

## Indian Association for the Cultivation of Science (Deemed to be University under *de novo* Category)

Master's/Integrated Master's-PhD Program/ Integrated Bachelor's-Master's Program/PhD Course Mid-Semester (Sem-III) Examination-Autumn 2023

Subject: Theory of Computation IISubject Code: COM 5108Full Marks: 25Time Allotted: 2 hours

**Q** 1. Answer five (5) questions with brief justifications.  $[5 \times 2 = 10]$ 

(a) Is  $2^n = o(3^n)$  (small 'o')? **Ans.** Yes.  $\lim_{n\to\infty} \frac{2^n}{3^n} = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n = 0.$ 

(b) Draw the implication graph (directed) corresponding to the 2SAT formula  $\phi = (x \vee \overline{y}) \wedge (y \vee \overline{z}) \wedge (z \vee \overline{x}) \wedge (\overline{z} \vee \overline{x})$ . Justify from the graph why all variables get the truth value *false* for a *satisfying* assignment.

Ans. The implication graph is as follows.



No variable can get the truth value *true* as for each variable there is a path from the variable to its negation.

(c) An NTM has a 3-way nondeterminism at the given state-input pair:  $\delta(q_0, 0) = \{(q_1, 0, \leftarrow), (q_2, 0, -), (q_3, 1, \rightarrow)\}$ . Modify the transition function so that there will be 2-way nondeterminism.

**Ans.** Let the modified transition function be  $\delta'$ . It is same as  $\delta$  for all state-input pairs other than  $(q_0, 0)$ . Let p be a new state, the transitions are  $\delta'(q_0, 0) = \{(q_1, 0, \leftarrow), (p, 0, -)\}$  and  $\delta'(p, 0) = \{(q_2, 0, -), (q_3, 1, \rightarrow)\}$ .

(d) The language  $coFin = \{L \subseteq \Sigma^* : \Sigma^* \setminus L \text{ is finite}\}$ . Is  $coFin \in \mathbf{P}$ ?

**Error.** it is not ' $\in$ ' but ' $\subseteq$ '.

**Ans.** Every finite language is *regular*. So every *coFin* language is also regular. And a *regular* language is also in  $\mathbf{P}$ .

(e) Is the following language in **P** or **NP**-hard?

$$SAT_e = \{ \phi \ 0 \ 1^{2^n} : \phi \in SAT \text{ and } |\phi| = n \}.$$

**Ans.** Identification of the formula  $\phi$  can be done in linear time. The membership of  $\phi$  in SAT can be tested using a truth table method. The size of the truth table is  $O(2^n)$ .  $2^n$  can also be computed in time  $O(2^n)$  and the number of 1's at the end of the input can be checked. So time taken is linear in the length of the input and  $SAT_e \in \mathbf{P}$ .

(f) What is the total number of variable instances used in this formula where  $C = Q \cup \Gamma$  and |C| = l.

$$\phi_{cell} = \bigwedge_{1 \le i,j \le n^k} \left( \left( \bigvee_{p \in C} x_{i,j,p} \right) \land \left( \bigwedge_{\substack{p,q \in C, \\ p \ne q}} (\overline{x_{i,j,p}} \lor \overline{x_{i,j,q}}) \right) \right).$$

**Ans.**  $\bigvee_{p \in C} v_{i,j,p}$  uses l variables.  $\bigwedge_{\substack{p,q \in C, \\ p \neq q}} (\overline{v_{i,j,p}} \vee \overline{v_{i,j,q}})$  uses  $2 \times {l \choose 2} = l(l-1)$  variables. So the total number of variables used are  $(n^k)^2 \times l^2$ .

(g) A language  $L \in \mathbf{NP}$  is defined as follows.

 $\forall x \in \Sigma^*, x \in L \text{ if and only if } \exists w \in \Sigma^{p(n)}, \text{ there is a } q(n) \text{ time bounded}$ DTM V that accepts  $\langle x, w \rangle$ ,

where n = |x|, p(n), q(n) are polynomials. Define a language  $L' \in \mathbf{coNP}$  in a similar way.

**Ans.** Language  $L' \in \mathbf{coNP}$  is defined as follows.

 $\forall x \in \Sigma^*, x \in L' \text{ if and only if } \forall w \in \Sigma^{p(n)}, \text{ there is a } q(n) \text{ time bounded}$ DTM  $\neg V \text{ that accepts } < x, w >,$ 

where n = |x|, p(n), q(n) are polynomials, and  $\neg V$  is same as V with *accept* and *reject* states reversed.

