
Indian Association for the Cultivation of Science
(Deemed to be University under de novo Category)
Master’s/Integrated Master’s-PhD Program/ Integrated

Bachelor’s-Master’s Program/PhD Course
Theory of Computation II: COM 5108

Lecture 0

Instructor: Goutam Biswas Autumn Semester 2023

1 Turing Machine

A Turing Machine (TM) is a primitive computing device which can compute
anything that is computable. Its data structure is a string over a finite set of
characters (alphabet). Its program (at a state) uses a read-write head (cursor)
to read a character from its current position, write a character in the same
position. After that the cursor may be shifted one position to left or right or
may stay stationary on the string. The machine may enter a new state of the
program.

Mathematically a Turing machine M is specified by 4-tuple of data, M =
(Q,Σ, δ, s).

(a) Q is a finite set of states.

(b) Σ is the finite alphabet of the strings. It includes two special symbols, ‘⊔’
(blank) and ‘✄’ (left end-marker).

(c) The program is represented by the function

δ : Q× Σ→ (Q ∪ {h, Y,N})× {←,→,−},

where ‘h’ is halting state, ‘Y ’ is accepting halt state, ‘N ’ is rejecting halt
state; ‘←’, head moves left, ‘→’, head moves right, ‘−’, head is stationary.

(d) s is the start state of the TM.

Sometime people talk about two alphabets, an input alphabet (Σ) and a tape
alphabet (Γ), where Σ ⊂ Γ.

The program δ of the machine specifies its dynamics. δ(p, σ) = (q, γ,D): at
the current state p, ifM reads σ at the current position of the head, it overwrites
σ by γ (γ may be same as σ), the head moves according to D ∈ {←,→,−} and
the machine goes to a new state q (q may be same as p).

There is a special requirement in δ for the symbol ‘✄’. δ(p,✄) = (q,✄,→),
for all p ∈ Q. This stops the machine to go beyond the leftmost end of the

1



string. If the machine goes beyond the right end of the input, it sees a blank
(⊔) and it may be overwritten and the string increases in length.

Input to the machine is “✄x”, where x ∈ (Σ \ {✄,⊔})∗. The start state is s
and the initial head position is ‘✄’.
A configuration of a machine is (p, x, u), where the machine is in state p, the
current position of the head is at the last symbol of x, u is the string to the
right of the head (last symbol of u should not be ‘⊔’).

We define a binary relation ‘→M ’ over the space of configurations of M . The
TM M goes in one step from the configuration (p, x, u) to (q, y, v) and we write
(p, x, u)→M (q, y, v) when δ(p, a) = (q, b,D). Let x = x′a, one of the following
is the situation.

• If a = ✄, then b = ✄ and D =→.
If u = ε, then y = x⊔ and v = ε,
If u = cu′, then y = xc and v = u′.

• If a 6= ✄ and D =→.
If u = ε, then y = x′b⊔ and v = ε,
If u = cu′, then y = x′bc and v = u′.

• If a 6= ✄ and D =←,
then y = x′ and v = bu.

• If a 6= ✄ and D = −,
then y = x′b and v = u.

If there are k + 1 ≥ 1 configurations such that

(p, x, u) = (p0, x0, u0)→M (p1, x1, u1)→M · · · →M (pk, xk, uk) = (q, y, v),

we say that starting from the configuration (p, x, u), the TM reaches the con-
figuration (q, y, v) in k ≥ 0 steps and denote it as

(p, x, u)→M
∗(q, y, v) or simply (p, x, u)→∗ (q, y, v).

The start configuration of the TM M = (Q,Σ, δ, s) is (s,✄, x) where x ∈
(Σ \ {✄,⊔})∗. There are three possible halting configurations of our brand of
machine: (h, u, v), (Y, u, v) and (N, u, v). But a TM may not halt at all.

Let x ∈ Σ \ {✄,⊔}, x ∈ L(M) if (s,✄, x)→M
∗(Y, x1, u1), x 6∈ L(M) if

(s,✄, x)→M
∗(N, x1, u1).

We also have to fix up a convention about the value of the function computed
by M i.e. (s,✄, x)→M

∗(h, x1, u
′). We may have f(x) = M(x) = x′u′, where

x1 = ✄x′ and there is no blanks (⊔) at the end of u′.
Example 1. M = ({s}, {0, 1,✄,⊔}, δ, s) is a very simple TM. The state
transition table is as follows.

p ∈ Q σ ∈ Σ δ(p, σ) = (q, γ,D)
s ✄ (s,✄,→)
s 0 (s, 1,→)
s 1 (s, 0,→)
s ⊔ (h,⊔,→)

It finds the 1’s complement of a binary string.

