drives N to an accept

halt. The length of witness, the nondeterministic choice sequence, is bounded
by a polynomial, the description of N is fixed (it does not depend on x). So the
language L is in NP.

Let L ∈ NP, so there is a polynomial time verifier V . Following is the
polynomial time NTM.

N : input x

1. Nondeterministically creates a witness string w of the choices of transi-
tions3. The length of w is bounded by p(n), where n = |x|.

2. Use the verifier V on < x,w >.

3. Accept if V (x,w) = 1, else reject.

The running time of N is bounded by polynomial. QED.
A few examples of problems in NP.

Example 1.

1. COMPOSITE = {n ∈ N : ∃p, q ∈ N (p, q > 1 and n = p · q)}. The
certificate is a pair of factors which cannot be longer than c⌊· log2 n⌋,
where the input is of length ⌈log2 n⌉.
As a consequence PRIME, the collection of prime numbers, is in coNP.
But now it is known that PRIME is in P. So COMPOSITE is also in P.

2. Whether a graph G has an independent set of certain size.
INDSET = {< G, k >: ∃S ⊆ V (G), |S| ≥ k, and ∀u, v ∈ S, {u, v} 6∈
E(G)}, k ∈ N specifies the size of the independent set. The certificate is
a set of vertices.

3. TSP = {< G = (V,E), d : E → N, k >: there is a travelling salesperson’s
tour of distance ≤ k}. V = {1, 2, · · · , n} is a set of nodes,

(

n
2

)

distances
dij between nodes i and j, and k is a number. Decide whether there is a
tour that visits every node exactly once and the total length traversed is
at most k. The certificate is a sequence of such nodes.

4. GRAPH-ISO = {< G1, G2 >: graph G1 and graph G2 are isomorphic }.
Given two adjacency matrices E1 and E2 corresponding to G1 and G2,
decide whether there is a permutation π : V1 → V2 so that E1 after
reordaring is same as E2.

5. FACTORING = {< n, l, u >: n, l, u ∈ N, n has a factor p, l ≤ p ≤ u}. The
certificate is p.

2In an alternative way we may assume that the degree of nondeterminism is 2, and there
two transition functions δ0 and δ1.

3If x ∈ L, there is a sequence that leads to accept halt.

2

6. PRIME is also in NP.
The certificate is more complicated (Pratt Certificate). We know that a
natural number p > 1 is a prime if and only if Z∗

p is a cyclic group of order
p− 1 i.e. there is an a ∈ Z

∗
p, 1 < a < p, so that ap−1 ≡ 1(mod p) (Fermat

test).

And for all prime factors q of p− 1, a
p−1

q 6≡ 1(mod p) (Lucas test).

(a) So generator a is part of the certificate. Computation of ap−1 modulo
p can be performed in O(l3), where l = ⌈log p⌉. But it is not sufficient
to have a alone as a certificate as it may fail: 415−1 ≡ 1(mod 15), but
15 is no prime. In this case the second test fails as 42 ≡ 1(mod 15).

(b) So the prime factors of p − 1 is also part of the certificate. But the
list of prime factors of p − 1 may be false. Each factor also needs
the certificate of its primality. As an example, a false certificate of
45 is (8; 2, 22), where 844 mod 45 = 1. Also 82 mod 45 = 19 and
822 mod 45 = 19. This satisfy the second condition also. But if
the certificate was correct i.e. (8; 2, 11), the second test will fail as
844/11 mod 45 = 84 mod 45 = 1.

(c) The complete certificate for a prime defined inductively is as follows:
Basis: C(2) = (), as 2− 1 = 1 has no prime factors.
Induction: C(p) = (a; q1, C(q1), q2, C(q2), · · · , qk, C(qk)), where q1, · · · , qk
are prime factors of p− 1. The process stops at p = 2.

(d) A certificate for 43 is as follows: 2 generates Z∗
43 and the prime factors

of 43− 1 = 42 are {2, 3, 7}.

(2; (2, C(2)), (3, C(3)), (7, C(7)))
= (2; (2, ()), (3, (2; (2, ()))), (7, (3; (2, C(2)), (3, C(3)))))
= (2; (2, ()), (3, (2; (2, ()))), (7, (3; (2, ()), (3, (2; (2, ()))))))

(e) It can be proved that the length of the certificate is bounded by
5(log p)2, a polynomial over the length of input.

i. The bound is true for p = 2 and p = 3.

ii. Let the number of prime factors of p− 1 be k < log2 p, and they
are q1 = 2(p− 1 is even), q2, · · · , qk.
The certificate C(p) = (a, 2, C(2), q2, C(q2), · · · , qk, C(qk)).
The length of C(p) is determined by a (|a| < log p), 2k separators
(< 2 log p), certificate of 2 (of constant length), length of all qi’s
(2 log p) (Note4), and the lengths of C(qi)’s.

iii. By the induction hypothesis, the length of the certificate for each
qi is 5(log qi)

2.

iv. So the total length of the certificate is bounded by

|C(p)| ≤ 5 log p+ c1 + 5

k
∑

i=2

(log qi)
2 < 5(log p)2.

log(q2 · · · qk) ≤ log p−1
2 < log p − 1 ⇒ log q2 + · · · + log qk <

log p− 1. Therefore log2 q2 + log2 q3 + · · ·+ log2 qk < (log p− 1)2

|C(p)| ≤ 5 log p+ 5 log2 p− 10 log p+ c < 5 log2 p.
4The number of bits for 2n is log2 2

n = n and the number of bits for n 2’s is 2n. This is
the largest possible.

3

v. The verification of C(p) can be performed in O(n4) time, where
n = log p. The computation of modular exponentiation takes
O(n3) time.

It is not known whether NP and P are equal. This is considered to be the
‘Holy Grail’ of computer science! Most researchers believe that P 6= NP. There
are many similar unanswered questions in this area.

The class NP was originally defined in terms of nondeterministic Turing
machine. The name NP comes from nondeterministic polynomial time bounded
Turing machine.

