
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture I

Instructor: Goutam Biswas Autumn Semester 2023

1 Basic Complexity Classes

We consider decidable problems (∆0
1). It is known that we cannot compute every

function or decide every language. But about the functions that are computable,
or the languages that are decidable, one may ask whether the computation can
be done within reasonable time with reasonable amount of space (memory).
Computation time required to solve a problem increases with the increase in
the size of the problem. For some problem the rate of increase is known to
be reasonable (polynomial), for some other problem the growth is known to be
steep (exponential). But there are large number of useful problems for which the
computation time of known algorithms are high, but it is not known whether
there can be a better algorithm. And there is a strong belief (no proof) that
there cannot be any.

A Turing machine may be viewed as an algorithm. We try to characterize
the time complexity of an algorithm in terms of the “number of steps” taken
by a Turing Machine (TM) to solve a problem instance. The “number of steps”
taken by a TM is treated as the time taken by it. For a given problem there may
be different Turing machines (algorithms) with different running times. Even
for a particular TM (algorithm) for a problem, there are good instances and bad
instances of the input in terms of the number of steps. We are often interested
about the asymptotic estimate of the worst case scenario or the average case
scenario.

Problems are classified in terms of the nature of growth of the number of
computation steps of an algorithm with the increase in the size of input. Turing
machine is our basic model of computing. The instruction set (basic operations)
of a Turing machine is primitive compared to the instruction set of a modern
CPU. But any problem solvable on a modern computer in a certain time can
in principle be solved on a multi-tape Turing machine with only a polynomial
slowdown. Similarly a multi-tape Turing machine can also be simulated on a
single-tape Turing machine with a quadratic slowdown. Also the simulation of
Turing machines of similar types can have linear speedup.

1

1.1 Turing Machines

We already have talked about different Turing machine models. In the start
configuration, the input tape has ✄x⊔ω , where x ∈ Σ∗ is the actual input to the
machine. The Σ is often {0, 1}. In a k-tape machine we may assume that the
input tape is read-only. Other (k− 1) tapes/strings are empty, ✄⊔ω, where ⊔ω

stands for the infinite number potentially available blank cells. Henceforth we
shall not specify them explicitly. All tape-heads are below the corresponding
left-end marker. Each head can move to left (←) or to right (→) or may remain
stationary (−). But a head cannot move left of the left-end marker.
The computation is a sequence of configurations consisting of state, head posi-
tions, and contents of k tapes.

The machine does not move after entering a halt state. For some proof we
assume that the machine cleans all its work-tapes, and positions the input tape
head to some appropriate place before entering an accept halt state. A machine
may never enter a halt state and run forever. Often our machines are decider
or computing total functions. Such machines halts on every input.

We have also defined a nondeterministic Turing machine. The difference
in such a machine is in their transition function. There may be more than
one possible transitions from a combination of state and current input symbol,
(q, σ1, γ2, · · · , γk−1). A nondeterministic machine accepts an input x ∈ Σ∗ if it
starts from a start configuration, and there is a computation path (more than
one computation paths are possible due to nondeterminism) that reaches an
accept-halt configuration.

Let the maximum degree of nondeterminism in the state transition function
of a nondeterministic Turing machine M be m. Then there exists an equivalent
nondeterministic Turing machine with the degree of nondeterminism at most
two. Such a machine may be viewed of having two transition functions δ0 and
δ1, that are nondeterministically chosen at every combination of state and input.

