

School of Mathematical and Computational Sciences Indian Association for the Cultivation of Science

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course Theory of Computation II: COM 5108

Quiz III (16 November 2023)

Answer All Questions with Proper Justifications Marks: $6 \times 3 = 18$

- 1. What is the maximum possible number of configurations of an $f(n) \ge \log n$ space bounded (work tape) TM, where n is the input length.
- 2. Let $\phi(C_1, C_2, t)$ be a TQBF formula corresponding to a $O(n^k)$ space bounded computation of a TM going from configuration C_1 to configuration C_2 in t steps. An intermediate configuration C_m is such that both C_1 to C_m and C_m to C_2 are reached in $\frac{t}{2}$ steps. So we can write

 $\phi(C_1, C_2, t) = \exists C_m(\phi(C_1, C_m, t/2) \land \phi(C_m, C_2, t/2)).$

Explain why this scheme cannot give a polynomial size formula.

- 3. Let $A = \{x \in \{0,1\}^*$: number of 0's in x is twice the number of 1's in it}. Is $A \in \mathbf{L}$?
- 4. We define the language

 $H_f = \{ \langle M, x \rangle: \text{ the DTM } M \text{ accepts the input } x \text{ in } f(|x|) \text{ steps} \}.$

We claim that $H_f \notin \mathbf{DTIME}(f(\lfloor \frac{n}{2} \rfloor))$. We prove this by *diagonalization*. Suppose the TM M_f decides H_f within $f(\lfloor \frac{n}{2} \rfloor)$ number of steps. We construct the following TM D_f for diagonalization.

 D_f : input: $\langle M \rangle$

Simulate N_f on $\langle M, M \rangle$.

if N_f accepts, then reject else accept.

- (a) Find the running time of D_f on input of length $n = |\langle M \rangle|$.
- (b) Apply D_f on its own description $< D_f >$ and give the argument for contradiction.
- 5. $A_{cof} = \{ \langle M \rangle : \overline{L(M)} = \Sigma^* \setminus L(M) \text{ is finite} \} \in \Sigma_n^0$. What is the least value of n? Give a definition of A_{cof} based on a recursive predicate.
- 6. People claim that $\mathbf{PH} = \bigcup_{n \ge 0} \Sigma_n^p$ cannot have a complete language. If L is a **PH**-complete language it must belong to Σ_i^p for some *i*. Explain what can be the conclusion in that case?