1.1 NP-hard, and NP-Complete

It was observed that there is a large collection of decision problems (membership
in a languages) such as the satisfiability of Boolean formula, independent set of
a certain size in an undirected graph, 3-colouring of graph etc. are in the class
NP . All these problems are difficult to solve in the sense that there is no known
polynomial time algorithm. But they have a connection, one of them can be
translated to another in polynomial time. The translation or reduction is defined
in the following way.

Definition 2. A language L ⊆ {0, 1}∗ is polynomial time mapping re-
ducible 5 to L′ ⊆ {0, 1}∗, if there is a polynomial-time bounded computable
function f : {0, 1}∗ → {0, 1}∗, such that

x ∈ L if and only if f(x) ∈ L′, for all x ∈ {0, 1}∗.

This is denoted as L ≤P L′.
Definition 3. A language L′ is NP-hard if for every L ∈ NP, L ≤P L′.

A language L′ is called NP-complete if it is NP-hard and also belongs to the
class NP.

Following are a few properties of ‘≤P ’.

(a) If L ≤P L′ and L′ ∈ P, then L ∈ P.

(b) L ≤P L, for all L - the binary relation is reflexive.

(c) If L ≤P L′ and L′ ≤P L′′, then L ≤P L′′ - the binary relation is transitive.

(d) What can you conclude about L′, if L ≤P L′ and L is NP-hard?

Proof: Proof of these properties are simple.

(a) Let the polynomial time bounded (p) Turing computable function f re-
duces L to L′ and let L′ be decided by a polynomial time bounded (q)
Turing machine M . Following is the decider for L.
N : input x

(i) Compute f(x).

(ii) Simulate M on f(x).

(iii) If M accepts f(x), accept x;

5It is also called polynomial time many-one reducible. It was Richard Karp who demon-
strated it for the first time [RMK].

4

(iv) otherwise reject x.

(b) Ex.

(c) Ex.

(d) If L′′ ∈ NP, then L′′ ≤P L ⇒ L′′ ≤P L′ (transitiviti of ‘≤P ’). So all
problems of of NP are mapping reducible to L′, that makes it NP-hard.

QED.
Consider the following synthetic language.

LNP = {< V, x, 1n, 1t >: ∃u ∈ {0, 1}n s.t. V accepts < x, u > within t steps},

where V is an encoding of a deterministic Turing machine.
Proposition 2. LNP is NP-complete.

Proof:

LNP is in NP:
We design a verifier V ′ for LNP. Consider < V, x, 1n, 1t >, if there is an u ∈
{0, 1}n such that V accepts < x, u > in time t, then < V, x, 1n, 1t >∈ LNP.
This u can be used as a certificate of < V, x, 1n, 1t >. Its length is linear with
respect to the length of input, due to 1n. V ′ simulates V on < x, u > for at most
t steps. This can be done in polynomial time. If V accepts, then V ′ returns ‘Y ’
else it returns ‘N ’.

Any language L ∈ NP is polynomial time reducible to LNP:
If L is in NP, then by definition there is a polynomial p : N0 → N0 and a
polynomial time bounded Turing machine V ′ so that for all x ∈ {0, 1}∗, x ∈ L if
and only if there is a u ∈ {0, 1}p(|x|) such that V ′ accepts < x, u > in polynomial
time. Let the running time of V ′ be bounded by the polynomial q : N0 → N0.
The reduction is

x 7→< V ′, x, 1p(|x|), 1q(|x|+p(|x|)) > .

This mapping can be done in polynomial time as < V ′ > is of fixed length, and
lengths of both 1p(|x|) and 1q(|x|+p(|x|)) are polynomial bounded. QED.

But this language is not very interesting or useful for reducing problems from
different practical domains. S A Cook in 1971 [SAC] and L A Levin in 1973 (in-
dependently from USSR) [LAL] presented the notion of NP-completeness and
gave examples of NP-complete problems from domains like logic etc.. Subse-
quently R M Karp in 1972 [RMK] showed a large collection of practical problems
to be NP-complete.

1.2 Boolean Formula

Definition 4. A boolean formula is defined as follows.

1. Boolean constants true and false are boolean formulas.

2. Boolean variables x1, x2, · · · (that takes values true or false) are boolean
formulas.

3. If f1 and f2 are boolean formula, then so are (f1 ∨ f2), (f1 ∧ f2) and ¬f1.

4. Nothing else is a boolean formula.

5

A variable or a negation of a variable is called a literal. We shall use f for ¬f
for negation of a formula.

We encode true and false as 1 and 0 respectively. If φ is a boolean formula of
n variables, x1, · · · , xn, we can assign truth values to the variables (an element
v ∈ {0, 1}n) and get a truth value φ(v) for the formula. All possible assignments
to the variables form the truth table. A boolean formula φ is satisfiable if there is
a truth assignment that make φ true. It is unsatisfiable if for no truth assignment
the formula is true.
Example 2. The formula

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

is satisfiable with assignment x1 = 1, x2 = 0, x3 = 1. But following formulas are
unsatisfiable

1. x ∧ x.

2. (x1 ∨ x2) ∧ x1 ∧ x2.

3. (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x2 ∨ x1).

A boolean formula is in conjunctive normal form (CNF) or clausal normal

form if it is conjunction (and) of clauses. A clause is a disjunction (or) of literals.
It is in disjunctive normal form (DNF) or sum of product forn if it is disjunction
of the conjunctions of literals. It is a k-CNF if it is in CNF and every clause

has at most k literals.
We define the following languages:

SAT 6 =







φ =

m
∧

i=1





ni
∨

j=1

uij



 : m,ni > 0 and φ is satisfiable







,

where uij is a literal and

3SAT =







φ =

m
∧

i=1





3
∨

j=1

uij



 : m > 0and φ is satisfiable







,

2SAT =

{

φ =
m
∧

i=1

(li1 ∨ li2) : φ is satisfiable

}

,

Proposition 3. Any Boolean function f : {0, 1}n → {0, 1} can be ex-
pressed as a disjunctive normal form (DNF) or a conjunctive normal form (CNF)
(functional completeness of ∨,∧,¬).
Proof: It is known that for a n variable formula there are 2n rows in the truth
table. We take the standard convention that the truth assignment corresponding
of the variables in the jth row is the n-bit binary representation of j, 0 ≤ j ≤
2n − 1.