There are Turing machines that computes function F : N0 → N0. What is
actually computed is the numeral of F (n), from the numeral of n as input. If we
choose binary numeral, then we have the corresponding function f : {0, 1}∗ →
{0, 1}∗, such that whenever x is a binary numeral of n, then f(x) is the binary
numeral of F (n). The computation of F is equivalent to the computation of f .
[N0 = {0, 1, 2, · · · }]

The description of a Turing machine can be encoded as a string over {0, 1}.
As such every x ∈ {0, 1}∗ is not a valid encoding of any TM. But we shall assume
that a trivial TM is encoded by those invalid strings. So every x ∈ {0, 1}∗

encodes a TM.
A TM M can be represented by infinitely many strings. This it seems

simplifies some of the proofs.
There is a universal TM U such that for every α, x ∈ {0, 1}∗, U(α, x) =

Mα(x), where α is an encoding of TM Mα. Also if Mα halts on x in t steps,
then U halts on (α, x) in Ct log t steps, where c is a constant depends on Mα.

1.2 Time and Space Bounded Classes

We are interested about Turing machines that halts on all input. In such a
machine the computation time or space can be expressed as a function of the
size of input. A complexity class is a collection of problems that can be solved

2

within the time (or space) bounded by some function of input size.
Definition of complexity class depends on machine model e.g. k-tape Turing

machine; mode of operation and acceptance e.g. deterministic or nondetermin-
istic; type of resource e.g. time, space etc.

Definition 1. If a k-string deterministic Turing machine M halts on every
input x ∈ Σ∗, and takes at most f(n) steps for all but finitely many inputs of
length n, where T : N0 → N0, then M is called f(n)-time bounded.

A nondeterministic Turing machine is also time bounded in a similar way.
But in this case computations on all possible paths must come to a halt state
within f(n) steps.

If a TM M is a decider, then L(M) is decided in T (|x|) time, where x ∈ Σ∗

is an input. As a computer of a function, M starts with x on the input tape,
and when it halts, it has f(x) on the output tape. We say that M computes
f : {0, 1}∗ → {0, 1}∗ in T (|x|) time.

A decision problem of a language L ⊆ Σ∗ may be viewed as computation of
the characteristic function µL : {0, 1}∗ → {0, 1}, so that µL(x) = 1 if and only
if x ∈ L.

Definition 2. If a k-tape deterministic Turing machine M halts on every
input x ∈ Σ∗, and uses at most f(n) cells on the (k− 1) work-tapes, for all but
finitely many inputs of length n, then M is called f(n)-space bounded. The
function S is from N0 to N0.
A nondeterministic Turing machine is also space bounded in a similar way. But
in this case computations on each of its possible paths should not use more than
f(n) cells of work-tapes. If M is a decider, then L(M) is decided in f(n) space.

It is necessary that the space and time binding functions should be non-
decreasing and constructible.

Definition 3. A function f : N0 → N0 is said to be time constructible if
f is nondecreasing and there is k-tape Turing machine Mf = (Q,Σ, δ, s), that
for any n ∈ N0 and any input x of length n, does the following computation in
time t = O(n+ f(n)).

(s,✄, x,✄, ε, · · · ,✄, ε)→t
Mf

(h,✄, x,✄,⊔j2 , · · · ,✄,⊔jk−1 ,✄, 1f(|x|)),

where ji = O(f(n)), i = 2, 3, · · · , k − 1.
Note: There are variations of this definition e.g. (i) f(n) is at leastO(n log n)

or (ii) the Turing machine maps 1n to the binary representation of f(n) in time
O(f(n)) etc.

Definition 4. A function f : N0 → N0, where f(n) ≥ O(log n), is called
space constructible, if there is a Turing machine that takes x of length n ∈ N0

as input and computes f(n) using O(f(n)) work-tape cells.
The class of constructible or proper functions includes all reasonable functions

such as n, n logn, nk, 2n etc. It can be proved that if functions f and g are
constructible, then g ◦ f, f + g, f × g, 2f and many more are constructible.

Let T : N0 → N0 and S : N0 → N0 be proper functions. We define the
following complexity classes. Our model is a k tape Turing machine.

