

Indian Association for the Cultivation of Science (Deemed to be University under *de novo* Category)

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course End-Semester (Sem-III) Examination-Autumn 2023

Subject: Theory of Computation II Full Marks: 50 Subject Code: COM 5108' Time Allotted: 3 hours

Q 1. Answer ten(10) questions with brief justifications. $[10 \times 2 = 20]$

- (a) Is $DTIME(2^n)$ a proper subset of $DTIME(2^{2n})$?
- (b) What is the largest carry generated while multiplying (school-book method) two *n*-bit positive integers? Can it be computed in *logspace*?
- (c) Give a *context sensitive* language A such that $A \in \mathbf{L}$.
- (d) Is the language $L = \{ \langle \phi, \psi \rangle : \phi \in SAT \land \psi \in UNSAT \}$ **NP**-hard?
- (e) Let $L = \{x0\phi : x \in \{1\}^*, \phi \in SAT\}$. Is $L \in \mathbf{NP}$? Is it possible that $L \in \mathbf{P}$ for a suitable choice of x?
- (f) Why do people believe that **PH** cannot have a complete problem?
- (g) Can you justify from the cardinality (size of set) argument that there are too many languages in **P**/**poly** and not all of them can be computable.
- (h) Prove that, if $\Sigma_3^P \subseteq \Pi_3^P$, then $\Sigma_3^P = \Pi_3^P$.
- (i) a, b, c are Boolean variables. Express $(a \wedge b) = c$ in 3CNF form.
- (j) Define the probablistic language class **RP**.
- (k) What is the basic difference between the class **BPP** and **ZPP**?
- (1) Assume that multiplication (Mult(m, n)) is defined. Give a *primitive* recursive definition of n^m (Exp(m, n)).
- (m) Let the encodings of $True \equiv \lambda xy \cdot x$; $False \equiv \lambda xy \cdot y$; $pair \equiv \lambda xyz \cdot (zxy)$; $second \equiv \lambda x \cdot (x(\lambda yz \cdot z))$, as λ -terms. Evaluate: second (pair A B), where A and B are λ terms.
- (n) Is $TQBF = \{\phi : \phi \text{ is a closed}, true QBF\}$ a complete problem of **AP**?.

Answer any three (3) of the following questions.

$$egin{array}{c} [3 imes 10 = 30] \ [6+4] \end{array}$$

- (a) Explain why PATH = {< G, s, d >: G is a directed graph with a path from s to d } is **NL**-hard.
- (b) Justify that 2SAT is in **NL**.

[5+5]

- (a) Give the outline of a proof that there is an oracle set A such that $\mathbf{P}^{A} = \mathbf{NP}^{B}$. [Error. corrected in the exam hall: \mathbf{NP}^{A}].
- (b) Let $MAX INDSET = \{ \langle G, k \rangle : \text{the size of the largest independent set of } G \text{ is } k \}$. Show that $MAX INDSET \in \mathbf{P}^{SAT}$.

Q 4.

Q 2.

[2+5+3]

- (a) CKT-SAT = {< C >: C is a satisfiable Boolean Circuit}. Show that CKT-SAT is in **NP**.
- (b) How do you reduce CKT-SAT to 3SAT?
- (c) Let $A \in \mathbf{P}$. Show that there is a **P**-uniform circuit family for A. Assume that for a language $A \in DTIME(f(n)), f(n) \ge n$, a circuit of size $O(f(n)^2)$ can be constructed by an $O(f(n)^2)$ time bounded TM.

Q 5.

[5+5]

- (a) Justify that $ATIME(f(n)) \subseteq DSPACE(f(n))$, where $f(n) \ge n$.
- (b) Show that $\mathbf{ZPP} \subseteq \mathbf{RP}$.

[5+5]

- (a) How do you compute $g \circ f$ in logspace, if $f, g : \{0,1\}^* \to \{0,1\}^*$ are computable in logspace?
- (b) Justify that $TQBF = \{\phi : \phi \text{ is a closed}, true \text{ QBF}\}$ is in **PSPACE**.