Consider the truth-table corresponding to an n-variable Boolean function
f(x1, · · · , xn). For the equivalent DNF formula ψ, we only consider those rows
of the table where the truth values of the function is 1. Each row corresponds to

6One may define SAT = {φ : φ is satisfiable.}.

6

a conjunction (∧) of literals, and all of them are connected by disjunction (∨) to
form the final formula ψ. Let j be one such row and the values of the variables
be v1, · · · , vn (an an n-tuple of 1’s and 0’s). Corresponding to this row, the
conjunct of literals is Dj = l1 ∧ · · · ∧ ln, where li = xi if vi = 1, otherwise it
is xi. It is clear that no other assignment of variables can make Dj true as at
least one of the literals will be false. Finally the equivalent DNF formula is

ψ(x1, · · · , xn) = Di1 ∨ · · · ∨Dik ,

where there are k rows with truth values 1.
We observe that ψ(v1, · · · , vn) = 1, if one of disjuncts is 1 i.e. one of the rows
of the truth table of ψ has a 1.
On the other hand if ψ(v1, · · · , vn) = 0, then all Dij s are false or 0. So
f(v1, · · · , vn) = 1 if and only if ψ(x1, · · · , xn) = 1.

As an example consider a 5-variable formulas and the jth row of the truth
table where the truth value 1. Let the values of the Boolean variables in the
jth row be (01101), then the corresponding conjunctive formula Dj = x1 ∧ x2 ∧
x3 ∧ x4 ∧ x5. It is clear that Dj(01101) = 1, but Dj(k) = 0 for any other truth
assignment.

Similarly to get the equivalent CNF formula of f , we consider only those
rows where the truth values are 0. If the values of the variables (x1, · · · , xn)
are (v1, · · · , vn) in one such row j, we take Cj = l1 ∨ · · · ∨ ln, where li = xi if
vi = 0, otherwise it is xi. The truth value of Cj is 1 or true if the value of one
variable say, xi, is changed to 1− vi.

The equivalent CNF formula of f is

ψ(x1, · · · , xn) = Ci1 ∧ · · · ∧Cik ,

where there are k rows of the truth table with the truth values 0.
As an example we consider a 5-variable Boolean formula. Let the variables

in the jth row of the truth table, where φ(j) = 0, takes the values (10011), then
Cj = x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5. It is clear that Cj(10011) = 0, but Cj(k) = 1, if
k 6= 10011. QED.

The length of such a formula may be O(n2n), where the length of a formula
is the count of the number of ∨ and ∧. The size of a truth table is exponential
in the number of variables.

Before we prove that 3SAT is NP-complete, we shall prove an interesting
result that is 2SAT ∈ P.

Let φ be a 2SAT formula. We construct a graph Gφ = (Vφ, Eφ), where
Vφ = {x, x : x is a variable in φ}, and Eφ = {(l1, l2) : if (l2 ∨ l1) (or (l1 ∨ l2)) is
a clause in φ}.
Each edge in Gφ captures a clause in φ as a logical implication. Note that
(v ∨ u), (u ∨ v) and (u⇒ v) are logically equivalent.

There is a symmetry in the graph. A clause (l1 ∨ l2) = (l1, l2) gives rise to two
edges: (l1 ∨ l2) and (l2, l1). If there is a path from some literal l1 → · · · → lk,
k ≥ 1 in the graph, then by the transitivity of implication we have (l1 ⇒ lk). If
there is a path from l1 to lk, then there is a path from lk to l1.

Following the semantics of implication, if l1 is assigned the value true, then
every literal reachable from l1 in Gφ should also be true. Symmetrically, if l1 is
assigned false, then all its predecessor literals will also be false.

7

A variable x cannot be assigned any truth value in a formula φ, if there is a
path from x to x (equivalently a path from x to x) in Gφ, as it is same as x⇔ x

- a contradiction.
Example 3. Consider the following example,

φ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

x1 x1

x2 x2

x3 x3

Gφ

There is an satisfying assignment, x1 = 1, x2 = 0, x3 = 1. But if we include
another clause, (x1 ∨ x2), then there is no satisfying assignment any more, as
there will be a path from x1 to x1 and also a path from x1 to x1.

x1 x1

x2 x2

x3 x3

Gφ

Lemma 1. A 2SAT formula φ is unsatisfiable if and only if there is a variable
x such that there is a path from x to x (also a path from x to x).
Proof: Let for some variable x there are two such paths and at the same time
φ is satisfiable. So there is a truth value v(x) for x. Let v(x) is true and v(x)
is false. As there is a path from x to x, there must be an edge (l1, l2) such that
v(l1) = true but v(l2) = false. The corresponding clause is (l1 ∨ l2) and is not
satisfiable - a contradiction. Similar argument works for v(x) = false.

In the other direction, we assume that there is no variable x with such pair
of paths. The satisfying truth assignment of φ is as follows:
The following procedure will be repeated until all nodes are assigned truth
values.
Take a literal l, a node in Gφ, that has not been assigned any truth value and
there is no path from l to l. Assign true to l and every literal reachable from
the node of l. Assign false to the negation of these literals. In other words, if a
node is assigned false then its predecessor is also assigned false. If l′ is reachable
from l, then v(l′) = true. If the node l is reachable from l′, then both have value
false.

We claim that the process cannot assign same truth value to l′ and l′ i.e.
nodes of both l′ and l′ cannot be reachable from l. If that was possible then
l would have been reachable from both of them resulting a path from l to l.
QED.

Proposition 4. 2SAT ∈ P

Proof: The steps of the algorithm are as follows:
M : input φ

8

1. Build the graph Gφ.

2. For each variable x, test whether x is reachable and vice versa.

3. Accept if no such path exist; otherwise reject.

It is an O(n2) algorithm. QED.
It is interesting that 2SAT is of so low complexity, but there is no known

polynomial time algorithm for 3SAT. It fact there is a very strong belief that it
is impossible to have one.