1. DTIME(f(n)) = {L : there is a f(n) time bounded deterministic Turing
machine (DTM) M so that L = L(M)}.

2. NTIME(f(n)) = {L : there is a f(n) time bounded nondeterministic
Turing machine (NTM) M so that L = L(M)}.

3

3. DSPACE(f(n)) = {L : there is a f(n) space bounded DTM M so that
L = L(M)}.

4. NSPACE(f(n)) = {L : there is a f(n) space bounded NTM M so that
L = L(M)}.

5. LOGSPACE = DSPACE(logn).

6. NLOGSPACE = NSPACE(logn).

7. P = ∪i≥1DTIME(ni).

8. NP = ∪i≥1NTIME(ni).

9. PSPACE = ∪i≥1DSPACE(ni).

10. NPSPACE = ∪i≥1NSPACE(ni).

11. EXP (EXPTIME) = ∪i≥1DTIME(2n
i

).

12. NEXP (NEXPTIME) = ∪i≥1NTIME(2n
i

).

13. EXPSPACE = ∪i≥1DSPACE(2n
i

).

14. NEXPSPACE = ∪i≥1NSPACE(2n
i

).

A variation of the definition is as follows:
DTIME(f(n)) = {L : there is a O(f(n)) time bounded deterministic Turing
machine M so that L = L(M)}.
The linear speedup theorem is absorbed in the definition. It is often used it to
simplify the argument.
Example 1. If a language L is decided in time f(n) = 3.5n2 +10n logn, then
according to our original definition L ∈ DTIME(3.5n2 + 10n logn). But then
we can have a constant c so that cn2 > 3.5n2 + 10n logn for all but finitely
many inputs. So we can write L ∈ DTIME(cn2). But by the linear speedup
theorem if there is a k-tape Turing machine (k > 1) that decides L in cn2 time
then there is another k-tape Turing machine, that decides L in n2 time. So
L ∈ DTIME(n2).

Proposition 1. Let L be decided by a k-tape Turing machine M in
time f(n). Then L can be decided by a single-tape Turing machine N in time
O(f(n)2).
Proof: Let us take k = 3. The 3-tape Turing machineM = (Qm,Σ, δm, sm) and
the single tape Turing machine N = (Qn,Σn, δn, sn). The initial configuration
of M on input x is

(sm,✄, x,✄, ε,✄, ε).

All heads are under ‘✄’. Let Σm = {✄,⊔, · · · }. We take Σn = {σ, σ : σ ∈
Qm} ∪ {✄

′,✁}. The new symbols σ indicate the head positions on different
tapes of M on the tape of N . The symbol ✄′ corresponds to ✄ of M but can
be crossed to left on N . The right end of a tape/string is indicated by ✁.

4

Let Cm = (pm, x1, u1, x2, u2, x3, u3) be a configuration of M , where

x1 = ✄σ11 · · ·σ1a,

u1 = γ11 · · · , γ1b,

x2 = ✄σ21 · · ·σ2c,

u2 = γ21 · · · , γ2d,

x3 = ✄σ31 · · ·σ3e,

u3 = γ31 · · · , γ3f .

The encoding of the configuration Cm on N is
Cn = (pn,✄, x′

1u1 ✁ x′
2u2 ✁ x′

3u3 ✁✁), where

x′
1 = ✄

′σ11 · · ·σ1a,

x′
2 = ✄

′σ21 · · ·σ2c,

x′
3 = ✄

′σ31 · · ·σ3e.

The initial configuration of N is (sn,✄, x, ε), where x = σ1 · · ·σk. But N
changes it to the encoded initial configuration of M as follows:

(sm,✄,✄x✁✄✁✄✁✁).

To simulate a move of M , the machine N scans the input and identifies the
symbols under the three heads of M . This is a finite amount of information
that depends on the machine M . In the second pass it makes three updates by
shifting head positions of M and modifying the symbols under the head and
comes back to the leftmost cell. This pass requires the state transition table of
M within N (again a finite amount of information). Each of these two passes
take O(f(n)) time.
If M at some point writes in the first ‘blank cell’ on the right of the ith tape,
then in N the contents of (i + 1)th tape onwards are to be shifted by one cell.
This will again take O(f(n)) time.
So each move of M is simulated in O(f(n)) time, and to simulate f(n) moves
on M requires O(f(n)2) time. QED.

