Computer Science & Engineering Department I. I. T. Kharagpur

Foundations of Computing: CS 300053

3rd Year ID Elective : 5th Semester Tutorial - I

Goutam Biswas $7th \ August, \ 2003$

- 1. Prove that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- 2. Write converse or contrapositive of the following statement.

if x and y are odd then x - y is even.

3. Give a clean proof of the following statement.

 $A = \{m \in \mathbb{Z} : m = 3n + 4, n \in \mathbb{Z}\}$ is closed under multiplication (\times).

4. Give a clean proof of the following statement.

n is an odd integer iff x^2 is odd.

5. Let $f: A \longrightarrow B$ be an *onto* map, |A| = m and |B| = n. The number of elements of A mapped to the i^{th} element of B be m_i i.e. $\sum_{i=1}^n m_i = m$.

Count the number of right-inverses of f.

6. A relation R on a A ($R \subseteq A \times A$) is called symmetric, if $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$. Let |A| = n.

Count the total number of symmetric relations on A.

7. Prove the following statement.

If A and B are denumerable sets, then so is $A \cup B$.

8. Disprove the following statement.

If A and B are denumerable sets, then so is $A \cap B$.

- 9. Show that two closed intervals on a real line are equinumerous i.e. $[a, b] \simeq [c, d]$.
- 10. Explain diagonalization in the proof of $\mathbb{N} \not\simeq \mathcal{P}\mathbb{N}$.