1.3 Cook-Levin Theorem

Cook [SAC] and Levin [LAL] demonstrated the first NP-complete problem.
Theorem 2. Both SAT and 3SAT are NP-complete (Cook and Levin).
Lemma 3. Both SAT and 3SAT are in NP.
Proof: The certificate is the truth value assignment of the variables in the SAT
(3SAT) formula φ. Given an assignment it is possible to evaluate the truth
value of φ in polynomial time. QED.
Theorem 4. SAT is NP-complete.

We need to reduce any language L ∈ NP to SAT in polynomial time. Let L
is decided by an NTM N in polynomial time. The reduction of L to SAT takes
a x ∈ Σ∗ as input and produces a boolean formula φ that in a sense simulates
the computation of N on the input x. If N accepts x i.e. x ∈ L, then there is a
satisfying truth assignment for φ. Otherwise φ is unsatisfiable.
Proof: Let N decides L in nk time. The total computation of N on the input
x = w1w2 · · ·wn can be captured by a table of size nk × nk.

←−−−−−−−−−−−−−−− nk −−−−−−−−−−−−−−−→
✄ s w1 w2 · · · wn ⊔ · · · ⊔ ✁ start config.
✄ ✁ 2nd config.
✄ ✁

window

✄ ✁ nkth config.

QED.
We have used two end markers {✄,✁} for every configuration. The first

row is the start configuration of the computation on input x = w1w2 · · ·wn at
the start state s. The table corresponding to an input x ∈ L must have a
row of accepting configuration. The problem is to determine whether there is
a table with an accepting configuration corresponding to the nondeterministic
computation of N on x.

The reduction maps x 7→ φ. The variables of the boolean formula φ are
defined as follows:

9

Let N = (Q,Σ, δ, s) and Σ = {✄,⊔, s, · · · }. For each p ∈ C = Q ∪Σ ∪ {✁} and
1 ≤ i, j ≤ nk (row and column), we have a variable vi,j,p.

A cell at the ith row and jth column is cell[i, j]. A variable vi,j,p for the
cell[i, j] is 1 (true) if its content is p, otherwise it is 0 (false).

The formula φ is a conjunction of four formulas:

φ = φcell ∧ φstart ∧ φmove ∧ φaccept.

Each cell[i, j] contains exactly one p ∈ C.

φcell =
∧

1≤i,j≤nk











∨

p∈C

vi,j,p



 ∧







∧

p,q∈C,

p6=q

(vi,j,p ∨ vi,j,q)












.

Example 4. Let v1, v2, v3 be boolean variables. The following formula is true
if and only if exactly one variable is true.

f(v1, v2, v3) = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2) ∧ (v2 ∨ v3) ∧ (v3 ∨ v1).

The start configuration of N on input x = w1w2 · · ·wn is proper if the
following formula is satisfiable.

φstart = v1,1,✄∧v1,2,s∧v1,3,w1
∧· · · v1,n+2,wn

∧v1,n+3,⊔∧· · ·∧v1,nk−1,⊔∧v1,nk,✁.

There is an accepting configuration in the table of computation of N if the
following formula is satisfied.

φaccept =
∨

1≤i,j≤nk

vi,j,Y .

The transition from configuration Ci to Ci+1 must be compatible with the
state transition relation of N , for all i, 1 ≤ i < nk. This is ensured by the
satisfiability of φmove.

At every point in time the computation of a TM is local. The head can move
one place to left or to right, or it may remain stationary after changing the
content of the current cell. The validity of Ci →N Ci+1 is checked by looking
at every window of size 2× 3 on these pair of configurations.

Given an NTM N , there is a finite set of valid windows that are compatible

to Q,Σ and ∆.
Example 5. Let ((p, a), {(p, b,→)}), ((p, b), {(q, c,←), (q, a,−)}) ∈ ∆.
The state in the following positions can affect the window.

Window
1 p

2 p

3 p

4 p

5 p

Following are a few possible valid windows. α, β are any tape symbols.

1(a)
a α β

p α β
, 1(b)

b α β

c α β
, 1(c)

b α β

a α β
, central cells are unchanged.

10

2(a)
p a α

b p α
, 2(b)

p b α

β c α
, 2(c)

p b ∗
q a ∗

,

And there are many more but finite and depends on N but not on input x.
Following are a few invalid windows.

3(a)
α a β

α b β
, 3(b)

p a α

p b α
, 3(c)

α p b

q α a
.

Basis: The formula φstart is satisfiable if and only if the first row of the table
is a start configuration.
Hypothesis: Ci is a reachable configuration.
Induction: If all windows of (Ci, Ci+1) are valid, then Ci+1 is also a reachable
configuration i.e. Ci →N Ci+1.

We call an windowWij if the cell[i, j] is in its upper central position. InWij ,
if upper three symbols are tape symbols, then the content of cell[i, j] (upper-
central) is same as the content of cell[i + 1, j] (central-lower). The central cell
does not change if there is no adjacent state symbol.

If a Wij contains a state symbol in cell[i, j] (top-center), it is guaranteed
that the lower three cells are updated properly following the transition relation
of N .

φmove =
∧

1 ≤ i < nk

1 < j ≤ nk

valid Wij .

Each valid Wij can be replaced by the content of its cells. Let the possible
contents of 6-cells be a1, · · · , a6. The “valid Wij” can be replaced by

∨

valid a1,··· ,a6

(vi,j−1,a1
∧ vi,j,a2

∧ vi,j+1,a3
∧ vi+1,j−1,a4

∧ vi+1,j−,a5
∧ vi+1,j+1,a6

)

The time complexity of the reduction is as follows:

• The variables are of the form vi,j,p, where 1 ≤ i, j ≤ nk, p ∈ C = Q ∪
Σ ∪ {✁}. The number of variables are |C| × nk × nk = O(n2k) as |C|
does not depend on the length of the input. Lengths of i, j and p takes
2k logn+ log p = O(log n) bits. There is a length of O(log n) bits for each
variable.