If a language L is decided in f(n) number of steps in any Turing machine
M , then we can reduce the number of steps by any constant factor ǫ > 0. We
can design a Turing machine that decides L in ǫf(n) time when 0 < ǫ < 1 and
f(n) > n (ǫ > 1 is not of much interest). Following is a precise version of the
theorem of linear speedup.

Proposition 2. If L ∈ DTIME(f(n)), then L ∈ DTIME(εf(n)+O(n)),
where ε > 0.
Proof: Let M be a k-tape DTM deciding L in f(n) steps. If k > 1, then there
is a k-tape DTM N that will decide L in εf(n) +O(n) steps. If k = 1, then N
must be be 2-tape machine. All tapes are read/write enabled.

The main idea is, each tape symbol of N will encode more than one tape
symbols of M , so that many moves of M can be simulated by a single move of
N . The value of m depends on ε and M . Let ΣN = {✄,⊔} ∪ ΣM ∪ Σm

M .
The machine N first encodes the input x by taking m consecutive elements at
a time and writes it on the second tape. If x is not a multiple of m it can be
padded with ⊔s. This can be done in O(|x|) steps and accounts for O(n) of the
theorem.

5

This point onward the second tape contains the input for N . Its length is
⌈

|x|
m

⌉

. The first tape may be used as a work tape by putting the symbol ‘⊲’ at

the end of the original input of M .
In the main part of simulation of M , the machine N simulates m steps of M

in k or fewer steps, where k is a constant (typical value is 6). Let q be the state
of M and j1, · · · , jk be the positions of heads on k-tapes of M . Each ji ≤ m will
be within the current m-tuple on each tape. This information, (q, j1, · · · , jk),
will be stored as a part of the state of N .

The machine N makes one left, then two right and then another left move
(total 4) on all its k-tapes to gather information about the current, previous and
next m-tuples of M . The state transition table of M is available to N . So it can
predict the next m-moves of M . Note that next m moves of M cannot take any
one of k heads of M beyond the current, left or right m-tuples of the k heads
of N . The required information in the state of N is Q× {1, 2, · · · ,m} × Σ3km.
The first two component (q, i), q ∈ Q and i ∈ {1, 2, · · · ,m} gives state and the
next m move numbers of M . The last component gives the content of three
consecutive m-tuples on k tapes (((Σm)3)k).

It may be necessary to modify the current, left or right cell of N . This
requires two more moves.

Total number of moves of N are O(|x|) + 6T (|x|)
m

. The value of ε = 6/m implies
that m = ⌈ 6

ε
⌉. QED.

If f(n) > O(n) in the previous theorem, then N is bounded by εf(n) time.
The argument of the proof is also true for a nondeterministic Turing machines.

There are similar theorems for space bounded Turing machines. If f(n) ≥
Ω(logn), then DSPACE(f(n)) ⊂ DSPACE(εf(n)).

Some of the inclusion results of complexity classes are as follows:
Any deterministic Turing machine by definition is also a nondeterministic Tur-
ing machine. If a language L ∈ DTIME(f(n)), then L ∈ NTIME(f(n))
i.e. DTIME(f(n)) ⊆ NTIME(f(n)). Similarly we have DSPACE(f(n)) ⊆
NSPACE(f(n)).

Proposition 3. Every NTM N has an equivalent DTM.
Proof: We first simulate N on a 3-tape DTM M .
The 1st-tape ofM is read-only and contains the input: ✄x. Initially the 2nd and
the 3rd tapes are empty (✄). At any intermediate point the 2nd-tape contains
the snapshot of the tape of N and the 3rd tape keeps track of M ’s position at
the computation tree of N , by a sequence of nondeterministic choices.