## Answer any three (3) of the following questions.

 $\overline{[\mathbf{3} imes \mathbf{5}]} = \mathbf{15}$ 

**Q 2.** Give an  $O(n \log n)$  step bounded single-tape DTM algorithm to recognize  $\overline{L} = \{x \in \{0,1\}^* : x \text{ has equal number of 0's and 1's}\}$ , where n is the length of the input. Detail state transitions are not required, but explain its operation and the time complexity.

**Ans.** M = "On input x

- 1. Scan the string and put a *sentinel* at the end of the input O(n) steps.
- 2. Repeat the following steps as long as there are some 0's and 1's.
  - (i) Check the parity of the remaining 0's and 1's. If it is odd reject O(n) steps.
  - (ii) Replace alternate 0's by ' $\sqcap$ ' starting with the first one. Do the same thing for 1's O(n) steps.

## 3. Accept.

Step (1) takes O(n) steps. The loop runs for  $\log n$  times. Each of (i) and (ii) take O(n) steps. The total number of steps are  $O(n) + O(\log n)(O(n) + O(n)) = O(n \log n)$ .

**Q 3.** Give the detail design of a DTM  $M = (Q, \Sigma, \delta, s)$ , that takes the input  $\triangleright x$ , where  $x \in \{0, 1\}^+$  and computes the 2's complement of x (ignore overflow). Examples of computation are:  $\triangleright 0 \rightarrow^*_M \triangleright 0$ ,  $\triangleright 1 \rightarrow^*_M \triangleright 0$ ,  $\triangleright 101100 \rightarrow^*_M \triangleright 010100$ .

**Ans.** The TM  $M = (\{s, q_0, q_1\}, \{0, 1, \triangleright, \sqcup\}, \delta, s)$  where the state transition is given by the following table.

| $p \in Q$ | $\sigma \in \Sigma$ | $\delta(p,\sigma) = (q,\gamma,D)$  |
|-----------|---------------------|------------------------------------|
| s         | $\triangleright$    | $(s, \rhd, \rightarrow)$           |
| s         | 0                   | $(s, 0, \rightarrow)$              |
| s         | 1                   | $(s, 1, \rightarrow)$              |
| s         | $\Box$              | $(q_0, \sqcup, \leftarrow)$        |
| $q_0$     | 0                   | $(q_0, 0, \leftarrow)$             |
| $q_0$     | 1                   | $(q_1, 1, \leftarrow)$             |
| $q_0$     | $\triangleright$    | $(h, \rhd, \rightarrow)$           |
| $q_1$     | 0                   | $(q_1, 1, \leftarrow)$             |
| $q_1$     | 1                   | $(q_1, 0, \leftarrow)$             |
| $q_1$     | $\triangleright$    | $(h, \triangleright, \rightarrow)$ |

**Q** 4.  $3COLOR = \{ < G >: G \text{ is an undirected graph whose vertices can be coloured with at most 3 colours }. Give a polynomial time reduction of <math>3COLOR$  to  $SAT, G \mapsto \phi, G$  is 3-colourable if and only if  $\phi$  is satisfiable.

**Ans.** Let the graph G = (V, E) has n vertices  $V = \{v_1, \dots, v_n\}$ . We take 3n variables,  $\{x_{11}, x_{12}, x_{13}, \dots, x_{n1}, x_{n2}, x_{n3}\}$ . The variable  $x_{ij}, 1 \le i \le n, 1 \le j \le 3$ , is *true* if the vertex  $v_i$  is coloured with the colour j. We have the following set of clauses:

(a) Each vertex must have at least one colour:

$$\bigwedge_{i=1}^{n} (x_{i1} \lor x_{i2} \lor x_{i3}).$$

(b) No vertex can have two colours:

$$\bigwedge_{i=1}^{n} \bigwedge_{1 \le j \ne k \le 3} (\neg x_{ij} \lor \neg x_{ik})$$

(c) No pair of adjacent vertices can have same colour.

$$\bigwedge_{\{v_a,v_b\}\in E} \bigwedge_{j=1}^3 (\neg x_{aj} \lor \neg x_{bj}).$$

The length is of  $O(n) + O(n) + O(n^2) = O(n^2)$ .

**Q 5.** Informally describe how an f(n) time bounded k-tape DTM can be simulated on a single-tape DTM. What is the order of *slowdown* of the simulation?