• The formula for the validity of cells, φcell is a conjunction over nk × nk

cells. The length of each conjuncts is independent of the length of input
x. So the the length of φcell is O(n

2k).

• The formula φstart encodes the first row with nk variables and nk − 1 ‘∧’
operators. Its length is O(nk logn). The contribution

• The formula φaccept is a disjunction over all cells. Its length is O(n2k logn).

• Similarly the formula for moves, φmove is over all windows, over all (al-
most) cells is also O(n2k logn). The number of valid windows is indepen-
dent of the length input x.

The total length of the formula is O(n2k logn). The claim that it can be gener-
ated in polynomial time due to its repetitive nature!

11

1.4 Reduction

We have already proved that 3SAT ∈ NP. Now we reduce SAT to 3SAT in
polynomial time to show the following.

Proposition 5. 3SAT is NP-hard
Proof: Following is a reduction of SAT to 3SAT. Consider a CNF formula
φ = C1 ∧ · · · ∧Ck. We wish to transform it in equivalent 3CNF formula ψ. Let
the clause Ci has m > 3 literals i.e. Ci = li1 ∨ · · · ∨ lim. We introduce a new
variable zi1 and write f1 = (li1∨· · · li(m−2)∨zi1)∧(zi1∨ li(m−1)∨ lim). If there is
an assignment that makes Ci false (all its literals are false), then no assignment
of zi1 can make f1 true. On the other hand, if there is an assignment that makes
Ci true, then there is an assignment of zi1 that makes f1 true. If in the given
satisfying assignment both li(m−1) and lim are false then zi1 ← 0, else zi1 ← 1.

This process increases the length of the formula by 4 (increase in the number
of ∨ and ∧) and reduce the clause size tom−1. If the transformation is repeated
for m− 3 times, the increase in length is by 4(m− 3). QED.

We reduce 3SAT to the following set to prove that it is NP-hard.
Proposition 6.

INDSET = {< G, k >: ∃S ⊆ V (G) s.t. |S| ≥ k and ∀u, v ∈ S, {u, v} 6∈ E(G)}

is NP-complete.
Proof: We show two different reductions.
First reduction: Let there be m number of 3-literal clauses in the 3CNF
Boolean formula. Each clause C gives a triangle T with the vertices labelled by
the literals. If two clauses Ci and Cj has a variable xk and its negation xk, we
join the corresponding vertices by an edge (edge for inconsistency).

If there is a satisfying assignment v : V ar → {0, 1}, then each clause is also
satisfied, so there is a vertex in each triangle whose literal value is 1. These m
vertices will form an independent set. There cannot be any edge between a pair
of such vertices. An edge between two triangles is between a variable and its
negation.

We cannot form an independent set by taking two vertices from a triangle.
Also we cannot take two vertices of two triangles that are connected by an
age (inconsistent). So, if there is an independent set of size m, assigning 1 to
corresponding literals gives a satisfying assignment. There may be some extra
variables, that can be assigned any value.

Second Reduction: Associate a complete graph of 7 vertices to every
clause. So there are 7m vertices. Among the eight possible assignments,
{000, · · · , 111}, one will make a clause false e.g. if the clause is x1 ∨ x4 ∨ x11,
then the assignment x1 ← 0, x4 ← 1, x11 ← 1 will make it false. Associate re-
maining seven satisfying assignments to seven nodes of the clause. If two nodes
in two different clauses have a common variable assigned to different values, 0
and 1, join them by an edge (inconsistency).

If there is a satisfying assignment v : V ar → {0, 1} of φ, then pick-up a
vertex from the seven nodes of a clause C which has the restriction of v to
the variables of the clause. This selected vertex cannot have any edge going
out of the clause (7-node complete subgraph) to another selected vertex of a
different clause, as they are selected using a satisfying assignment. So there is
an independent set of size m.

12

An independent set cannot take more than one vertex from the 7-vertices of
any clause. If there is an independent set of size m, their vertices are coming
from m different clauses. There cannot be any edge between these vertices as
they form an independent set. The assignment given to the variables locally to
every clause gives a consistent global assignment. As an example corresponding
to the clause x1 ∨ x4 ∨ x11, if the vertex with the assignment x1 ← 1, x4 ←
0, x11 ← 1, is an element of the independent set, then there is a satisfying
assignment that is an extension of this local assignment. QED.
Example 6. Consider the following 3SAT formula and show both the reduc-
tions.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Proposition 7. SUBSET-SUM = {< S, t >: S = {x1, · · · , xk : xi ∈ N} is

a multiset and for some {y1, · · · , yl} ⊆ S,
∑l

i=1 = t}. is NP-complete.
Proof: The certificate for SUBSET-SUM is C, a collection of elements of S.
Following is a verifier.
V = “On input << S, t >,C >

1. Test whether C ⊆ S.

2. Test whether
∑

C = t.

3. Accept if both are true, else reject.”

So SUBSET-SUM ∈ NP.
We reduce a 3SAT formula φ to an instance of a SUBSET-SUM problem in

polynomial time to show that it is NP-complete.
Let the variables of φ be x1, · · · , xl and the clauses be C1, · · · , Ck. Following
table shows the elements of S and the value t constructed from the formula φ
such that < S, t >∈ SUBSET-SUM if and only if φ is satisfiable.

Table (T)
Variables Clauses

x1 x2 x3 x4 · · · xl c1 c2 c3 · · · ck
y1 1 0 0 0 · · · 0 1 0 0 · · · 0
z1 1 0 0 0 · · · 0 0 1 1 · · · 0
y2 1 0 0 · · · 0 0 1 1 · · · 0
z2 1 0 0 · · · 0 1 0 0 · · · 0
y3 1 0 · · · 0 0 0 0 · · · 0
z3 1 0 · · · 0 1 1 1 · · · 0
...

...
...

...
...