If d is the maximum degree of nondeterminism, then from any configuration
of N , the nondeterministic choices to next configurations can be labeled by el-
ements of Γn = {1, 2, · · · , d}. And any string of length i over Γn is a sequence
of choices made by N starting from its start configuration (root) upto a config-
uration at the ith level of the computation tree. As an example, if the string
present on the 3rd-tape is 113, then the computation of N has chosen the 1st
child of the root, 1st child of the 1st child of the root, and 2nd child of the 1st
child of the 1st child of the root1. The simulation procedure is as follows:

(i) Tape-1 contains the input (✄x)m Tape-2 and Tape-3 are empty.

(ii) Copy the input from Tape-1 to Tape-2. Initialize Tape-3 to null (ε).

1Some strings over Γn may not correspond to any computation.

6

(iii) If no more symbol on Tape-3, goto 4.

Otherwise, use Tape-3 to simulate N on the sequence of nondeterministic
choices stored in Tape-2. If the current state is ‘Y ’ - accept the input.
If the current state is ‘N ’ or if the number present on Tape-3 does not
correspond to any nondeterministic choice, discard the computation and
goto 4.

(iv) Replace the string on Tape-3 by the next string and goto 2.

We already know that a 3-Tape DTM can be simulated on a single-tape
DTM. So there is a DTM equivalent to the NTM. QED.

Proposition 4. NTIME(f(n)) ⊆ DTIME(2O(f(n))) i.e.
If L is decided by a NTM N (single tape) in time f(n), then it is decided

by a DTM M in time 2O(f(n)).
Proof:

Let the running time of N be f(n). The maximum degree of nondeterminism
of a state-input pair is d > 1. The depth of the computation tree of N on an
input of length n is at most f(n). The maximum possible number of leaf nodes
(halt configurations) of the computation tree is df(n) and that is the upper
bound on the number of computation paths.

We have already seen the simulation of N on a 3-tape DTM M . The number
of internal nodes are O(df(n)). The number of steps from the root (start config-
uration) to a leaf (halt configuration) is bounded by O(f(n)). So the running
time of M is O(f(n)df(n)) = 2O(f(n)).
Note: log(f(n)df(n)) = log f(n)+f(n) log d = O(f(n))⇒ f(n)df(n)) = 2O(f(n)).

Simulating the 3-tape DTM on a single-tape DTM gives the running time
(2O(f(n)))2 = 22O(f(n)) = 2O(f(n). QED.

Proposition 5. NTIME(f(n)) ⊆ DSPACE(f(n)).
Proof: Let L ∈ NTIME(f(n)) i.e. there is a nondeterministic f(n) time
bounded Turing machine M so that L = L(M). Let maximum degree of non-
determinism is d.
The deterministic Turing machine N will do a DFS (depth-first search) on the
computation tree (nodes are configurations) of M . Every current node will
be created on the fly, starting from the start configuration using a string over
{1, 2, · · · , d} of length f(n) corresponding different nondeterministic choices.
The space required to store the current configuration may take at most f(n)
cells. The choice string of length f(n) will also take f(n) space. So N can be
designed to be f(n) space bounded. QED.

We know that DTIME(f(n)) ⊆ NTIME(f(n)) ⊆ DSPACE(f(n)) ⊆
NSPACE(f(n)). This implies that

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE.

Proposition 6. NSPACE(f(n)) ⊆ DTIME(2O(f(n))).
Proof: Let L ∈ NSPACE(f(n)). There is an f(n) space bounded NTM M
that decides L. We already know that a configuration of a k-tape NTM is
(p, x1, u1, · · · , xk, uk). The head on the read-only input tape can have n + 1
positions, where n = |x|. The output tape will say yes or no so its content
is little. There are |Q| many possibilities of the state. The choices for the
content of remaining k− 2 tapes is less than |Σ|2(k−1)f(n). The total number of

configurations is at most n× c
f(n)
1 = clogn+f(n), where c depends on M .