2



Exercise 1. Design a TM that does not halt on any input. Let the input
alphabet be {0, 1}.
Exercise 2. Design a TM that takes input x ∈ {0, 1}∗. It halts only after
getting four 1’s.
Exercise 3. What does the TM M = ({s, q0, q1}, {0, 1,✄,⊔}, δ, s) compute on
input ✄x, where x ∈ {0, 1}+?

p ∈ Q σ ∈ Σ δ(p, σ) = (q, γ,D)
s ✄ (s,✄,→)
s 0 (s, 0,→)
s 1 (s, 1,→)
s ⊔ (q0,⊔,←)
q0 0 (q0, 0,←)
q0 1 (q1, 1,←)
q0 ✄ (h,✄,→)
q1 0 (q1, 1,←)
q1 1 (q1, 0,←)
q1 ✄ (h,✄,→)

Exercise 4. What does the TM M = ({s, q1, q2, q3}, {0, 1,✄,⊔}, δ, s) compute
on input ✄x, where x ∈ {0, 1}+?

p ∈ Q σ ∈ Σ δ(p, σ) = (q, γ,D)
s ✄ (s,✄,→)
s 0 (s, 0,→)
s ⊔ (N,⊔,←)
s 1 (q1, 1,→)
q1 1 (q1, 1,→)
q1 0 (q2, 0,→)
q1 ⊔ (N,⊔,←)
q2 0 (s, 0,→)
q2 1 (q3, 1,→)
q2 ⊔ (N,⊔,←)
q3 0 (q3, 0,→)
q3 1 (q3, 1,→)
q3 ⊔ (Y,⊔,←)

Exercise 5. Design a TM that takes the input ✄⊔kx, where k ≥ 0, x ∈ {0, 1}+

and produces the output ✄ ⊔k+1 x.
Exercise 6. Design a TM that takes the input ✄x, where x ∈ {0, 1}+ and
produces the output ✄y, where y = 2 × x. Interpret x as an unsigned binary
numeral.
Exercise 7. Design a TM that takes the input ✄x, where x ∈ {0, 1}∗. It
accepts x if x = 0n1n, n ≥ 0. Otherwise it rejects x.
Exercise 8. What is the estimate of the number of steps (state transitions) of
the machine for an input 0n1n?

The question is can we do it better. The answer is positive, but the TM will
be slightly more complicated and instead of giving the precise description of the
machine we provide the outline of the algorithm. But before that an example.
Example 2. Input: ✄ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

3



(a) We first check whether there is any 0 after 1. This will take O(n) steps.

(b) Repeat the following steps as long as there is some 0 or 1 is left in the
string.

(i) Check whether the parity of 0 and 1 (together) is even. reject if odd.
This also takes O(n) steps.

(ii) Cross off alternate 0’s starting with the first one. Also cross off
alternate 1’s starting with the first one. This reduces the number of
0’s and 1’s to half in each step.

✄ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
✄ ✁0 0 ✁0 0 ✁0 0 ✁0 0 ✁1 1 ✁1 1 ✁1 1 ✁1 1
✄ ✁0 ✁0 ✁0 0 ✁0 ✁0 ✁0 0 ✁1 ✁1 ✁1 1 ✁1 ✁1 ✁1 1
✄ ✁0 ✁0 ✁0 ✁0 ✁0 ✁0 ✁0 0 ✁1 ✁1 ✁1 ✁1 ✁1 ✁1 ✁1 1
✄ ✁0 ✁0 ✁0 ✁0 ✁0 ✁0 ✁0 ✁0 ✁1 ✁1 ✁1 ✁1 ✁1 ✁1 ✁1 ✁1
Each pass takes O(log n) steps.

(c) If there is no 1 or 0 on the tape, accept, otherwise reject.

So the number of steps are O(n) +O(n log n) = O(n logn).
Can we do even better. The answer is negative on our single string TM.

If the number of steps required to decide a language L on a single tape TM is
o(n logn), then L is a regular language. But our language L = {0n1n : n ≥ 0}
is known to be non-regular (context-free) language. So O(n logn) is the best on
this model.

Definition 1. Let the language L ⊆ (Σ \ {⊔,✄})∗. If there is a TM M ,
that on input ✄x (x ∈ (Σ \ {⊔,✄})∗) halts at state Y if x ∈ L, and halts at
state N if x 6∈ L, then the language L is called Turing decidable or recursive
language.

A language L ⊆ (Σ\{⊔,✄})∗ is Turing recognizable or recursively enumerable
if there is a TM M that on input ✄x halts at state Y if x ∈ L, but either halts
at state N or may not halt at all if x 6∈ L.

From the definition it is clear that the set of recursive languages is a subset
of recursively enumerable languages. In fact it is a proper subset. The language

LH = {< M, d >: M is a Turing machine which halts on input d}.

is recursively enumerable (Turing recognizable) but not recursive (not Turing
decidable).