...
yl · · · 1 0 0 0 · · · 0
zl · · · 1 0 0 0 · · · 0

g1 · · · 0 1 0 0 · · · 0
h1 · · · 0 1 0 0 · · · 0
g2 · · · 0 0 1 0 · · · 0
h2 · · · 0 0 1 0 · · · 0
g3 · · · 0 0 0 1 · · · 0
h3 · · · 0 0 0 1 · · · 0
...

...
...

...
...

...
gk · · · 0 0 0 0 · · · 0
hk · · · 0 0 0 0 · · · 0

t 1 1 1 1 · · · 1 3 3 3 · · · 3

13

Each row of the table (other than t) corresponds to a decimal number, member
of S. These decimal numbers use digits 0 and 1. The decimal number t uses
digits 1 and 3. Blanks correspond to zeros.

(a) For each variable xi there are a pairs of numbers yi and zi. The digits of
each of them is partitioned in to two parts, the variable part (left side)
and the clause part.

(b) The digit in T [yi, xi] = T [zi, xi] = 1. All other digits in the variable part
are 0’s. We select yi from S if the truth value of xi ← 1. Otherwise select
zi.

(c) The digits in T [yi, cj] = 1 if the clause cj has the literal xi. The digit in
T [zi, cj] = 1 if the clause cj has the literal xi. Other digits are 0’s.

(d) S also contains a pair of numbers gj and hj for each clause cj . The digit
in T [gj, cj] = T [hj, cj] = 1. All other digits of these numbers are 0’s.

(e) The digits in the variable part of t are all 1’s and the digits in the clause

part of t are all 3’s.

(f) The target is to get the value of t after adding the selected numbres yi
or zi for i = 1, 2, · · · , l (each variable) and zero, one or both of gj, hj for
j = 1, 2, · · · , k (each clause).

Consider φ = C1 ∧C2 ∧C3 where C1 = x1 ∨ x2 ∨ x3, C2 = x1 ∨ x2 ∨ x3 and
C3 = x1 ∨ x2 ∨ x3. A satisfying assignment is x1 ← 1, x2 ← 1, and x3 ← 0. We
choose y1, y2, z3 (ignore other rows and columns of the table). So far the sum is
100100+ 010011+ 001111 = 111222. We also choose g1, g2, g3 to make the final
sum equal to 111333 (t).

If φ is satisfiable: there is a truth assignment for each variable. If xi ← 1,
we choose the number yi. If xi ← 0, we choose thenumber zi. Whatever be the
case, when added we get 1 in first l digits of t.
At least one of the three literals of a clause Cj must be true. It may be due
to li. If li = xi i.e. xi ← 1, we have already chosen yi which has 1 in its cj
column. If li = xi, we have chosen zi and it has 1 in its cj column. The sum of
the digits of the column cj for a satisfying assignment can be 1, 2, or 3. They
can all be brought to 3 by adding gj , hj. But that is not possible if a clause is
unsatisfiable.

If subset of S gives the sum t: for every i either yi or zi is chosen, but not
both, as first l digits of t are all 1’s. In column cj at most 2 can be supplied
from gj and hj . So 1 must come from the literal of a clause. So the clause is
satisfied. QED.

Proposition 8. 3COL = {< G >: graph G has a vertex colouring with at
most three colours} is NP-complete.
Proof: The certificate of 3COL is colouring of different vertices. A polynomial
time verifier can check validity of colouring in polynomial time. So 3COL is in
NP.

We reduce 3SAT to 3COL. Let φ be a 3CNF formula withm clauses c1, · · · , cm
and n variables x1, · · · , xn. The construction is as follows:

1. There is a pair of vertices vi, vi for every variable xi and its negation xi.

14

2. Five vertices ui1, · · · , ui5 for each clause ci.

3. Three special vertices T, F,D for three colours true, false and D.

T

F

D
v v

T

a=D b=F

or−gadgetvariable−gadget3−colour−gadget

vi = F vj = T

Form a triangle with T, F,D to force three colours to colour them.
Form a triangle with vi, vi and D so that a variable can take either colour T
(true) or F (false) and not D.
The difficult part is to ensure that at least one literal in every clause is true if
and only if the graph is 3-colourable.
We start with a graph of 3-vertices, a, b,and T forming a triangle. The vertex
a is connected to a literal-vertex vi and b to a literal-vertex vj . In the triangle
of a, b, T , a and b can be coloured with F and D only. Literal vertices can be
coloured only with T and F . So one literal must be coloured with T . This is
called an “or gadget”.
Now we look into the five vertices ui1, · · · , ui5 corresponding to the clause ci.
The corresponding graph has following edges: {{ui1, ui2}, {ui1, ui3}, {ui2, ui3}},
{{ui3, ui4}, {ui4, ui5}, {ui5, T }, {ui4, T }} and {{ui1, li}, {ui2, lj}, {ui5, lk}}, where
vi, vj , vk are are vertices corresponding to literals li, lj , lk respectively.

T

4 5

3

1 2

li lj

lk

Following are the possible colour assignments:

ui5 ui4 ui3 ui1 ui2 Literal coloured T
F D lk
D F T F D li
D F T D F lj
D F D T F lj
D F D F T li

So one literal must be coloured T . The claim is that 3CNF formula φ is satisfi-
able if and only if the graph is 3-colourable.

Following figure shows an example with a clause C = x1 ∨ x2 ∨ x3.

15

x1 x1 x2 x2

x3

x3
5

31

2

F D

T

4

F

D

F F

F

clause

If all three literals are false, then node 1 and 2 are coloured with T and D. But
that needs a 4th colour for node 3. But the table shows that if one of the literal
is true i.e. coloured with T. then the graph is 3-colourable. QED.

Proposition 9. dHAMPATH = {< G, s, d >: G is a directed graph with
a Hamiltonian path from s to d}.
Proof: It is clear that dHAMPATH is in NP. A sequence of vertices on the
path is a certificate. This can be verified in polynomial time.