7

The computation ofM forms a configuration tree (graph) of at most cf(n)+logn

nodes. The job of the deterministic machine machine is to check whether an
accepting configuration reachable from the start configuration. The reachability
problem in a graph can be solved in O(|G(V)|2) time (think of DFS). So the
time taken by the DTM is k(cf(n)+logn)2 = kc2(f(n)+logn) = 2O(f(n)).

We can generate the configuration graph in any manner. The time for the
generation of each configuration is c1f(n) (length is f(n)). So the DTM runs
for f(n)cf(n) = 2O(f(n)) time. QED.

If f(n) is a polynomial, then

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP.

It is not known whether NP ⊆ P . But the following theorem due to Walter

J Savitch ([WJS], 1970) proves that NPSPACE = PSPACE.
Theorem 1. (Savitch) If f(n) ≥ logn and space constructible, thenNSPACE(f(n)) =
DSPACE(O(f(n)2)).

The job is to simulate an f(n) space bounded NTM on an (f(n))2 space
bounded DTM. The earlier method of simulating every branch of computation
will not work in this case. The reason is, with f(n) space of configuration,
2O(f(n)) steps with nondeterministic choices are possible. The storage of se-
quence of choice of length 2O(f(n)) requires 2O(f(n)) space.

Savitch’s approach was to test whether a configuration C2 can be reached
from a configuration C1 in time t using f(n) space. There is a recursive proce-
dure which reuses space.
Proof: Let the NTM M decides the language L using f(n) tape cells. We al-
ready know that the running time of an f(n) space bounded machine is bounded
by cf(n), where c is a constant.

Let C1, C2 be two configurations ofM . We write C1 ⊢
≤t
M C2, if C2 is obtained

from C1 in t or fewer steps in M . The length of a configuration is bounded by
f(n).
The deterministic machine will implement the following recursive procedure:
yield(C1, C2, t)

1. If t = 1, then test (i) if C1 = C2 or (ii) C2 is obtained from C1 in one step.
If any one of these conditions is satisfied, return true; otherwise return
false.

2. If t > 1, for each C3, a configuration of M on x using space f(n), perform
the next three steps.

3. Run yield(C1, C3, ⌊t/2⌋).

4. Run yield(C3, C2, ⌈t/2⌉).

5. If both (3) and (4) true, then return true.

6. return false

We claim that the following deterministic machine N accepts L in O(f(n)2)
space.
N : input x

8

1. Prepare the start configuration Cs and the accepting configuration Ca of
M for input x.

2. Compute 2f(n).

3. Run yield(Cs, Ca, 2
f(n)).

4. accept if and only if yield() returns true.

Each of the configurations uses O(f(n)) space. Every recursive call uses
O(f(n)) space to stack the environment. The depth of the call is log2 2

αf(n) =
O(f(n)). So the total space requirement is O(f(n)) × O(f(n)) = O(f(n)2).
QED.

If f(n) is a polynomial, then (f(n))2 is also a polynomial. ThereforeNPSPACE =
PSPACE.

References

[MS] Theory of Computation byMichael Sipser, (3rd. ed.), Pub. Cengage Learn-
ing, 2007, ISBN 978-81-315-2529-6.

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[DCK1] Theory of Computation by Dexter C Kozen, Pub. Springer, 2006, ISBN
978-81-8128-696-3.

[RMK] R M Karp, Reducibility Among Combinatorial Problems, in R E Miller

and J W Thatcher, ed. Complexity of Computer Communications, pp 85-103,
Plenum, 1972.

[NPMJF] Nicholas Pippenger, And Michael J Fischer, Relation Among Complex-
ity Measures, in JACM 26, 2 (April 1979), pp 361-381.

[WJS] Walter J Savitch, Relationships between nondeterministic and determin-
istic tape complexities, Journal of Computer and System Sciences 4 (2), pp
177-192 1970.

9