2 Turing Machine with Multiple Tapes/Strings

There are different variants of a Turing machine. In terms of absolute comput-
ing power all these models are equivalent. But in terms of resource restricted
computation their powers are different (at least it seems to be).

Definition 2. A k-tape TM, M = (Q,Σ, δ, s), k ≥ 1, has k independent
strings, each equipped with its independently movable read/write head. Actions
of each head are controlled by the function (program) δ.

δ : Q× Σk → (Q ∪ {h, Y,N})× (Σ× {←,→,−})k.

4



δ(p, σ1, · · · , σk) = (q, (γ1, D1), · · · , (γk, Dk)), where p is the current state, σ1, · · · , σk

are input read from k tapes, q is the next state, γ1, · · · , γk are symbols written
on k tapes, and D1, · · · , Dk are movements of head on k tapes.

A configuration is a 2k+1-tuple: (p, x1, u1, · · · , xk, uk), where p is the current
state, the ith string has xiui. The ith head is at the rightmost symbol of xi.
The start configuration is (s,✄, x,✄, ε, · · · ,✄, ε), the actual input is x on the
first tape. Other tapes are empty except the left-end sentinel ’✄’.

An input x is accepted i.e. x ∈ L(M), if

(s,✄, x,✄, ε, · · · ,✄, ε)→∗

M
(Y, x1, u1, · · · , xk, uk).

An input x is rejected i.e. x 6∈ L(M) if

(s,✄, x,✄, ε, · · · ,✄, ε)→∗

M (N, x1, u1, · · · , xk, uk).

For computation of a function we need to fix-up a convention where the output
of M(x) will be.
Exercise 9. Show that L = {0n1n : n ≥ 0} can be decided in O(n) steps by
a 2-tape TM.

3 Nondeterministic Turing Machine

A Nondeterministic Turing machine (NTM) is a not so realistic model of com-
putation. It is also equivalent to a TM in terms of the absolute power of compu-
tation. But in terms of efficiency it appears to be exponentially more powerful.
Unfortunately it is unknown whether this exponential speedup is intrinsic to
this model or due to lack of understanding of the nature of nondeterminism.
This gives rise to the famous question of P verses NP.

An NTM N = (Q,Σ,∆, s) has same three data Q,Σ and s. But ∆ ⊆
(Q× Σ)× (Q ∪ {h, Y,N})× Σ× {←,→,−}) i.e. ∆ is a relation.

Given a pair of current state and input, the machine may have zero, one or
more number of next state, output and cursor movement triples. A configura-
tion of an NTM is similar to a configuration of a TM. But for a TM, from a
given configuration there is at most one (TM may be incompletely specified)
next configuration, and a computation of TM forms a finite or infinite (non-
terminating) sequence of configurations. But in an NTM a computation forms
a tree of configurations with the start configuration at the root.

An input x ∈ (Σ\{✄,⊔})∗ is accepted by an NTMN if there exists a sequence
of configurations starting from (s,✄, x) reaches a configuration (Y, y, u). Other
sequences starting from (s,✄, x) may reach (N, z, v) or even may not halt.

A language L ⊆ (Σ \ {✄,⊔})∗ is decided by an NTM N , if for any x ∈
(Σ \ {✄,⊔})∗, x ∈ L if and only if (s,✄, x)→∗

N
(Y, y, u).

This essentially says that if x ∈ L, there is a sequence of nondeterministic
choices that leads to an accept halt. But if x 6∈ L, no sequence of choice can
leads to accept halt.

References

[CHP] Computational Complexity by Christos H Papadimitriou, Pub. Addision-
Wesley, 1994, ISBN 0-201-53082-1.

5



[MS] Theory of Computation by Michael Sipser, (3rd. ed.) Pub. Cengage Learn-
ing, 2013, ISBN 978-81-315-2529-6.

[SABB] Computational Complexity, A Modern Approach by Sanjeev Arora &

Boaz Barak, Pub. Cambridge University Press, 2009, ISBN 978-0-521-42426-
4.

[DCK1] Theory of Computation by Dexter C Kozen, Pub. Springer, 2006, ISBN
978-81-8128-696-3.

[RMK] R M Karp, Reducibility Among Combinatorial Problems, in R E Miller

and J W Thatcher, ed. Complexity of Computer Communications, pp 85-103,
Plenum, 1972.

[NPMJF] Nicholas Pippenger, And Michael J Fischer, Relation Among Complex-

ity Measures, in JACM 26, 2 (April 1979), pp 361-381.

[WJS] Walter J Savitch, Relationships between nondeterministic and determin-

istic tape complexities, Journal of Computer and System Sciences 4 (2), pp
177-192 1970.

6