We reduce 3SAT7 to dHAMPATH in polynomial time. Consider a 3CNF
formula with m clauses and n variables, x1, · · · , xn.

φ = (l11 ∨ l12 ∨ l13) ∧ · · · ∧ (lm1 ∨ lm2 ∨ lm3).

where lij , 1 ≤ i ≤ m and 1 ≤ j ≤ 3, is xk or x̄k, for some k, 1 ≤ k ≤ n.
There is a starting vertex labelled with s and an end vertex labelled with d.
For every variable xk there is a doubly linked chain-graph of 3m+1 vertices.
There is a vertex si(i+1) between every pair of doubly linked chain-graphs

corresponding to variables xi and xi+1, 1 ≤ i < n. There are directed edges,
from s to the two ends of the doubly linked graph of x1, from si(i+1) to the two
ends of the doubly linked graph of xi+1, from the two ends of the doubly linked
graph of xi to si(i+1), 1 ≤ i < n, and from two ends of the doubly linked graph
of xn to d.

For every clause there is a vertex. Call them c1, · · · , cm. Each doubly linked
graph corresponding to a variable has a pair of nodes corresponding to a clause.
Every such pair is separated by a node, and there are two terminal nodes. This
accounts for the number 3m+ 1,

©©1©1©©2©2©· · · ©©m©m©.

If a clause cj has xi, then there is a directed edge from the left node of the
pair ©i©i of the variable graph of xi to cj and a directed edge from cj to the
right node of the pair. If it is x̄i then these two directed edges are reversed.

If there is a satisfying assignment of a 3CNF formula, then every variable xi
is either 1 or 0. If xi ← 1, then the path starts from the left end of the doubly
linked graph of xi. If xi ← 0, then the path starts from the right end of the
doubly linked graph of xi.

So there is a path from s through different variable nodes to d. To cover
the nodes corresponding to the clauses, take one literal per clause that makes

7Actually we reduce SAT formula.

16

it true. Let the literal li (xi or x̄i) is true for the clause cj . Break the path of
the doubly linked graph of xi and include cj in it.

In the other direction, if there is a Hamiltonian path from s to d, then there
is a truth value assignment for the formula.

The number of vertices of the formula is 2 +m+ (3m+1)+ (n− 1). So the
encoding of the graph is a polynomial over the encoding of the formula.

QED.

1.5 Search Problem

We have asked membership question about the languages in NP e.g. whether
the formula is satisfiable, whether the graph has an independent set of size k,
whether the directed graph has a Hamiltonian path etc. These are decision
problems.

We may search for solution, if there is one, for each such problems e.g. give
a satisfying assignment of the formula, give an independent set of size k, give a
Hamiltonian path etc.

Search problems are in general more difficult than the corresponding decision
problem. It is easier to answer whether a positive integer (> 1) is composite,
but more difficult to get its factorization. But if an NP-complete problems
can be solved in polynomial time i.e. P = NP, then the certificate of any NP

language can be generated in polynomial time.
Proposition 10. If P = NP, then for each L ∈ NP and its verifier V ,

there is a polynomial time Turing machine M that can generate a certificate w
with respect to V , when run on x ∈ L.
Proof: We need to show that, if P = NP, then for each polynomial time
bounded Turing machineM and for each polynomial p(n), there is a polynomial
time bounded Turing machine M ′ with the following property.
For every x ∈ {0, 1}n, if there is a w ∈ {0, 1}p(n) such that M accepts < x,w >

i.e. M(x,w) = 1, then M ′ on input x produces w as the output i.e. M ′(x) = w.
We consider the case of SAT. We assume that a Turing machine A decides

the membership of SAT in polynomial time (this amounts to saying P = NP).
We show that there is polynomial time Turing machine B, that on input of a
satisfiable CNF formula φ of n variables, φ(x1, · · · , xn), produces a satisfying
assignment.

The Turing machine B works as follows:

1. Run A on φ to check whether it is satisfiable or not.

2. If φ is satisfiable, then for i← 1, · · · , n do the following steps.

3. Assign xi to 0, simplify the formula to n− i variables., and run A to check
whether φ(vi, · · · , vi−1, 0, xi+1, · · · , xn) is satisfiable, where v1, · · · , vi−1

are already known assignments.

4. If it is, continue; otherwise continue with φ(vi, · · · , vi−1, 1, xi+1, · · · , xn)
(simplified).

5. At the end either it is known that φ is unsatisfiable, or we have the satis-
fying assignment.

17

B is clearly polynomial time Turing machine.
Any L ∈ NP is Levin reducible to SAT, so a satisfying assignment of f(x) =

φx ∈ SAT can be mapped back to the witness of x ∈ L. QED.

1.6 Reduction to SAT

The set of NP-complete problems is closed under Karp-reduction. An obvious
question is how do we reduce INDSET to SAT. This time the input is < G, k >,
where G = (V,E) is an undirected graph and k is a positive integer. The
element < G, k >∈ INDSET if G has a independent set of size k. We define a
computable map f : {0, 1}∗ → {0, 1}∗ such that f(G, k) = φ and

< G, k >∈ INDSET if and only if φ is satisfiable.

We need to choose the boolean variables and encode the independent set
constraints as a boolean formula. This is in the similar line of encoding the
computation of an NTM as a boolean formula.

Let V = {v1, · · · , vn} and an independent set of size k be I = {u1, · · · , uk}.
We introduce variables xij , where 1 ≤ i ≤ n and 1 ≤ j ≤ k. The variable xij is
true if vi = uj. Following is the set of constraints.

1. Each uj ∈ I must be some vertex of the graph. This is captured the
following set of clauses.

k
∧

j=1

(

n
∨

i=1

xij

)

.

2. No vertex should occure in I twice.
n
∧

i=1

∧

1≤j<m≤k

(¬xij ∨ ¬xim).

3. No element of I can be associated to two vertices of the graph.

k
∧

j=1

∧

1≤i<m≤n

(¬xij ∨ ¬xmj).

4. If two vertices are connected by an edge, then both of them cannot be in
I.

∧

1≤j<m≤k

∧

(vi,vl)∈E

(¬xij ∨ ¬xlm).

This construction (reduction) can be done in time polynomial of the input
length. The time complexity of the reduction is O(nk + nk2 + kn2 + k2e) =
O(k2n2), where e = |E|

1.7 coNP, EXP, and NEXP

The class coNP was defined as follows:

coNP = {L ⊆ {0, 1}∗ : L ∈ NP}.

The class P is closed under complementation, so P ⊆ NP ∩ coNP. We
already know that the following language are in coNP.

18

• Any language in P e.g. PRIME.

• SAT = {φ : φ is unsatisfiable}.

• INDSET, V ERTEX − COV ER, CLIQUE etc.

We may define the class coNP using a deterministic verifier.
Definition 5. A language L ⊆ {0, 1}∗ is in coNP if and only if there is a

polynomial p : N0 → N0 and a polynomial time Turing machine so that for all
x ∈ {0, 1}∗,

x ∈ L if and only if ∀w ∈ {0, 1}p(|x|), M accepts < x,w >.

This is actually negation of the definition of NP.
Let L ∈ coNP. So L ∈ NP. For all x ∈ {0, 1}∗,

x 6∈ L if and only if x ∈ L.

There is a polynomial time bounded deterministic Turing machine V , a poly-
nomial p(n), and a witness w ∈ {0, 1}p(|x|), such that V accepts < x,w > if and
only if x ∈ L i.e.

x 6∈ L if and only if ∃w ∈ {0, 1}p(|x|), V accepts < x,w > .

Equivalently,

x ∈ L if and only if ¬(∃w ∈ {0, 1}p(|x|), V accepts < x,w >),

i.e.
x ∈ L if and only if ∀w ∈ {0, 1}p(|x|), V accepts < x,w >,

where V is same as V in all respect, but the accept and reject states exchanged.
A language L is coNP complete if (i) it is in coNP, and (ii) every language

L′ in coNP is Karp reducible to L.
Proposition 11. Following language is coNP-complete.

TAUTOLOGY = {φ : φ is a Boolean formula satisfiable by any assignment}.

Note that a formula φ ∈ TAUTOLOGY if and only if ¬φ is unsatisfiable.
Proof: If φ is a Boolean formula with n variables, then it is a tautology if and
only if it is satisfied by any assignment of n variables. So there is a polynomial
time Turing machine V such that for any x ∈ {0, 1}n, V will evaluate φ with
x as assignment to its variables. The formula φ is a tautology if it evaluates to
true (i.e. 1) for all x. So TAUTOLOGY ∈ coNP.

We now show that every language L ∈ coNP is Karp reducible to TAU-
TOLOGY. We take L, the complement of L. If L ∈ coNP, then L ∈ NP. So
by Cook-Levin reduction we get φx. We know, x ∈ L if and only if x 6∈ L if and
only if φx is unsatisfiable. So, x ∈ L if and only if ¬φx is a tautology.

The reduction is, for all x ∈ {0, 1}∗, create φx by Cook-Levin reduction and
take the negation of the formula. QED.

It is clear that if P = NP, then NP = coNP = P.
Definition 6. We define the class NEXP =

⋃

c≥1 NTIME(2n
c

). By
definition we have P ⊆ NP ⊆ EXP ⊆ NEXP. We prove the following propo-
sition.

19

Proposition 12. If EXP 6= NEXP, then P 6= NP.
Proof: We prove the contrapositive statement. We assume P = NP and prove
that EXP = NEXP.
Let L ∈ NTIME(2n

c

). So a non-deterministic Turing machine N decides L in
time 2n

c

. We define the language

Lpad =
{

< x, 12
|x|c

>: x ∈ L
}

,

and claim that Lpad ∈ NP. The non-deterministic Turing machine Npad for
Lpad is as follows.
Npad: input y

1. Nondeterministically it guesses a z, and computes 2|z|
c

, so that

y =< z, 12
|z|c

>. It rejects the input if no such z is found.

2. Otherwise, simulate N on z for 2|z|
c

steps.

3. If N accepts z, then accept, else reject.

The running time of Npad is polynomial in |y|, so Lpad ∈ NP. But according

to our assumption Lpad ∈ P. But then z ∈ L if and only if < z, 12
|x|c

>∈ Lpad.
The padding string can be attached to z in exponential time and membership

of < z, 12
|x|c

>∈ Lpad in Lpad can be tested in polynomial (on the length of

< x, 12
|x|c

>) time.
Therefore the membership of x in L is determined in exponential (on the length
of x). So L ∈ EXP i.e. NEXP ⊆ EXP. QED.

References

[MS] Theory of Computation by Michael Sipser, Pub. Cengage Learning, 2007,
ISBN 978-81-315-0513-7.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[DCK1] Theory of Computation by Dexter C Kozen, Pub. Springer, 2006, ISBN
978-81-8128-696-3.

[FCH] F C Hennie, One-Tape, Off-Line Turing Machine Computations, in In-
formation and Control 8, pp 553-578, 1965.

[JH] J Hartmanis, Computational Complexity of One-Tape Turing Machine
Computation, in JACM, vol. 15, No. 2, pp 325-339, April, 1968.

[LAL] L A Levin, Universal search problems, Problems of Information Transmis-
sion, 9 (3): 115116 (Russian), translated into English by Trakhtenbrot, B. A.
(1984). ”A survey of Russian approaches to perebor (brute-force searches)
algorithms”. Annals of the History of Computing 6 (4): 384400.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

20

[SAC] S A Cook, The complexity of theorem proving procedures, Proceedings of
the Third Annual ACM Symposium on Theory of Computing. pp. 151158,
1971.

[RMK] R M Karp, Reducibility Among Combinatorial Problems, in R E Miller

and J W Thatcher, ed. Complexity of Computer Communications, pp 85-103,
Plenum, 1972.

[NPMJF] Nicholas Pippenger, And Michael J Fischer, Relation Among Complex-
ity Measurse, in JACM 26, 2 (April 1979), 361-381.

21

